Passing Through Membrane In Vapor Phase Patents (Class 210/640)
  • Patent number: 7557164
    Abstract: Blends of fluorinated ionomer with at least two nonionomeric fluoropolymers provide fuel cell membranes whose tensile strength and conductivity are superior to blends using a single fluoropolymer.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: July 7, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Vinci Martinez Felix, Gonzalo Escobedo, Ram-Tirth Khanna
  • Publication number: 20090152199
    Abstract: A membrane module comprising an outer casing having an interior region, a plurality of hollow fiber membranes extending through at least a portion of the interior region, and having exterior surfaces and inner hollow regions, where the inner hollow regions are configured to provide flow paths for a distillate fluid. The membrane module further comprises an opening extending through the outer casing for providing a feed solution to the interior region adjacent the exterior surfaces of the plurality of hollow fiber membranes, where the feed solution provided to the opening has an elevated temperature that is greater than an atmospheric-pressure boiling temperature of the feed solution, and an elevated pressure at which an effective boiling temperature of the feed solution is greater than the elevated temperature.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Zidu Ma, James R. Irish, Xiaohong Liao, Haralambos Cordatos, Xiaomei Yu
  • Publication number: 20090117631
    Abstract: This document describes a fermentation product producing or processing apparatus or process involving membrane pervaporation (PV) and either vapor permeation or distillation or both. The fermentation product may be produced semi-continuously wherein product concentration is maintained below a selected value by removal through pervaporation membranes. After a period of operation, the broth may be distilled. Distillation and/or pervaporation products may be further dewatered using vapor permeation. The PV membranes may be used in the form of immersed modules, for example with a flat sheet configuration.
    Type: Application
    Filed: October 28, 2008
    Publication date: May 7, 2009
    Inventors: Pierre Lucien Cote, Steven Kristian Pedersen
  • Publication number: 20090114594
    Abstract: Liquid membrane systems are provided for use in pervaporation techniques that achieves high selectivity, ensure stability and prevent contamination of the fermentation broth. Tri-n-octylamine (TOA), tri-laurlyamine or tri-decylamine as a liquid membrane is immobilized in the pores of a hydrophobic hollow fiber substrate having a nanoporous hydrophobic coating on the broth side. The liquid membrane in the coated hollow fibers demonstrate high selectivity and reasonable mass fluxes of solvents in pervaporation. The mass fluxes were substantially increased with the same selectivity of solvents when an ultrathin liquid membrane was used. The addition of butanol into the feed solution increases membrane selectivity.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 7, 2009
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventor: Kamalesh K. Sirkar
  • Patent number: 7513935
    Abstract: The present invention provides a method for preparing silica containing molecular sieves which may be mixed with an organic polymer to create a mixed matrix membrane. Further, this invention includes a method of making such a mixed matrix membrane and the membrane itself. A process for separating component gases from a mixture using the subject mixed matrix membrane is also described. The method for preparing silica containing molecular sieves comprises super water washing silica containing molecular sieves to produce water washed molecular sieves which are substantially free of surface remnants. Super water washing also ideally lowers the concentration of alkali metals in the molecular sieves.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 7, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, Lun-Teh Yuen
  • Publication number: 20090057224
    Abstract: Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Yu Huang, Richard W. Baker, Tiem Aldajani, Jennifer Ly
  • Patent number: 7497895
    Abstract: The invention relates to an improved membrane pervaporation and vapor permeation system in which the vacuum is produced by a fluid passing through a Venturi-type nozzle. The fluid is chosen from solvents that have little or no affinity for the permeate molecules. It is applicable over process feed rates, and can be used for the separation of aromatic species from hydrocarbon.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: March 3, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Craig Y. Sabottke
  • Patent number: 7494572
    Abstract: A mechanical water still (10) includes an impervious dome-like upper surface (12) and a membrane base (14) that is coupled (26) to the impervious dome-like structure (12) to form, when inflated, a chamber (20). The membrane base (14) supports a water pervaporation process therethrough. A water collection well (16) has an opening into which water droplets condensed from the water pervaporation process collect. The water collection well (16) is sited within the membrane base (14) and generally extends outwardly and downwardly from the membrane base (14), as shown in FIG. 1. In use, a contaminated water source (24) is brought into, ideally, complete contact with the membrane base (14), with the water collection well (16) arranged both to act as a heat sink into the water source (24) and to provide stability to the water still (10) when floating and immersed in the water source (24).
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 24, 2009
    Assignee: Design Technology and Innovation Ltd.
    Inventors: Mark Christopher Tonkin, Mark Andrew Young, Neil David Eckert
  • Publication number: 20090047720
    Abstract: The present disclosure includes a method for processing a beer stream for the recovery of oil. The method include a step of extracting oil from a beer stream into an organic phase comprising an organic solvent to provide in the organic phase at least a portion of the oil. In general, a beer stream refers to a composition containing alcohol, water, oil, and particulates, and can be a result of a fermentation process. When the beer stream is a beer stream from a fermentation process, it can be referred to as a fermentation broth even if it is no longer being subjected to fermentation. The beer stream can contain other components commonly found in a stream coming off a fermentation process such as, for example, glycerol and acetic acid. A method for producing ethanol, and an ethanol production facility are provided.
    Type: Application
    Filed: June 30, 2008
    Publication date: February 19, 2009
    Applicant: KFI Intellectual Properties L.L.C.
    Inventors: James Faulconbridge, Robert Wills
  • Patent number: 7491258
    Abstract: A gas and liquid separation device for use with a fuel tank. The separation device includes a body having at least one passage therethrough in fluid communication with the fuel tank, and a gas and liquid separator carried by the body in fluid communication with the at least one passage and being oriented at an angle with respect to horizontal when in use.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: February 17, 2009
    Assignee: TI Automotive Fuel Systems SAS
    Inventors: Christophe Gouzou, Eric Renard, Humbert de Monts de Savasse
  • Patent number: 7491298
    Abstract: A plant and process for efficient production of low deuterium water from seawater. The plant includes a solar still with a black pan for collecting solar heat, that vaporizes portions of the seawater and a porous sloped membrane positioned over the black pan to collect and condense the vapor and to direct the condensate via gravity to a condensate tank. The condensate water is separated into its atomic components, hydrogen and oxygen, in an electralizer; then the hydrogen and oxygen are combined in a reactor to produce heat and low deuterium water. In preferred embodiments the reactor is a fuel cell which in addition to the heat and water also produces electricity. At least a portion of the heat produced in the reactor is used in the solar still to assist in the vaporization of the seawater and to greatly increase the efficiency of the still.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: February 17, 2009
    Inventor: Vladimir Z. Zlotopolski
  • Patent number: 7488421
    Abstract: Water processing method, in particular for producing fresh water from salt water by membrane distillation. In comparison with previously known methods, a significant reduction in investment cost and operating cost can be achieved by the combination of the following measures: The water to be processed is kept in a supply chamber the wall of which is formed at least in part by a hydrophobic membrane being permeable for water vapor. A hydrophilic membrane having a greater thickness in comparison with the hydrophobic membrane and a lower thermal conductivity per unit area runs in parallel with the hydrophobic membrane. By the pumping action a vapor pressure difference is produced between the water to be processed and the fresh water so that the membrane distillation is driven by the vapor pressure difference resulting from the pumping action, the water condensing in the pores of the hydrophilic membrane.
    Type: Grant
    Filed: April 24, 2004
    Date of Patent: February 10, 2009
    Assignee: Clean Water Gesellschaft Fuer Wasseraufbereitungstechnik mbH
    Inventors: Guenther Hambitzer, Heide Biollaz, Markus Borck, Christiane Ripp
  • Publication number: 20090032467
    Abstract: A vaporization apparatus and related vaporization method is provided that relies on thermocapillary convection. The apparatus consists of a thermocapillary evaporator that has three sections: an evaporation section, a displacement section, and a storage system for storing the liquid to be evaporated. The evaporation section is operable to distribute thermal energy substantially along the entire liquid-gas interface. The method of the present invention consists of providing a thermocapillary evaporator that includes a storage system for the liquid to be evaporated. Advantageously, the present invention provides substantial evaporation from relatively low temperature heat sources, compared to conventional evaporators.
    Type: Application
    Filed: August 31, 2006
    Publication date: February 5, 2009
    Inventor: Ward Charles Albert
  • Patent number: 7485173
    Abstract: The present invention is for novel high performance cross-linkable and cross-linked mixed matrix membranes and the use of such membranes for separations such as for CO2/CH4, H2/CH4 and propylene/propane separations. More specifically, the invention involves the preparation of cross-linkable and cross-linked mixed matrix membranes (MMMs). The cross-linkable MMMs were prepared by incorporating microporous molecular sieves or soluble high surface area microporous polymers (PIMs) as dispersed microporous fillers into a continuous cross-linkable polymer matrix. The cross-linked MMMs were prepared by UV-cross-linking the cross-linkable MMMs containing cross-linkable polymer matrix such as BP-55 polyimide. Pure gas permeation test results demonstrated that both types of MMMs exhibited higher performance for CO2/CH4 and H2/CH4 separations than those of the corresponding cross-linkable and cross-linked pure polymer matrices.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: February 3, 2009
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Jeffrey J. Chiou, Stephen T. Wilson
  • Patent number: 7479227
    Abstract: A process for separating a component from a low molecular weight organic mixture by pervaporation. The process uses fluorinated membranes and is particularly useful for treating mixtures containing light organic components, such as methane, propylene or n-butane.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: January 20, 2009
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Andre R. Da Costa, Ramin Daniels, Ankur D. Jariwala
  • Patent number: 7473302
    Abstract: The present invention provides a durable liquid housing container and a durable liquid supply apparatus which use a gas-liquid separation membrane. Thus, a gas-liquid separation membrane (2) located at an air vent in a liquid housing container (1) includes a fibril portion (2A) composed of fibrous portions and an annular node portion (2B) which bundles the ends of fibrous portions of the fibril portion (2A) and which is closed so as to surround the fibril portion (2A).
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 6, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hikaru Ueda
  • Publication number: 20080308496
    Abstract: An integrated heating system for adding heat to a feed fuel within a module by way of an integrated heating element within the body or casing of the module. The heat may be selectively added to maintain a selected temperature.
    Type: Application
    Filed: April 21, 2008
    Publication date: December 18, 2008
    Inventor: Diane Lee Aagesen
  • Publication number: 20080296225
    Abstract: Water permeable membranes and methods of forming water permeable membranes are provided. The water permeable membranes are comprised of a cross-linked polyamide containing at least one bifunctional additive that is hydrophilic and reactive. Additionally, in accordance with other embodiments of this invention, methods of forming water permeable membranes comprised of a cross-linked polyamide containing at least one bifunctional additive that is hydrophilic and reactive are provided. Specifically, the water permeable membranes may comprise a membrane formed from a cross-linked aromatic or aromatic/aliphatic polyamide interfacially polymerized on a porous support. The presence of the at least one hydrophilic and reactive additive improves the flux and salt retention properties of the membrane in comparison to a membrane formed without the at least one hydrophilic and reactive additive.
    Type: Application
    Filed: July 17, 2008
    Publication date: December 4, 2008
    Inventor: W.S. Winston Ho
  • Patent number: 7459084
    Abstract: This present invention relates to a fluid separation module adapted to separate a given fluid mixture into permeate and retentate portions using bundles of hollow fiber membranes. The membranes may be composed of different kinds of membranes depending on the application being used to separate the fluid mixture. The fluid separation module may be used to separate fluid mixtures by a number of different processes, including but not limited to, pervaporation, vapour permeation, membrane distillation (both vacuum membrane distillation and direct contact membrane distillation), ultra filtration, microfiltration, nanofiltration, reverse osmosis, membrane stripping and gas separation. The present invention also provides an internal heat recovery process applied in association with those fluid separation applications where separation takes place by evaporation through the membrane of a large portion of the feed into permeate.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: December 2, 2008
    Assignee: Petro Sep International Ltd.
    Inventors: Fakhir U. Baig, Abdul M. Kazi, Aiser Al-Hassani
  • Patent number: 7452404
    Abstract: A process and system for separating a fuel stream containing a low concentration of sulfur compounds from a primary fuel stream is disclosed. The process includes isolating a stage-one permeate stream and a stage-one retentate stream from the primary fuel stream, evaporating the stage-one permeate stream at a vacuum, and isolating a stage-two permeate stream and a stage-two retentate stream from the stage-one permeate stream. The stage-two retentate stream is a fuel stream containing low concentrations of sulfur compounds. The system includes a fuel supply, a stage-one separator for separating a fuel stream into a stage-one permeate stream and a stage-one retentate stream, a stage-two separator, a first supply line connecting a portion of the fuel supply to the stage-one separator, and a second supply line connecting the stage-one separator permeate stream to the stage-two separator.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: November 18, 2008
    Assignee: Intelligent Energy, Inc.
    Inventors: Kandaswamy Duraiswamy, Richard Root Woods
  • Patent number: 7452405
    Abstract: A system for producing an auxiliary fuel stream containing a low concentration of sulfur compounds from a primary fuel stream includes a first separation stage to separate a portion of a primary fuel stream into a first vapor permeate stream and a first retentate stream, a first separation stage partial condenser connected to the first vapor permeate stream condensing a portion of the first vapor permeate stream into a first liquid stage stream and a first vapor stage stream, and a second separation stage partial condenser condensing a portion of the first vapor stage stream into a second liquid stage. The first vapor permeate stream is preferable sent through a vapor phase reactive desulfurization catalyst reactor to condition any sulfur compounds present into species that can be easily separated from the fuel stream.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 18, 2008
    Assignee: Intelligent Energy, Inc.
    Inventors: Kandaswamy Duraiswamy, Richard Root Woods
  • Publication number: 20080272052
    Abstract: Processes are described which comprise: (a) providing a mixture comprising a cyclic formal and water, wherein the mixture has a cyclic formal concentration and a water concentration; (b) bringing the mixture into contact with an organically selective membrane; (c) creating a pressure differential across the membrane; and (d) obtaining a permeate having a lower water concentration and a higher cyclic formal concentration than the mixture, and a retentate having a higher water concentration and a lower cyclic formal concentration than the mixture.
    Type: Application
    Filed: October 6, 2005
    Publication date: November 6, 2008
    Applicant: TICONA GmbH
    Inventors: Reinhard Wagener, Michael Haubs, Juergen Lingnau, Matthias Goring, Michael Hoffmockel
  • Patent number: 7427312
    Abstract: An apparatus for removing gas bubbles from a fluid includes a fluid inlet and a separation chamber that is in fluid communication with the fluid inlet. The separation chamber has first and second end portions, with the first end portion being operably oriented gravitationally above the second end portion. The apparatus further includes a first gas-permeable, liquid-impermeable membrane disposed in the separation chamber and extending substantially along a first axis defined as extending between the first and second end portions. A permeate side of the membrane is exposed to an environment having a second partial pressure of a target gas, which second partial pressure is lower than a first partial pressure of the gas in the fluid.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: September 23, 2008
    Assignee: Rheodyne, LLC
    Inventors: Yuri Gerner, Carl W. Sims, Jonathan Thompson
  • Patent number: 7422623
    Abstract: This abstract discusses membranes needed to separate fluids for the production of oxygen-enriched air, nitrogen-enriched-air, for the separation of carbon dioxide from hydrocarbons, and the separation of hydrogen from various petrochemical and oil refining streams. Membranes are needed that provide a resistance to interaction with process components or contaminants, provide the mechanical strength required to withstand high membrane differential pressures and high process temperatures, and exhibit sufficient maximum strain such that membranes are not brittle and can easily be formed into desirable membrane forms. Membranes of polyimide polymers, particularly polyimide polymers sold under the trade name P-84, are annealed in a controlled annealing step to improve the mechanical properties of the polymers used to make separation membranes.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: September 9, 2008
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Okan Max Ekiner, John W. Simmons
  • Patent number: 7410065
    Abstract: The invention relates to a membrane for the separation of material mixtures by the principle of vapor permeation or pervaporation, in particular for the dewatering of organic solvents, comprising at least one support layer and at least one material-selective separation layer located thereon, and a method for production of such a membrane. The material-selective separating layer is made from polyvinyl alcohol, containing at least one metallic element and/or a derivative thereof. The method includes the addition of polyvinyl alcohol to a solvent, adding an organometallic compound to the solvent/polyvinyl alcohol mixture, and then applying the solvent/polyvinyl alcohol/organometallic compound mixture to the support layer as the material-selective separating layer.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: August 12, 2008
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Katrin Ebert, Bastian Ruffmann, Joachim Koll, Axel Wenzlaff
  • Publication number: 20080179247
    Abstract: A method reducing wastewater in a polyester-manufacturing plant includes a step in which ethylene glycol-containing composition from at least one of the chemical reactors is provided to a water separation column. The water separation column is kept within a predetermined temperature range such that any acetaldehyde present in the water separation column is substantially maintained in a vapor state. A waste-vapor mixture comprising one or more organic compounds is subsequently removed from the water separation column and combusted. The polyester-manufacturing plant optionally includes a spray condenser system having a heat exchanger such that the heat exchanger is contacted with a hot ethylene glycol composition derived from the water separation column when the heat exchanger needs cleaning. The polyester-manufacturing plant may be enclosed with a roof and walls such that rainwater is prevented from being contaminated with any organic chemicals present in the polyester-manufacturing plant.
    Type: Application
    Filed: November 2, 2007
    Publication date: July 31, 2008
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventor: Bruce Roger DeBruin
  • Publication number: 20080164207
    Abstract: The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.
    Type: Application
    Filed: January 9, 2007
    Publication date: July 10, 2008
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Nicholas P. Wynn, Yu Huang, Tiem Aldajani, Donald A. Fulton
  • Patent number: 7392848
    Abstract: Methods are disclosed for the selective separation of sulfate from a saline stream such as seawater to produce nearly sulfate-free saline stream for oil-fields water injection operations. The separated sulfate in the form of gypsum from the treated saline stream can be used in different applications.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 1, 2008
    Inventor: Mansour S. Bader
  • Patent number: 7393383
    Abstract: Membranes are used to separate fluids for the production of oxygen-enriched air, nitrogen-enriched-air, for the separation of carbon dioxide from hydrocarbons, and the separation of hydrogen from various petrochemical and oil refining streams. Membranes are discussed that provide a resistance to interaction with process components or contaminants, which can lead to plasticizing of the membrane, while providing the mechanical strength required to withstand high membrane differential pressures and high process temperatures. Membranes of blended polymers are used to improve the mechanical strength of the polymers used to make separation membranes. Specifically, polyimide polymers are combined with a blend polymer that is a polyamide and/or a polyamide-imde polymer. The resulting polymer mix is used to produce various forms of high strength, chemically resistant membranes, including hollow-fiber membranes that are suitable for high pressure, high temperature applications.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: July 1, 2008
    Assignee: L'Air Liquide, Societe Anonyme A Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Okan Max Ekiner, John Warren Simmons
  • Patent number: 7393388
    Abstract: A deoxygenator includes a plurality of permeable membranes spirally wound about an exhaust tube for removing dissolved oxygen from a hydrocarbon fuel. The permeable membrane is spirally wrapped about the exhaust tube and defines fuel passages and exhaust passages. The fuel passages and exhaust passages alternate such that each fuel passage is bounded on each adjacent side by an exhaust passage. An oxygen partial pressure differential is generated across the permeable membrane to draw dissolved oxygen from fuel in the fuel passage. The dissolved oxygen is then communicated through openings about the circumference of the exhaust tube and out the deoxygenator.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: July 1, 2008
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Harry Cordatos, Thomas Gregory Tillman, Alexander G. Chen, Louis Chiappetta, James R. Irish, Foster Phillip Lamm, Stephen R. Jones
  • Publication number: 20080142440
    Abstract: The present invention discloses a novel method of making high performance mixed matrix membranes (MMMs) using stabilized concentrated suspensions of solvents, uniformly dispersed polymer stabilized molecular sieves, and at least two different types of polymers as the continuous blend polymer matrix. MMMs as dense films or asymmetric flat sheet or hollow fiber membranes fabricated by the method described in the current invention exhibit significantly enhanced permeation performance for separations over the polymer membranes made from the continuous blend polymer matrix. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Inventors: Chunqing Liu, Man-Wing Tang, Stephen T. Wilson, David A. Lesch
  • Publication number: 20080142441
    Abstract: The present invention relates to a method of degassing a hydrophobic liquid containing dissolved gas, comprising passing the hydrophobic liquid along one side of a porous hydrophobic membrane and simultaneously passing a degassed aqueous liquid along the other side of the membrane, such that at least a portion of the gas dissolved in the hydrophobic liquid is transferred to the aqueous liquid. The invention also relates to methods of preparing emulsions using the prepared degassed hydrophobic liquid in combination with an aqueous liquid. The emulsions thus prepared are substantially free of emulsifiers, surfactants or stabilisers.
    Type: Application
    Filed: June 22, 2005
    Publication date: June 19, 2008
    Inventor: Richard Mark Pashley
  • Patent number: 7368056
    Abstract: Water-desalination and/or water purification devices. Alternatively, devices that are implantable in animal bodies, possibly configured as self-inflating spinal disc prostheses. The devices include specified types of water-absorbing solute encapsulated by non-porous, water-permeable polymer membranes having specified properties. Also, methods of using the devices in biomedical applications or water treatment.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 6, 2008
    Assignee: The Polymer Technology Group, Incorporated
    Inventors: Robert S. Ward, Sallie K. Coviello
  • Patent number: 7361276
    Abstract: A method of enhancing the concentration of a first inorganic compound in a first aqueous solution of a first process of a heavy chemical plant, the method comprising (a) feeding the first solution having the first compound at a first concentration and a first water vapor pressure to an osmotic membrane distillation means comprising a hydrophobic, gas and water vapor permeable membrane separating (i) a first chamber for receiving the first solution, from (ii) a second chamber for receiving a receiver feed aqueous solution having a second water vapor pressure lower than the first water vapor pressure; (b) feeding the receiver aqueous feed solution to the second chamber as to effect transfer of water vapor through the membrane from the first chamber to the second chamber, and to produce (i) a resultant first solution having a second concentration of the first compound greater than the first concentration and (ii) a diluted receiver feed aqueous solution; and (c) collecting the resultant first solution.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 22, 2008
    Assignee: Aker Kvaemer Canada Inc.
    Inventors: Zbigniew Twardowski, Thomas S. Drackett, Dmitri Bessarabov, Peter E. Fetissoff
  • Patent number: 7341663
    Abstract: The present invention is a filtering and chemical separation device that performs the operations of solvent extraction and pervaporation in a single piece of equipment, configured as a spiral-wound membrane module, and provides for the replenishment of the solvent in the supported liquid membrane while the module continues in operation. It provides a solution to the problem of separating miscible compounds efficiently and with low energy requirements.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: March 11, 2008
    Assignee: The United States of America as represented by the Secretary of Agriculture
    Inventors: Richard D. Offeman, George H. Robertson
  • Patent number: 7332564
    Abstract: Polymerization catalysts for polyesters include: (1) metal elements selected from metal elements of Group 4A of the Periodic Table; and (2) metal elements selected from metal elements of Group 2A of the Periodic Table, aluminum, manganese, iron, cobalt, zinc, gallium and germanium. The catalysts are in a liquid state with a turbidity of at most 20% in a light path length of 10 mm, and a ratio the total amount of metal atoms derived from the above metal element (2) to the total amount of metal atoms derived from the above metal element (1) is from 0.50 to 3.50.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: February 19, 2008
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yoshihiro Fujimori, Yutaka Yatsugi
  • Publication number: 20080035567
    Abstract: The present invention includes a polymeric membrane assembly and method for selective separation of components of a feedstream utilizing the polymeric membrane assembly. The present invention is a novel concept for the manufacture and use of a polymeric membrane assemblies which require the use of fibrous backing materials for fabrication processes utilizing commercial membrane casting equipment. This invention involves as improved membrane assembly configuration and membrane separation process configuration resulting in improved flux and selectivity properties for a given polymeric membrane composition.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventor: Craig Y. Sabottke
  • Publication number: 20080035566
    Abstract: This invention relates to a polymer membrane assembly for selective separation of permeate compositions by carbon weight. This invention also relates to a process for utilizing these polymer membrane assemblies in separation processes for selective carbon weight separation of hydrocarbon feedstreams components. More particularly, but not by way of limitation, this invention relates to the use membrane assemblies for the selective separation by carbon weight of aromatics from a hydrocarbon based feedstream.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Patent number: 7323033
    Abstract: A nanostructured substrate is disclosed having a plurality of substrate openings disposed between the nanostructures on the substrate. When a desired fluid comes into contact with the substrate, at least a portion of the fluid is allowed to pass through at least one of the openings. In a first embodiment, the fluid is caused to pass through the openings by causing the fluid to penetrate the nanostructures. In a second embodiment, the substrate is a flexible substrate so that when a mechanical force is applied to the substrate, such as a bending or stretching force, the distance between nanoposts or the diameter of nanocells on the substrate increases and the liquid penetrates the nanostructures. In another embodiment, a first fluid, such as water, is prevented from penetrating the nanostructures on the substrate while a second fluid is permitted to pass through the substrate via the openings in the substrate.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Timofei Nikita Kroupenkine, Mary Louise Mandich, Joseph Ashley Taylor
  • Patent number: 7323039
    Abstract: It is to provide an improved method for preparation of microsphere from an emulsion wherein an organic phase containing an organic solvent having a boiling point lower than that of water and a hardly-water-soluble polymer is emulsified in an aqueous phase by an in-water drying method, which comprises: (1) using an apparatus equipped with a gas separation membrane; (2) supplying the emulsion to be subjected to in-water drying to one side of said gas separation membrane; (3) evaporating off the organic solvent contained in said emulsion to the other side of said gas separation membrane, which can remove the organic solvent with high efficiency and can be carried out in a closed system and hence is favorable from the environmental viewpoint.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 29, 2008
    Assignee: Mitsubishi Tanabe Pharma Corporation
    Inventors: Takehiko Suzuki, Yasuhisa Matsukawa, Akira Suzuki
  • Publication number: 20080011680
    Abstract: The present invention pertains to a process for the separation of aromatics from a feed stream, including aromatics and non-aromatics by selectively permeating the aromatics through a membrane comprising feeding a mixed phase vapor-liquid feed to a membrane wherein said liquid phase preferentially wets the surface of the membrane.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 17, 2008
    Inventors: Randall D. Partridge, Walter Weissman, Bal K. Kaul, Craig Y. Sabottke, Sanjay K. Bhatia
  • Publication number: 20080006578
    Abstract: A method for controlling pervaporation through a membrane includes assessing the vapor pressure of each component material of a mobile phase disposed on a retentate side of the membrane, and maintaining a designed environment on a permeate side of the membrane. The environment maintained on the permeate side of the membrane contains partial pressures of selected component materials of the mobile phase at a level substantially equal to or greater than the respective vapor pressures thereof.
    Type: Application
    Filed: July 7, 2006
    Publication date: January 10, 2008
    Inventors: Carl W. Sims, Jonathan Thompson, Yuri Gerner
  • Patent number: 7314565
    Abstract: An isothermal method is provided for separating aromatic hydrocarbons from a feed stream. The method includes flowing the feed stream through a first channel within a first wafer assembly that contains a rib member. Next, the feed stream is exposed to a first thin film polymer membrane. A stream permeates through the first thin film polymer membrane into a permeate zone. The permeate zone is heated via a heated fluid contained within the rib member. The permeate is produced from the first wafer assembly. The method may include having a plurality of tandem wafer assemblies arranged in series. An apparatus for separating aromatic components from a feed stream is also disclosed. In the preferred embodiment, the apparatus includes a series of tandem wafer assemblies specifically adapted for blending a transportation fuel.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: January 1, 2008
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, John G. Matragrano
  • Publication number: 20070284306
    Abstract: Provided is a process and apparatus for separating a multi-component feed stream wherein a porous separator is used to effectively create, via permeation and phase change, at least three fractions of differing compositions.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 13, 2007
    Inventors: Wei Cao, Vladimir Yliy Gershtein
  • Patent number: 7279103
    Abstract: Acidic metal-bearing wastewaters are treated to produce a finished water of sufficient purity to meet discharge standards while recovering metals removed in forms which are commercially valuable. The metals are selectively precipitated, either in a batch or in a continuous system, for removal of individual metal products in a specific sequence of steps from the wastewater. In each step, the pH is adjusted to the specific pH range and sulfide ion is introduced to precipitate the metals, excepting the removal of ferric iron and aluminum which is achieved using hydroxide precipitation. Bioconversion process using unique equipment converts sulfate in the wastewater to the hydrogen sulfide gas required for the precipitation process. This bioconversion process reduces the sulfate in the wastewater so that the water can be directly discharged or used for agricultural applications.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: October 9, 2007
    Assignee: United States of America Enviromental Protection Agency
    Inventors: John Burckle, Rakesh Govind, Fred Kawahara, Richard Scharp, Henry Tabak
  • Patent number: 7276105
    Abstract: A method for separating water from a Fischer-Tropsch reactor product stream in a cost effective and energy efficient manner which comprises feeding a Fischer-Tropsch product stream to a separation membrane, preferably a ceramic membrane, and recovering water vapor from the downstream permeate side of the membrane.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: October 2, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventor: Randall B. Pruet
  • Patent number: 7276163
    Abstract: A crossflow membrane device that receives a feedstock at a feed end face and separates the feedstock into permeate and retentate. The device has a membrane support containing at least one monolith of porous material defining a plurality of passageways extending longitudinally from the feed end face of the monolith to a retentate end face of the monolith through which the feedstock flows to pass retentate from the device. A permselective membrane coating of finer pore size than that of the porous material is applied to the passageway wall surfaces of the monolith. At least one permeate conduit is formed within the monolith, the conduit containing a plurality of longitudinal permeate chambers communicating with a means of permeate introduction at or near the feed end face and permeate withdrawal at or near the retentate end face.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: October 2, 2007
    Assignee: CeraMem Corporation
    Inventors: Robert L. Goldsmith, Bruce A. Bishop
  • Patent number: 7244811
    Abstract: The present invention relates to a process for the treatment of polyazole films, in which a film is passed at least twice through a trough filled with a liquid, with the film being unrolled from a spool and rolled up on a further spool and the direction of travel of the film is changed during the treatment by altering the direction of rotation of the spools.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: July 17, 2007
    Assignee: PEMEAS GmbH
    Inventor: Joachim Petersen
  • Patent number: 7214719
    Abstract: The invention is directed to process for performing a chemical reaction in a reaction mixture, which reaction produces water as by-product, wherein the reaction mixture is in contact with a hydroxy sodalite membrane, through which water produced during the reaction is removed from the reaction mixture, to a process for removing water form mixtures thereof.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: May 8, 2007
    Assignee: Technische Universiteit Delft
    Inventors: Jacobus Cornelis Jansen, Frederik Kapteijn, Sander Adriaan Strous
  • Patent number: 7211192
    Abstract: The present invention relates generally to hybrid organic-inorganic adsorbents for decontamination of fluids. Bridged poysilsesquioxanes are a family of hybrid organic-inorganic materials prepared by sol-gel processing of monomers that contain a variable organic bridging group and two or more trifunctional silyl groups. Specifically, the present invention relates to dipropylenedisulfide-co-phenylene-bridged polysilsesquioxane compositions, methods of making dipropylenedisulfide-co-phenylene-bridged polysilsesquioxanes, and methods of use of dipropylenedisulfide-co-phenylene-bridged polysilsesquioxanes. The present invention discloses properties of dipropylenedisulfide-co-phenylene-bridged polysilsesquioxanes that include high ligand loading, increased surface area, and increased porosity. These properties make dipropylenedisulfide-co-phenylene-bridged polysilsesquioxanes excellent adsorbents for decontamination of fluids for use in environmental and industrial processes.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: May 1, 2007
    Assignee: The Regents of the University of California
    Inventors: Kenneth J. Shea, Stephen T. Hobson, Joseph Tran