Distillation Patents (Class 208/92)
  • Patent number: 11946000
    Abstract: A hydrocarbon cracker stream is combined with recycle content pyrolysis oil to form a combined cracker stream and the combined cracker stream is cracked in a cracker furnace to provide an olefin-containing effluent. The r-pyoil can be fed to the cracker feed. More specifically the-pyoil is present in said feedstock in an amount of not more than 20% by weight, based on the total weight of the feedstock.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: April 2, 2024
    Assignee: Eastman Chemical Company
    Inventors: Daryl Bitting, Kenny Randolph Parker, Michael Gary Polasek, David Eugene Slivensky, Xianchun Wu, Jerome Leonard Stavinoha, Jr.
  • Patent number: 11850565
    Abstract: A reactor and process for the production of bio-diesel. The reactor includes one or more coiled reaction lines. The lines are positioned within a tank containing a heat transfer media such as molten salt, maintained at about 750° F. A pump circulates the media within the tank. An emulsion of alcohol; refined feed stock, including glycerides and/or fatty acids; and preferably water is pumped through the reaction lines at temperatures and pressures sufficient to maintain the alcohol in a super-critical state. The curvature of the coils, pump pulsing, and the flow rate of the emulsion keep the emulsion in a turbulent state while in the reactor, ensuring thorough mixing of the alcohol and feed stock. The alcohol reacts with the glycerides and fatty acids to form bio-diesel. The reaction is fast, efficient with regard to energy input and waste generation, and requires minimal alcohol.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: December 26, 2023
    Assignee: LOUISIANA ECO GREEN, L.L.C.
    Inventors: Kemper J McSpadden, Gerard M Thomassie
  • Patent number: 11807819
    Abstract: Systems and methods for processing full range naphtha to produce light olefins are disclosed. The systems and methods include separating the full range naphtha into a light naphtha stream and a heavy naphtha stream and integrating a catalytic cracking with a naphtha reforming to process the light naphtha and heavy naphtha streams.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: November 7, 2023
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Khalid A. Al-Majnouni, Naif A. Al-Dalaan, Ahmad M. Al-Shehri, Nabil Al-Yasser, Ahmed Al-Zenaidi
  • Patent number: 11613713
    Abstract: Systems and methods for crude oil separation and upgrading, which include the ability to reduce aromatic complex bottoms content in gasoline and higher-quality aromatic compounds. In some embodiments, aromatic complex bottoms are recycled for further processing. In some embodiments, aromatic complex bottoms are separated for further processing.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: March 28, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Bruce Richard Beadle, Vinod Ramaseshan, Rakan Sulaiman Bilaus
  • Patent number: 11406958
    Abstract: The present disclosure relates generally processes and systems for converting a C2-C7 light alkanes feed to liquid transportation fuels or value-added chemicals. The feed is contacted with an aromatization catalyst at a temperature and pressure that selectively converts C4 and larger alkanes to an intermediate product comprising monocyclic aromatics and olefins. Following separation of the aromatics and C5+ hydrocarbons from the intermediate product, unconverted C2-C3 alkanes are thermally-cracked to produce olefins that are subsequently oligomerized to produce a liquid transportation fuel blend stock or value-added chemicals.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: August 9, 2022
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Neal D. McDaniel, Bruce B. Randolph, Robert M. Walston, Anthony O. Baldridge, James A. Suttil, Soumen Kundu, Hong Xie, Steven E. Lusk
  • Patent number: 10981847
    Abstract: The present disclosure relates to processes that catalytically convert a hydrocarbon feed stream predominantly comprising both isopentane and n-pentane to yield upgraded hydrocarbon products that are suitable for use either as a blend component of liquid transportation fuels or as an intermediate in the production of other value-added chemicals. The hydrocarbon feed stream is isomerized in a first reaction zone to convert at least a portion of the n-pentane to isopentane, followed by catalytic-activation of the isomerization effluent in a second reaction zone with an activation catalyst to produce an activation effluent. The process increases the conversion of the hydrocarbon feed stream to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Certain embodiments provide for further upgrading of at least a portion of the activation effluent by either oligomerization or alkylation.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: April 20, 2021
    Assignee: Phillips 66 Company
    Inventors: Anthony O. Baldridge, Neal D. McDaniel, James A. Suttil, Edward C. Weintrob, Jianhua Yao, Bruce B. Randolph, Maziar Sardashti, Robert M. Walston, Steven E. Lusk
  • Patent number: 10870807
    Abstract: Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking, fluid catalytic cracking and conversion of naphtha to chemical rich reformate. Feeds to the mixed feed steam cracker include light products from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits. Chemical reformate from straight run naphtha streams is used as an additional feed to the aromatics extraction zone and or the mixed feed steam cracker.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 22, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohammed Saeed Al-Ghamdi, Bader BaHammam, Naif Al Osaimi, Sami Barnawi
  • Patent number: 10851315
    Abstract: Processes for the production of a gasoline blend. A C7 portion of a naphtha stream is first isomerized to increase the branched, iso-paraffins, and then, the isomerized effluent is passed to a dehydrogenation reaction zone. In the dehydrogenation zone, the C7 saturated hydrocarbons are convert to C7 olefins. The C7 olefins have a higher octane number than the C7 saturated hydrocarbons, and the branched olefins have a higher octane number than the normal olefins. The C7 olefins can be blended in a gasoline pool. C5 and C6 hydrocarbons can be isomerized and dehydrogenated as well, separately or with the C7 components.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: December 1, 2020
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Rajeswar Gattupalli, Bryan K. Glover, Mohamed Shakur, Keith A. Couch, Michael W. Penninger, Soumendra Mohan Banerjee, Deepak Bisht, Gautam Pandey, Amit Sharma, Priyesh Jayendrakumar Jani, Nishesh Garg
  • Patent number: 10717941
    Abstract: Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and fluid catalytic cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 21, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohammed Saeed Al-Ghamdi, Bader BaHammam, Naif Al Osaimi, Sami Barnawi
  • Patent number: 10421914
    Abstract: A method comprising a combination and sequential methods to: a.-)Produce solid vacuum residue, b.-) Melt the solid vacuum residue, and c.-)Heat the melted Solid Vacuum residue. This invention applies to any single or mixture of hydrocarbons including one or more heavy crude oils, extra heavy crude oils, tar sands and/or bitumens, (named heavy feedstocks). The heavy feedstock is processed in the production field or a nearby location using atmospheric, vacuum distillation and a solid forming unit, to produce liquid distillates and a solid vacuum residue resulting from a deep cut point of the heavy vacuum gasoil. The Solid Vacuum Residue is melted and heated at the destination to be used as feedstocks in refineries deep conversion units to optimize operations and economics.This invention reduces the diluent imports at the heavy feedstocks production fields used for its production and/or its transportation.
    Type: Grant
    Filed: March 6, 2016
    Date of Patent: September 24, 2019
    Inventor: David Ledo Perez
  • Patent number: 9809764
    Abstract: A process for producing high yields of higher quality (API Group II, Group III?) lubricating oil basestock fractions which allows the production of two or more types of high quality lubes in continuous mode (no blocked operation mode) without transition times and feed or intermediate product tankage segregation. Two consecutive hydroprocessing steps are used: the first step processes a wide cut feed at a severity needed to match heavy oil lube properties. The second step hydroprocesses a light oil after fractionation of the liquid product from the first step at a severity higher than for the heavy oil fraction. The two hydroprocessing steps will normally be carried out in separate reactors but they may be combined in a single reactor which allows for the two fractions to be processed with different degrees of severity.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: November 7, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Teck-Mui Hoo, Richard A. Demmin, Fengrong Chen, James W. Gleeson, Suisheng M. Dou, Tomas R. Melli, Michael C. Clark
  • Patent number: 9783751
    Abstract: The invention relates to a process for the conversion of hydrogen and one or more oxides of carbon to hydrocarbons, which process comprises: contacting hydrogen and one or more oxides of carbon with a catalyst in a reaction zone; removing from the reaction zone an outlet stream comprising unreacted hydrogen, unreacted one or more oxides of carbon and one or more hydrocarbons and feeding the outlet stream to a separation zone in which the outlet stream is divided into at least three fractions, in which; a first fraction predominantly comprises unreacted hydrogen, unreacted one or more oxides of carbon and hydrocarbons having from 1 to 4 carbon atoms; a second fraction predominantly comprises hydrocarbons having 5 to 9 carbon atoms, at least a portion of which hydrocarbons having from 5 to 9 carbon atoms are olefinic; and a third fraction predominantly comprises hydrocarbons having 10 or more carbon atoms; characterized in that at least a portion of the second fraction is recycled to the reaction zone.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: October 10, 2017
    Assignee: IGTL TECHNOLOGY LTD
    Inventor: Richard John Hyman
  • Patent number: 9453169
    Abstract: A process for converting Fischer-Tropsch liquids and waxes into lubricant base stock and/or transportation fuels is disclosed. The process includes the steps of feeding a Fischer-Tropsch wax to a first isomerization unit to produce an isomerized Fischer-Tropsch wax product; combining a Fischer-Tropsch liquid with the isomerized Fischer-Tropsch wax product to create a mixture of the Fischer-Tropsch liquid and the Fischer-Tropsch wax product; and feeding the mixture to a fractionation column to separate the mixture into a lubricant base stock fraction and at least one transportation fuel fraction.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 27, 2016
    Assignee: UOP LLC
    Inventors: Kenneth J. Stippich, Jr., Vasant P. Thakkar, John A. Petri
  • Patent number: 9017545
    Abstract: Disclosed is a process for hydrotreating inferior naphtha fraction, comprising: (1) warming a recycle oil in a heating device; (2) mixing the inferior naphtha fraction with the recycle oil before and/or after the heating device; and (3) feeding the mixture of the inferior naphtha fraction and the recycle oil into a separating unit, wherein the gas-liquid separation is realized at least to obtain a gas phase and a liquid phase, wherein the gas phase comprises gasified inferior naphtha, wherein the gas phase enters a hydrotreating reactor to undergo hydrotreating, and wherein part of the liquid phase circulates to the heating device as the recycle oil; wherein warming of the recycle oil is controlled to ensure the temperature of gas phase from the separator at least reaches the inlet temperature of the hydrotreating reactor. Comparing with the prior art, the inventive process effectively solves the coking problem of the hydrogenating unit for inferior naphtha fraction.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 28, 2015
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec
    Inventors: Ying Zhang, Baozhong Li, Ronghui Zeng, Youliang Shi
  • Patent number: 8932451
    Abstract: Methods are provided for processing crude oil feeds with reduced or minimized energy usage, reduced or minimized numbers of processing steps, improved allocation of hydrogen, and reduced or minimized formation of low value products. The methods reduce or minimize the use of vacuum distillation, and in many aspects reduce or minimize the use of both atmospheric and vacuum distillation. The methods also reduce or minimize the use of coking and fluid catalytic cracking processes.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 13, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramon A. Strauss, Stephen Harold Brown, Donald E. Stratton, Stefan Maria Willy Ceulemans
  • Publication number: 20140353209
    Abstract: One exemplary embodiment can be a process for treating a naphtha stream. The process may include providing the naphtha stream to a fractionation zone. The fractionation zone may include a fractionation column producing a first stream having one or more C5? hydrocarbons and a second stream withdrawn at a lower elevation on the fractionation column than the first stream and having one or more C5+ hydrocarbons, and sending at least a portion of the second stream to an aromatics complex for producing at least one of benzene, toluene, and para-xylene.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Inventor: Steven F. Zink
  • Patent number: 8888992
    Abstract: A process for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with fresh catalyst to form a cracked stream and spent catalyst, and then mixed with an unprocessed second stream. The spent catalyst may be regenerated to form fresh catalyst, which may then be recycled. At least part of the cracked stream may be mixed with a second crude stream. A ratio of the second crude stream to the first crude stream may be between about 0.5:1 and about 9:1. A ratio of part of the cracked stream to add to the second crude stream may be selected to achieve a API gravity of at least about 18. The first crude stream may be heated and stripped before being cracked.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: November 18, 2014
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, James F. McGehee, Selman Z. Erisken, Jibreel A. Qafisheh
  • Patent number: 8752623
    Abstract: In solvent-dominated recovery processes for recovering In situ oil, including bitumen, the produced fluid stream includes oil and solvent. The solvent is preferably recovered and reinjected into the reservoir. In previously described methods, solvent is removed from the oil/solvent mixture. In the present method, the oil/solvent mixture is first separated into a heavier stream and a lighter stream from which solvent is independently removed.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: June 17, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Eric B. Sirota, Owen J. Hehmeyer
  • Patent number: 8721872
    Abstract: A method for thermally cracking an organic acid containing hydrocarbonaceous feed wherein the feed is first processed in a vaporization step, followed by thermal cracking.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 13, 2014
    Assignee: Equistar Chemicals, LP
    Inventors: Donald H. Powers, Robert S. Bridges, Kenneth M. Webber
  • Patent number: 8709234
    Abstract: A process in which the paraffinic effluent derived from a Fischer-Tropsch synthesis unit is separated to obtain a heavy C5+ fraction, said heavy fraction then being hydrogenated in the presence of a hydrogenation catalyst at a temperature in the range 80° C to 200° C, at a total pressure in the range 0.5 to 6 MPa, at an hourly space velocity in the range 1 to 10 h-1, and at a hydrogen flow rate corresponding to a hydrogen/hydrocarbons volume ratio in the range 5 to 80 NI/I/h, the liquid hydrogenated effluent then being brought into contact with a hydroisomerization/hydrocracking catalyst, with no prior separation step, the hydroisomerized/hydrocracked effluent then being distilled to obtain middle distillates and possibly oil bases.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: April 29, 2014
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Aurelie Dandeu, Nathalie Marchal-George, Vincent Coupard, Eric Caprani, Jean Cosyns, Damien Douziech, Stephane Fedou
  • Patent number: 8696888
    Abstract: The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is severely hydrotreated and passed to a steam cracker to obtain an olefins product.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Megan L. Renstrom, Julian A. Wolfenbarger, Stephen H. Brown, John S. Buchanan
  • Publication number: 20140083906
    Abstract: Provided is a process for cracking a hydrocarbon feedstock. The process having the steps of (a) continuously passing the feedstock through a vapor-liquid separator in which the feedstock is separated into a volatile stream and a non-volatile stream; (b) continuously passing the non-volatile stream to a cracker; and (c) continuously recycling a portion of the volatile stream to the feedstock. There is also an apparatus for cracking a hydrocarbon feedstock.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Eric B. Sirota
  • Publication number: 20140053456
    Abstract: Methods and systems for the devolatilization of thermally produced liquids to raise the flash point are disclosed. Various methods and apparatus can be used to effectively reduce the volatile components, such as wiped film evaporator, falling film evaporator, flash column, packed column, devolatilization vessel or tank.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 27, 2014
    Applicant: Ensyn Renewables, Inc.
    Inventors: Geoffrey Hopkins, Barry A. Freel, Doug Clarke
  • Publication number: 20140021094
    Abstract: Heavy hydrocarbons contained in FT off gas of a GTL process are removed by bringing the FT off gas into contact with absorption oil, by introducing the FT off gas into a distillation tower, by cooling the FT off gas or by driving the FT off gas into an adsorbent. A burner tip for heating a reformer tube, using FT off gas as fuel, is prevented from being plugged by the deposition of heavy hydrocarbons contained in the FT off gas.
    Type: Application
    Filed: March 31, 2011
    Publication date: January 23, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Kenichi Kawazuishi, Fuyuki Yagi, Shuhei Wakamatsu, Tomoyuki Mikuriya
  • Patent number: 8604262
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
  • Publication number: 20130319662
    Abstract: Systems and methods for hydrotreating a liquid fraction of a shale oil stream using hydrogen gas that is concentrated from a gaseous fraction of the shale oil stream. The systems and methods include providing a portion of the gaseous fraction to a sorptive separation assembly and separating a concentrated hydrogen stream from the portion of the gaseous fraction within the sorptive separation assembly. The system and methods further include providing the concentrated hydrogen stream and the liquid fraction to a hydrotreater and reacting the concentrated hydrogen stream with the liquid fraction within the hydrotreater to produce the hydrotreated liquid stream. The systems and methods may include generating the shale oil stream within a subterranean formation using an in situ process, such as an in situ shale oil conversion process and/or providing a supplemental hydrogen stream to the hydrotreater.
    Type: Application
    Filed: May 7, 2013
    Publication date: December 5, 2013
    Inventors: Emilio Alvarez, Harry W. Deckman, Frank Hershkowitz, William P. Meurer, Thomas R. Palmer
  • Patent number: 8586812
    Abstract: Processes for upgrading condensate in a first hydrocarbon stream to provide distillate material may involve ionic liquid catalyzed olefin oligomerization of olefins in the first hydrocarbon stream to provide a first distillate enriched stream, dechlorination of the first distillate enriched stream, hydroprocessing at least one of a second and a third hydrocarbon stream to provide a second distillate enriched stream, and separation of a distillate product from the first and second distillate enriched streams.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Bi-Zeng Zhan
  • Publication number: 20130277274
    Abstract: A process for the refining of crude oil, comprising a separation unit of the crude oil, consisting of at least one atmospheric distillation unit for separating the various fractions, a unit for the conversion of the heavy fractions obtained, a unit for improving the quality of some of the fractions obtained by actions on the chemical composition of their constituents, and units for the removal of undesired components, characterized in that the heaviest fraction, the atmospheric distillation residue, is sent to the conversion unit comprising a hydroconversion reactor in slurry phase or of the ebullated bed type, into which hydrogen or a mixture of hydrogen and ¾S is introduced in the presence of a suitable nanodispersed hydrogenation catalyst.
    Type: Application
    Filed: October 27, 2011
    Publication date: October 24, 2013
    Applicant: Eni S.P.A.
    Inventors: Giacomo Fernando Rispoli, Giuseppe Bellussi
  • Publication number: 20130161236
    Abstract: Methods are provided for processing crude oil feeds with reduced or minimized energy usage, reduced or minimized numbers of processing steps, improved allocation of hydrogen, and reduced or minimized formation of low value products. The methods reduce or minimize the use of vacuum distillation, and in many aspects reduce or minimize the use of both atmospheric and vacuum distillation. The methods also reduce or minimize the use of coking and fluid catalytic cracking processes.
    Type: Application
    Filed: August 29, 2012
    Publication date: June 27, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramon A. Strauss, Stephen Harold Brown, Donald E. Stratton, Stefan Maria Willy Ceulemans
  • Publication number: 20130118953
    Abstract: Disclosed is a process for hydrotreating inferior naphtha fraction, comprising: (1) warming a recycle oil in a heating device; (2) mixing the inferior naphtha fraction with the recycle oil before and/or after the heating device; and (3) feeding the mixture of the inferior naphtha fraction and the recycle oil into a separating unit, wherein the gas-liquid separation is realized at least to obtain a gas phase and a liquid phase, wherein the gas phase comprises gasified inferior naphtha, wherein the gas phase enters a hydrotreating reactor to undergo hydrotreating, and wherein part of the liquid phase circulates to the heating device as the recycle oil; wherein warming of the recycle oil is controlled to ensure the temperature of gas phase from the separator at least reaches the inlet temperature of the hydrotreating reactor. Comparing with the prior art, the inventive process effectively solves the coking problem of the hydrogenating unit for inferior naphtha fraction.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 16, 2013
    Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: CHINA PETROLEUM & CHEMICAL CORPORATI, FUSHUN RESEARCH INSTITUTE OF PETROLEU
  • Publication number: 20130105356
    Abstract: Pyrolysis oil is upgraded by evaporating water from a mixture of the pyrolysis oil and a hydrocarbon having an atmospheric boiling point of at least 130° C. The method yields a de-watered pyrolysis oil mixture.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 2, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: Shell Oil Company
  • Patent number: 8338495
    Abstract: In a GTL process of producing various kinds of hydrocarbon oils from natural gas, provided is improved heat efficiency in the case of using a steam reforming process or a carbon dioxide reforming process in the reforming. The process includes producing a synthesis gas by converting the natural gas and at least one of steam and carbon dioxide into a synthesis gas through a tubular reformer filled with a reforming catalyst, producing Fischer-Tropsch oil by subjecting the produced synthesis gas to a Fischer-Tropsch reaction, and upgrading in which the Fischer-Tropsch oil is subjected to hydrotreatment and distillation to produce various kinds of hydrocarbon oils, in which excess heat generated in the synthesis gas production is recovered, and the recovered heat is used as heat for at least one of hydrotreatment and distillation in the upgrading.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: December 25, 2012
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Nippon Oil Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd., Chiyoda Corporation
    Inventors: Fuyuki Yagi, Kenichi Kawazuishi
  • Publication number: 20120261308
    Abstract: Systems and methods for refining conventional crude and heavy, corrosive, contaminant-laden carbonaceous crude (Opportunity Crude) in partially or totally separated streams or trains.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: Bechtel Hydrocarbon Technology Solutions, Inc.
    Inventors: Benjamin Klein, Odette Eng
  • Patent number: 8202480
    Abstract: An apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a particulate solid material to form a heavy hydrocarbon slurry and hydrocracked in a slurry hydrocracking unit to produce vacuum gas oil (VGO) and pitch. A first vacuum column separates VGO from pitch, and a second vacuum column further separates VGO from pitch. As much as 15 wt-% of VGO can be recovered by the second vacuum column and recycled to the slurry hydrocracking unit. A pitch composition is obtained which can be made into particles and transported without sticking together.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 19, 2012
    Assignee: UOP LLC
    Inventors: James F. McGehee, David N. Myers, Mark Van Wees, Paul R. Zimmerman, Ruth Buskus Kleinworth
  • Patent number: 8182556
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, sequentially adding solvent sets to the algal biomass, and sequentially separating solid biomass fractions from liquid fractions to arrive at a liquid fraction comprising neutral lipids. The method also includes esterifying the neutral lipids, separating a water miscible fraction comprising glycerin from a water immiscible fraction comprising fuel esters, carotenoids, and omega-3 fatty acids. The method also includes obtaining a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 22, 2012
    Assignee: Haliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8158840
    Abstract: A process and apparatus for steam cracking liquid hydrocarbon feedstocks utilizes a vapor/liquid separation apparatus to treat heated vapor/liquid mixtures to provide an overhead of reduced residue content and includes: i) indirectly heat exchanging liquid bottoms with boiler feed water to provide cooled liquid bottoms and preheated boiler feed water; ii) directing at least a portion of said preheated boiler feed water to a steam drum; and iii) recovering steam having a pressure of at least about 4100 kPa (600 psia) from said steam drum.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: April 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: David B. Spicer
  • Patent number: 8152870
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, sequentially adding solvent sets to the algal biomass, and sequentially separating solid biomass fractions from liquid fractions to arrive at a liquid fraction comprising neutral lipids. The method also includes esterifying the neutral lipids, separating a water miscible fraction comprising glycerin from a water immiscible fraction comprising fuel esters, carotenoids, and omega-3 fatty acids. The method also includes obtaining a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 10, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8152994
    Abstract: Systems and methods for processing one or more hydrocarbons are provided. One or more hydrocarbon feedstocks can be selectively separated to provide one or more light deasphalted oils. At least a portion of the light deasphalted oil can be hydrocracked to provide one or more hydrocarbon products.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 10, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd, Odette Eng
  • Patent number: 8137558
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8137556
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8083931
    Abstract: The invention is directed to a process wherein a feedstock or stream comprising steam cracker tar is passed to a vacuum pipestill. A deasphalted cut of tar is obtained as an overhead (or sidestream) and a heavy tar asphaltenic product is obtained as bottoms. In preferred embodiments, at least a portion of the bottoms product is sent to a partial oxidation unit (POX) wherein syn gas may be obtained as a product, and/or at least a portion of the bottoms product is used to produce a light product stream in a coker unit, such as coker naphtha and/or or coker gas oil. In another preferred embodiment at least a portion of the overheads product is added to refinery fuel oil pools and in yet another preferred embodiment at least a portion of the overheads product is mixed with locally combusted materials to lower soot make. Two or more of the aforementioned preferred embodiments may be combined.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: December 27, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen, Alok Srivastava, James E Graham
  • Patent number: 8052864
    Abstract: A process to prepare a sweet crude from an ash containing and heavy fraction of a tar sand oil comprising supplying an atmospheric distillation bottoms of a tar sands originated feed to a vacuum distillation to obtain a vacuum gas oil and a vacuum bottoms and contacting the vacuum gas oil with hydrogen to obtain a sweet synthetic crude. The vacuum bottoms obtained are separated into an asphalt fraction comprising between 0.1 and 4 wt % ash and a de-asphalted oil and the asphalt fraction is fed to a burner of a gasification reactor to obtain a mixture of hydrogen and carbon monoxide on which a water gas shift reaction is performed. Hydrogen sulphide and carbon dioxide are separated from the shifted gas in an acid removal unit thereby obtaining crude hydrogen which is purified and used to obtain the sweet synthetic crude.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 8, 2011
    Assignee: Shell Oil Company
    Inventors: Jacobus Eilers, Johannes Cornelis De Jong, Franciscus Johanna Arnoldus Martens
  • Patent number: 8002968
    Abstract: A process for treating a heavy hydrocarbon feedstock is disclosed. The process involves separating the feedstock into a residue component and a light component, the residue component having a lower API gravity than the light component and treating at least a portion of the light component to produce a synthetic transport diluent suitable for combining with at least a portion of the residue component to produce a product which meets applicable criteria for pipeline transport.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: August 23, 2011
    Assignee: Statoil Canada Ltd.
    Inventors: Leonard F. Flint, Patrick B. Carlson, Gareth R. Crandall
  • Patent number: 7947860
    Abstract: Processing schemes and arrangements for application of a dividing wall separation column in the processing of an effluent resulting from FCC processing modified for increased light olefin production. The dividing wall separation column desirably splits a naphtha feedstock produced or resulting from such modified FCC processing to produce or form a light fraction containing C5-C6 compounds, an intermediate fraction containing C7-C8 compounds and a heavy fraction containing C9+ compounds.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 24, 2011
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Keith A. Couch
  • Patent number: 7857965
    Abstract: A process for upgrading hydrocarbonaceous oil containing heteroatom-containing compounds where the hydrocarbonaceous oil is contacted with a solvent system that is a mixture of a major portion of a polar solvent having a dipole moment greater than about 1 debye and a minor portion of water to selectively separate the constituents of the carbonaceous oil into a heteroatom-depleted raffinate fraction and heteroatom-enriched extract fraction. The polar solvent and the water-in-solvent system are formulated at a ratio where the water is an antisolvent in an amount to inhibit solubility of heteroatom-containing compounds and the polar solvent in the raffinate, and to inhibit solubility of non-heteroatom-containing compounds in the extract. The ratio of the hydrocarbonaceous oil to the solvent system is such that a coefficient of separation is at least 50%.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: December 28, 2010
    Assignee: James W. Bunger and Associates Inc.
    Inventors: James W. Bunger, Donald E. Cogswell
  • Patent number: 7833409
    Abstract: A method for treating fuel containing vanadium including extracting vanadium from the fuel with an adsorption material and fractionating the fuel into a light oil fraction and a heavy fuel fraction. The light fuel fraction has a reduced amount of vanadium. Systems for fuel preparation are also provided.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Parag Prakash Kulkarni, Gregg Anthony Deluga, Arnaldo Frydman, Gregory Ronald Gillette, Narendra Joshi, Ke Liu, Vladimir Zamansky
  • Publication number: 20100243525
    Abstract: A method for thermally cracking an organic acid containing hydrocarbonaceous feed wherein the feed is first processed in a vaporization step, followed by thermal cracking.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Donald H. Powers, Robert S. Bridges, Kenneth M. Webber
  • Publication number: 20100243523
    Abstract: A method for thermally cracking an organic acid containing hydrocarbonaceous feed wherein the feed is first processed in a vaporization step operated under conditions designed to disassociate acid species in the feed prior to passing the feed to a thermal cracking furnace.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventor: Donald H. Powers
  • Publication number: 20100243524
    Abstract: A method for thermally cracking an organic acid containing hydrocarbonaceous feed wherein the feed is first processed in a vaporization step operated under conditions designed to vaporize and transmit a significant amount of the acid species in the feed to a thermal cracking furnace.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventor: Donald H. Powers
  • Patent number: 7737317
    Abstract: Processing schemes and arrangements are provided for the processing a heavy hydrocarbon feedstock via hydrocarbon cracking processing with selected hydrocarbon fractions being obtained via fractionation-based product recovery.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: June 15, 2010
    Assignee: UOP LLC.
    Inventors: Michael A. Schultz, Jason T. Corradi