Thrust Tilting Patents (Class 244/12.4)
  • Patent number: 11970265
    Abstract: A floating moving device includes a first rotation unit, a second rotation unit, a third rotation unit, a fourth rotation unit, and a fifth rotation unit. A fourth adjustment unit adjusts a direction of a fourth impeller such that a rotation axis of the fourth impeller is parallel to at least an up-down direction at a takeoff time. A fifth adjustment unit adjusts a direction of a fifth impeller such that a rotation axis of the fifth impeller is parallel to the up-down direction at the takeoff time. A first adjustment unit adjusts a position of a first wheel such that the first wheel comes into contact with the ground until the takeoff is performed. A second adjustment unit adjusts a position of a second wheel such that the second wheel comes into contact with the ground until the takeoff is performed.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 30, 2024
    Assignee: TATSUMI RYOKI CO., LTD
    Inventor: Toyoshi Kondo
  • Patent number: 11919633
    Abstract: A convertiplane is described that comprises a fuselage, having a first longitudinal axis, with a nose and a tail portion; a pair of wings arranged on respective opposite sides of said fuselage, carrying respective rotors; a pair of engines operatively connected to respective said rotors; at least one first lifting surface arranged on said tail portion; and a pair of canards arranged on said nose of said fuselage and defining respective second lifting surfaces adapted to generate a third lift/negative lift value; each rotor comprising a mast rotatable about a second axis and about an relative third axis transversal to said second axis and with respect to the fuselage, so as to set said convertiplane between a helicopter configuration and an aeroplane configuration; each second axis, in use, being transversal to the first axis of said convertiplane in said helicopter configuration and being parallel to said first axis in said aeroplane configuration.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: March 5, 2024
    Assignee: LEONARDO S.P.A.
    Inventors: Riccardo Bianco Mengotti, Carlo Cassinelli, Alessandro Scandroglio, Andrea Bavetta, Paolo Brughera, Luca Sampugnaro
  • Patent number: 11905008
    Abstract: A VTOL aircraft comprising a plurality of motor assemblies, each configured to generate thrust by movement of air past the motor assembly along a respective axis of thrust of the motor assembly, and a wing, wherein 1) the orientations of the axes of thrust are each fixed, during operation of the aircraft, at a constant respective pitch angle oblique to a pitch orientation of the wing; 2) the plurality of motor assemblies is operable together to both fully support the aircraft in a hovering mode, and to propel the aircraft forward in a forward flight mode; 3) the wing does not intersect with any right cylinder centered on any motor assembly and having a central longitudinal axis aligned with the axis of thrust of the motor assembly, and having a radius equal to a radius of a propeller of the motor assembly.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: February 20, 2024
    Assignee: Air Vev Ltd
    Inventor: Chen Rosen
  • Patent number: 11873085
    Abstract: An exemplary tiltrotor aircraft having a vertical takeoff and landing (VTOL) flight mode and a forward flight mode includes tiltable rotors located at forward boom ends, tiltable ducted fans located at wings aft of the forward boom ends, and aft rotors located on aft boom portions.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 16, 2024
    Assignee: Textron Innovations Inc.
    Inventors: Kirk L. Groninga, Daniel B. Robertson
  • Patent number: 11866032
    Abstract: A system includes a primary control module, a stability status module, and a supervisory control module. The primary control module is configured to determine at least one control action for at least one of an electronic limited slip differential and an aerodynamic actuator of a vehicle based on a driver command. The stability status module is configured to determine whether at least one component of the vehicle is stable or unstable based on an input from a sensor on the vehicle. The at least one component includes at least one of a vehicle body, a front axle, a rear axle, front wheels, and rear wheels. The supervisory control module is configured to adjust the at least one control action when the at least one component is unstable.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 9, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shamim Mashrouteh, SeyedAlireza Kasaiezadeh Mahabadi, Reza Hajiloo, Seyedeh Asal Nahidi, Yubiao Zhang, Bakhtiar B. Litkouhi
  • Patent number: 11840351
    Abstract: An aircraft for self-neutralizing flight comprising a fuselage, at least a power source, a plurality of laterally extending elements attached to the fuselage, a plurality of downward directed propulsors attached to the plurality of laterally extending elements and electrically connected to at least a power source, wherein the plurality of downward directed propulsors have a rotational axis offset from a vertical axis by a yaw-torque-cancellation angle.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: December 12, 2023
    Assignee: BETA AIR, LLC
    Inventors: Alexander Hoekje List, David L Churchill
  • Patent number: 11834149
    Abstract: An aircraft may include a body structure, a tail section articulatably coupled to the body structure and including a tail structure, a propulsion system coupled to the tail structure and configured to produce thrust for the aircraft, and a stabilizer coupled to the tail structure, and an actuation system configured to articulate the tail section relative to the body structure to change a thrust vector of the propulsion system and an angle of attack of the stabilizer during flight. The actuation system may be configured to articulate the tail section about at least two perpendicular rotational axes. The propulsion system may be configured to produce the thrust in a first thrust direction in a first flight mode (e.g., a rotor-borne flight mode) and to produce the thrust in a second thrust direction in a second flight mode (e.g., a wing-borne flight mode).
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: December 5, 2023
    Assignee: Baxter Aerospace LLC
    Inventors: Jeffrey Baxter, Michael Baxter
  • Patent number: 11827347
    Abstract: A power system with a reliability enhancing battery architecture for electric motors adapted for use in an aerial vehicle. Individual batteries may be used to power a subset two or more motors in systems with six or more motors, for example. Each motor may be powered may be powered by two or more subsets of batteries, allowing accommodation for motor failure. With a failed motor in a vertical take-off or landing mode, power may be diverted to other motors to continue proper attitude control, and to provide sufficient thrust. With a failed motor a second motor offset from the failed motor may be powered down to facilitate attitude control.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 28, 2023
    Assignee: Joby Aero, Inc.
    Inventors: JoeBen Bevirt, Alex Stoll, Martin van der Geest, Scott MacAfee, Jason Ryan
  • Patent number: 11772771
    Abstract: There is provided a vehicle configuration to reduce drag in a fluid stream. The vehicle configuration has a vehicle body. The vehicle configuration further has at least one auxiliary body coupled to, and positioned a distance from, the vehicle body, to form a channel between the at least one auxiliary body and the vehicle body. The vehicle configuration further has one or more exterior profiles of one or more of, the vehicle body and the at least one auxiliary body. The one or more exterior profiles are positioned in proximity to the channel, and are shaped with an aerodynamic shaping, so that the one or more exterior profiles each comprises one or more concave shape portions. When a fluid flow from the fluid stream flows through the channel, the drag resulting from fluid flow interactions between the vehicle body and the at least one auxiliary body is reduced.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: October 3, 2023
    Assignee: The Boeing Company
    Inventors: David S. Lazzara, Dino L. Roman
  • Patent number: 11733715
    Abstract: A fixed-wing vertical take-off and landing (VTOL) vehicle configured with a composite adaptive nonlinear tracking controller that utilizes a real-time accurate estimation of the complex aerodynamic forces surrounding the wing(s) and rotors in order to achieve a high performance flight. The method employs online adaptation of force models, and generates accurate estimation for wing and rotor forces in real-time based on information from a three-dimensional airflow sensor. The novel three-dimensional airflow sensor illustrates improved velocity tracking and force prediction during the transition stage from hover to forward flight.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: August 22, 2023
    Assignee: California Institute of Technology
    Inventors: Xichen Shi, Patrick Spieler, Ellande Tang, Elena S. Lupu, Soon-Jo Chung
  • Patent number: 11728671
    Abstract: An assembly and a method for powering an electric aircraft by way of a supplementary energy-supplying device. The electric energy delivered by such device reduces the energy drawn from the battery and recharges the battery when the supplementary electrical power exceeds that consumed. A greater extension of the flight time may be achieved by defining a number of energy profiles that can be automatically activated by energy management components. In the preferred embodiment of the invention, the supplementary energy-supplying device is a photovoltaic film covering at least a portion of a frame of the aircraft. The invention relates also to an electric aircraft equipped with the assembly.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: August 15, 2023
    Assignee: Saronikos Trading and Services, Unipessoal LDA
    Inventor: Robert James
  • Patent number: 11679872
    Abstract: A VTOL aircraft includes a plurality of tilt propellers configured to be rotated between a forward cruise configuration and a vertical lift configuration. A nacelle or other structure may be configured to form a low pressure zone from the wake of the tilt propellers when operating in the lift configuration. The low pressure zone may include an outlet side of a cooling path. Due to the low pressure, airflow may be induced through the cooling path even in the absence of strong air pressure at the inlet side. During a cruise operation when the VTOL aircraft is in forward motion, the nacelle or other structure may be aligned with a baffle to form an exhaust channel for the cooling airflow.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: June 20, 2023
    Assignee: Archer Aviation Inc.
    Inventors: Bharat Tulsyan, Christopher M. Heath, Kerry Manning, Giovanni Droandi
  • Patent number: 11661203
    Abstract: An aircraft pylon comprising a primary structure and a pipe segment having an internal duct positioned inside at least one structural tube primary structure. This solution makes it possible to reduce the crowding outside the structural tubes of the primary structure, makes it easier to integrate other equipment inside the pylon, and may help to improve the aerodynamic performance of the pylon by reducing its cross section.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: May 30, 2023
    Assignee: AIRBUS OPERATIONS SAS
    Inventors: Theophile Horde, Lionel Czapla, Christophe Labarthe
  • Patent number: 11634212
    Abstract: An aircraft and a control system for the aircraft includes a tilt-wing defining an inlet configured to receive air and an outlet in fluid communication with the inlet such that the outlet is configured to expel the air. The control system includes a high-lift device coupled to at least one of a leading edge, and a trailing edge of the tilt-wing. The high-lift device is movable relative to the tilt-wing. The control system includes a compressor in fluid communication with the inlet and the outlet. The compressor is configured to increase pressure of the air that is expelled out of the outlet. The outlet directs the pressurized air toward at least one of the high-lift device and a center section of the tilt-wing to maintain attachment of airflow across the tilt-wing. A method of operating the control system of the aircraft occurs to maintain attachment of airflow across the tilt-wing.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: April 25, 2023
    Assignee: Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company
    Inventor: Francesco Giannini
  • Patent number: 11613370
    Abstract: An aerial vehicle adapted for vertical takeoff and landing using a set of wing mounted thrust producing elements for takeoff and landing. An aerial vehicle which is adapted to vertical takeoff with the rotors in a rotated, take-off attitude then transitions to a horizontal flight path, with the rotors rotated to a typical horizontal configuration. The aerial vehicle may have deployment mechanisms which deploy electric motor driven propellers from a forward facing to a vertical orientation. The wing mounted rotor assemblies may have split nacelles, wherein a forward portion of the nacelle deploys along with the electric motor and the propeller.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Joby Aero, Inc.
    Inventors: Joeben Bevirt, Alex Stoll
  • Patent number: 11597505
    Abstract: An improved rotorcraft of the type having a fuselage and a set of N?4 rotors. The rotorcraft includes a structural support system affixed to the fuselage and mounting the set of rotors. The support system is configured as a set of airfoils that provide lift when the fuselage is in level flight. The fuselage has a central longitudinal axis that defines the direction of forward flight of the rotorcraft. Each of the rotors defines a corresponding rotational plane, that is tilted forward in the direction of the forward flight, when the central longitudinal axis of the fuselage is horizontal. Each airfoil may be positioned so that a majority of its length is disposed beneath the rotational plane of its corresponding rotor. When the rotorcraft is at a cruise speed, the airfoils are configured to provide lift that approximately matches the lift provided by the rotors.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: March 7, 2023
    Assignee: SiFly Aviation, Inc.
    Inventors: Brian L. Hinman, Phil Frank
  • Patent number: 11591082
    Abstract: An apparatus for generating thrust for air transport includes a main thrust device, and an auxiliary thrust device configured to generate auxiliary thrust so as to enable an aircraft to vertically take off and land. The apparatus further includes: wings fixed to left and right sides of a fuselage of the aircraft, rotors installed on the wings and configured to generate thrust. In particular, the main thrust device provides driving force to the rotors using motors and an engine, and the auxiliary thrust device is installed in the fuselage and has a center of gravity configured to coincide with a center of gravity of the aircraft.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: February 28, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION
    Inventors: Woo Suk Jung, Hee Kwang Lee, Hyun Seok Hong, Hyun Woo Jun
  • Patent number: 11560221
    Abstract: An aerial vehicle adapted for vertical takeoff and landing using a set of wing mounted thrust producing elements for takeoff and landing. An aerial vehicle which is adapted to vertical takeoff with the rotors in a rotated, take-off attitude then transitions to a horizontal flight path, with the rotors rotated to a typical horizontal configuration. The aerial vehicle uses different configurations of its wing mounted rotors and propellers to reduce drag in all flight modes. The aerial vehicle uses deployment mechanisms to deploy rotor assemblies up and away from their stowed configuration locations.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 24, 2023
    Assignee: Joby Aero, Inc.
    Inventors: JoeBen Bevirt, Alex Stoll
  • Patent number: 11548608
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 10, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Joseph Scott Drennan, Carlos Alexander Fenny, Michael John Ryan, John Richard McCullough, Brett Rodney Zimmerman
  • Patent number: 11541989
    Abstract: A ducted fan for an aircraft includes a rotor-side fan and a stator-side duct that surrounds the rotor-side fan. The stator-side duct includes an inner wall facing the rotor-side fan and an outer wall averted from the fan. The ducted fan further includes a fastening device configured to support mounting of the ducted fan on a structural component of the aircraft. The fastening device includes a pin and a guide body. The guide body is configured to receive and guide the pin, the pin is insertable proceeding from the inner wall into a recess of the guide body, a first end of the pin protrudes relative to the outer wall, and the pin is configured to be mounted, via the first end, on a bearing of the structural component of the aircraft.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: January 3, 2023
    Assignee: DR. ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT
    Inventors: Patrick Scholl, Jens-Ole Thoebel, Christian Wenzel
  • Patent number: 11513606
    Abstract: Systems and methods are disclosed for transporting people using air vehicles.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: November 29, 2022
    Inventor: Bao Tran
  • Patent number: 11492106
    Abstract: Methods, apparatus, systems and a vertical take-off and landing (VTOL) vehicle are provided. The VTOL vehicle includes: a fuselage having longitudinally a front section, a central section and a rear section; a first lifting surface comprising two wings respectively secured to opposite sides of the rear section of the fuselage; a second lifting surface comprising two wings respectively secured to opposite sides of the front section of the fuselage; where each wing comprises at least one engine module, each of the engine modules being pivotally coupled to the wing and each engine module being independently controlled for transitioning between a vertical mode of flight and a horizontal mode of flight.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 8, 2022
    Assignee: BLUEFLIGHT INC.
    Inventors: Frank Noppel, Gerrit Michael Becker
  • Patent number: 11414191
    Abstract: A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. A tailless airplane which uses a control system that takes inputs for a traditional tailed airplane and translates those inputs to provide control utilizing non-traditional control methods.
    Type: Grant
    Filed: July 27, 2019
    Date of Patent: August 16, 2022
    Assignee: Delhivery Robotics, LLC
    Inventors: Jeffrey Kyle Gibboney, Pranay Sinha
  • Patent number: 11407509
    Abstract: In various embodiments, a tilt-wing aircraft includes a fuselage; a first wing tiltably mounted at or near a forward end of the fuselage; and a second wing rotatably mounted to the fuselage at a position aft of the first wing. A first plurality of rotors is mounted on the first wing at locations on or near a leading edge of the first wing, with two or more rotors being mounted on wing portions on each side of the fuselage; and a second plurality of rotors mounted on the second wing at locations on or near a leading edge of the second wing, with two or more rotors being mounted on wing portions on each side of the fuselage. A flight control system generates a set of actuators and associated actuator parameters to achieve desired forces and moments.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 9, 2022
    Assignee: Wisk Aero LLC
    Inventors: Ilan Kroo, Herve Martins-Rivas, Eric Allison
  • Patent number: 11390371
    Abstract: A ducted-rotor aircraft may include a fuselage and first and second ducts that are coupled to the fuselage at respective first and second locations. The first location may be on a first side of a fuselage of the aircraft and spaced from a nominal yaw axis of the aircraft. The second location may be on an opposed second side of the fuselage and spaced from the nominal yaw axis. Each duct may include a rotor that is disposed in an opening that extends through the duct. Each rotor may include a plurality of blades. Each duct may further include a control vane that is mounted aft of the plurality of blades and that is pivotable about a vane axis that is oriented toward the nominal yaw axis.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: July 19, 2022
    Assignee: Textron Innovations Inc.
    Inventors: Karl Schroeder, William Anthony Amante, Kip Gregory Campbell
  • Patent number: 11319066
    Abstract: An unmanned aircraft system includes a flying wing airframe having leading and trailing edges with respective sweep angles. A thrust array is coupled to the airframe and includes first and second motor mounts each selectively rotatably coupled to the leading edge by a locking joint. Each motor mount has first and second propulsion assemblies coupled to respective first and second distal ends thereof. A power system is operably associated with the thrust array and is operable to provide power to each propulsion assembly. A flight control system is operably associated with the thrust array and is operable to independently control the speed of each propulsion assembly. In a flight configuration, each motor mount is locked substantially perpendicular with the leading edge by the respective locking joint. In a compact storage configuration, each motor mount is locked substantially parallel with the leading edge the respective locking joint.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 3, 2022
    Assignee: Textron Innovations Inc.
    Inventors: Levi Charles Hefner, Dakota Charles Easley
  • Patent number: 11319063
    Abstract: This disclosure describes a configuration of an unmanned aerial vehicle (“UAV”) that will facilitate extended flight duration. The UAV may have any number of lifting motors. For example, the UAV may include four lifting motors (also known as a quad-copter), eight lifting motors (also known as an octo-copter), etc. Likewise, to improve the efficiency of horizontal flight, the UAV also includes a pivot assembly that may rotate about an axis from a lifting position to a thrusting position. The pivot assembly may include two or more offset motors that generate a differential force that will cause the pivot assembly to rotate between the lifting position and the thrusting position without the need for any additional motors or gears.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: May 3, 2022
    Assignee: Amazon Technologies, Inc.
    Inventor: Ricky Dean Welsh
  • Patent number: 11305863
    Abstract: The present invention is a variable geometry aircraft that is capable of morphing its shape from a symmetric cross-section buoyant craft to an asymmetric lifting body and even to a symmetric zero lift configuration. The aircraft may include variable span, length, and camber. The variability of the structure and the flexible envelope allows the aircraft to adjust its aspect ratio along with the camber of the upper and/or lower surfaces to achieve varying shapes. This transformation changes both the lift and drag characteristics of the craft and may be accomplished while the craft is airborne.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: April 19, 2022
    Assignee: Hyalta Aeronautics, Inc.
    Inventor: Scott R. Kempshall
  • Patent number: 11299286
    Abstract: The present disclosure provides methods and systems for operating a rotorcraft comprising a plurality of engines configured to provide motive power to the rotorcraft and at least one rotor coupled to the plurality of engines. Failure of an active engine of the rotorcraft is detected when the rotorcraft is operated in an asymmetric operating regime (AOR), in which at least one first engine of the plurality of engines is the active engine and is operated in an active mode to provide motive power to the rotorcraft and at least one second engine of the plurality of engines is a standby engine and is operated in a standby mode to provide substantially no motive power to the rotorcraft. At least one flight control input is adjusted to compensate for a reduction in rotational speed of the at least one rotor resulting from the failure of the active engine. An increase in a power output of the standby engine of the rotorcraft is commanded.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: April 12, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Philippe Beauchesne-Martel, Patrick Manoukian
  • Patent number: 11244572
    Abstract: A request for transport services that identifies a rider, an origin, and a destination is received from a client device. Eligibility of the request to be serviced by a vertical take-off and landing (VTOL) aircraft is determined based on the origin and the destination. A transportation system determines a first and a second hub for a leg of the transport request serviced by the VTOL aircraft and calculates a set of candidate routes from the first hub to the second hub. A provisioned route is selected from among the set of candidate routes based on network and environmental parameters and objectives including pre-determined acceptable noise levels, weather, and the presence and planned routes of other VTOL aircrafts along each of the candidate routes.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: February 8, 2022
    Assignee: Joby Aero, Inc.
    Inventors: Ian Andreas Villa, Thomas Prevot, John Conway Badalamenti, Mark Moore
  • Patent number: 11220333
    Abstract: Disclosed is a tilting type rotor including: a body part in which a longitudinal direction is formed at both sides, a receiving space is provided therein, and a sliding hole having a through-hole shape is provided in the longitudinal direction at inner lower portions of both end portions; a servo part formed at the center of the body part and having a rotational shaft vertical to the longitudinal direction of the body part; a tilting part tilted in a manner in which the other end portion is rotated as one end portion is connected to both end portions of the body part; a rotor part provided to generate thrust and connected to the tilting part; and a link part connected to the servo part and connected to the tilting part.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: January 11, 2022
    Assignee: SAMCO CO., LTD
    Inventors: Kyoungmoo Min, Sehoon Jang, Bhattarai Nikesh, Foongyi Chia
  • Patent number: 11208207
    Abstract: Systems and methods include providing an aircraft with a flight control system, a hybrid electrical or hybrid hydraulic propulsion system, and three ducted fan configuration. Each of two ducted fore fans include a single rotor system having multiple rotor blades, and a single ducted aft fan includes dual, coaxial, counter-rotating rotor systems each having multiple rotor blades. The aircraft is a vertical takeoff and landing (VTOL) aircraft that is capable of operation in an airplane mode and a helicopter mode and designed to provide an urban air-taxi that would relieve ground traffic congestion, reduce carbon emissions, and increase productivity, thereby providing a faster, more efficient means of transportation.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: December 28, 2021
    Assignee: Textron Innovations Inc.
    Inventors: John Lloyd, Kirk Landon Groninga
  • Patent number: 11136115
    Abstract: An aircraft comprises a fuselage, one or more support structures connected to the fuselage, one or more engines or motors disposed within or attached to the one or more support structures or the fuselage, and a distributed propulsion system. The distributed propulsion system comprising two or more propellers symmetrically distributed in an array along the one or more support structures with respect to a center of gravity of the aircraft and operably connected to the one or more engines or motors, wherein each propeller has a rotation direction within a tilted plane of rotation, and a summation of horizontal force vectors created by the tilted plane of rotation of all the propellers is substantially zero when all the propellers are creating a substantially equal thrust magnitude. Movement of the aircraft is controlled by selectively increasing or decreasing a thrust of at least one of the two or more propellers.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: October 5, 2021
    Assignee: TEXTRON INNOVATIONS INC.
    Inventors: Carlos Alexander Fenny, Jouyoung Jason Choi
  • Patent number: 11130568
    Abstract: An autonomous thrust vectoring ring wing pod is disclosed. A plurality of distributed propulsion element (thruster) layout within a self-articulating ring wing pod allows the pod to selectively control its thrust vector by controlling each propulsion element in the pod. This arrangement allows autonomous and independent control of the tilting of the ring wing relative to the aircraft. The ring wing pod acts as both a nacelle to house the propulsion elements as well as a lifting surface when in wing-borne flight. The autonomous thrust vectoring ring wing pod also provides superior aircraft attitude control in wing-borne flight, thus negating the need for conventional surface controls.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: September 28, 2021
    Assignee: Textron Innovations Inc.
    Inventors: Kevin Morris, Nicholas Brodeur, Carlos Fenny
  • Patent number: 11117657
    Abstract: An aeronautical apparatus is disclosed that has two pairs of wings. Each wing has a thrust-angle motor. A propeller and propeller motor are coupled to each thrust-angle motor. Propeller pitch is controlled by a propeller-pitch motor. The thrust-angle motor allows the propeller axis of rotation to be parallel to the fuselage's longitudinal axis; vertical (perpendicular to longitudinal axis, as in well-known fixed-position, four-propeller drones); and any position between as well as a given range exceeding these bounds which is used for control. An electronic control unit is electronically coupled to the thrust-angle motors, propeller motors, and propeller-pitch motors, which can be independently controlled, to provide the desired thrust and trajectory. Such an apparatus can provide efficient operation in vertical take-off/landing (hovering) and forward (translational) flight modes.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: September 14, 2021
    Assignee: Aerhart, LLC
    Inventors: Kevin Burns, Diana Brehob
  • Patent number: 11084578
    Abstract: A pylon is coupled to a wing. A tiltrotor, having a range of motion, is coupled to the wing via the pylon, such that the tiltrotor is aft of the wing. The tiltrotor includes a redundant drivetrain, including a plurality of motors and a plurality of motor controllers, that drives one or more blades included in the tiltrotor.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: August 10, 2021
    Assignee: Kitty Hawk Corporation
    Inventors: Pranay Sinha, Damon Vander Lind
  • Patent number: 11066162
    Abstract: A short takeoff and landing (STOL) vehicle which comprises a tail having a surface and a fuselage having a surface, where the tail and the fuselage have a continuity of surfaces where the surface of the tail is directly coupled to the surface of the fuselage. The vehicle further includes a forward-swept wing having a trailing edge and a rotor that is attached to the trailing edge of the forward-swept wing via a pylon, where the rotor has a maximum downward angle from horizontal that is less than or equal to 60° and the STOL vehicle takes off and lands using at least some lift from the forward-swept wing and at least some lift from the rotor.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: July 20, 2021
    Assignee: Kitty Hawk Corporation
    Inventors: Pranay Sinha, Damon Vander Lind
  • Patent number: 11053000
    Abstract: The invention relates to an aerodyne with vertical take-off and landing ability and the ability to generate lift by means of both rotors and fixed wings, which includes: a fuselage (1); two fixed wings (2); two front rotors (11) and two rear rotors (12) arranged symmetrically and actuated by means of motors (13), each rotor (10) being attached to a central portion of a fixed wing (2) by means of a support (14) and connected pivotably about a connection shaft (E2), which allows changing the inclination of each rotor (10) from a longitudinal forward movement position, in which they propel the aerodyne horizontally, to a lift position in which it provides vertical lift; said rear rotors being in a lift position partially overlapping a portion of the wing including a flap (20) freely connected to the rest of the wing, the position thereof being determined between a lift position and a longitudinal forward movement position by the effect of the aerodynamic thrust.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 6, 2021
    Inventors: Jesús Carlos Castellano Aldave, Jesus Villadangos Alonso, José Javier Astrain Escola, Carlos Matilla Codesal, Mael Taleb, Tania Jorajuría Gomez, Ermö Peter Cosma
  • Patent number: 11053004
    Abstract: This invention is directed toward an aerodynamically designed drone with a unique angle of propulsion. The drone uses airfoil design to move more efficiently through the air, and the aerodynamic design is optimized when the drone is tilted forward at various degrees of “tilt” to provide the most aerodynamic profile to the oncoming air. The invention contemplates single hull, double hull and triple hull designs, and is applicable to heaving lifting drones, drones use for photography and remote sensing, and racing drones.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: July 6, 2021
    Assignee: Periscope Aviation, LLC
    Inventor: Nicholas Bowers
  • Patent number: 11014664
    Abstract: The presently disclosed embodiments relate to vertical takeoff and landing (VTOL) aircraft that have the capability of hovering in both a “nose forward” and a “nose up” orientation, and any orientation between those two. The disclosed aircraft can also transition into wing born (non-hovering) flight from any of the hovering orientations. In addition, certain of the disclosed embodiments can, if desired, use only vectored thrust control to maintain stable flight in both hover and forward flight. No control surfaces (e.g. ailerons, elevators, rudders, flaps) are required to maintain a stable vehicle attitude. However, the disclosure contemplates aircraft both with and without such control surfaces.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 25, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: David D. North, Michael P. Hendrickson, Joshua C. Glaab
  • Patent number: 10967964
    Abstract: The ‘Air Wheel’ rotor is a variable pitch rotor with variable twist blades. The ‘Air Wheel’ rotor comprises a closed wing coupled to one or more coaxial hubs via torsional elastic blades, the blades are coupled to the closed wing in one of the following ways: rigid, elastic, or visco-elastic. There is provided a wide range of combinations of the wing relative width and coning angle typical for a lifting rotor with a thin planar wing attached to the tips of long blades, for a shrouded fan in a wide annular wing, or for an impeller in a rotating cylindrical wing. The ‘Air Wheel’ rotor combines and enhances the advantages of a rotor and a wing, it has excellent aerodynamic characteristics, and eliminates limitations of the rotor size and flight speed. The ‘Air Wheel’ rotor can be used for designing vertical take-off and landing aircraft. The “Air Wheel” rotor is universal and can function as a lifting rotor, or a wind turbine, or an aircraft propeller, or a marine propeller.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 6, 2021
    Inventor: Sergei Yurevich Kuzikov
  • Patent number: 10906656
    Abstract: An exemplary tiltrotor aircraft with a hybrid drive system includes a first propulsion system having a first engine and a first supplemental driver operably coupled to a first proprotor that is operable between a helicopter mode and an airplane mode and a second propulsion system having a second engine and a second supplemental driver operably coupled to a second proprotor that is operable between a helicopter mode and an airplane mode.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: February 2, 2021
    Assignee: Bell Textron Inc.
    Inventors: Colton James Gilliland, Mark Alan Przybyla, Eric Stephen Olson
  • Patent number: 10850835
    Abstract: Various embodiments include a drone capable of operating as an airplane, a quad-copter, or a hybrid aircraft using a versatile flight performance envelope enabled by six elements of control. The drone may include a monolithic wing with a propulsion/lift module connected to each wing tip. Each propulsion/lift module may include a pivotal support structure configured to pivot around a longitudinal axis of the monolithic wing, with two pylons extending radially outwardly from the pivotal support structure and at least partially away from one another, and a propulsion units positioned on a distal end of each pylon. The pivotal support structures may be coupled to the monolithic wing via a servo motor enabling a processor to individually control rotation of each propulsion/lift module to provide roll and pitch control. Thrust and rotation of the propulsion units may be individually controlled by the processor to provide yaw, roll and pitch control.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: December 1, 2020
    Assignee: QUALCOMM Incorporated
    Inventor: Donald Hutson
  • Patent number: 10843794
    Abstract: An electric compound aircraft is disclosed with a capability of making vertical takeoff and landing and forward flight. In a specific embodiment, the compound aircraft includes an electric motor-powered tip-jet-driven rotary wing, an electric motor-powered tip-jet-driven propeller. The rotary wing provides lift for vertical takeoff and landing, hovering capability and during flight. The propeller provides thrust for forward flight. A fixed wing can be used, in addition to the rotary wing to provide lift for forward flight. Various electric control devices are used to provide control and stability for the compound aircraft and automation.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: November 24, 2020
    Inventor: Vinh Nguyen
  • Patent number: 10836475
    Abstract: A multirotor aircraft with an airframe and at least one wing that is mounted to the airframe, the at least one wing being provided with at least four thrust producing units that are arranged in spanwise direction of the at least one wing, wherein each one of the at least four thrust producing units comprises at least one rotor assembly that is accommodated in an associated shrouding, the associated shrouding being integrated into the at least one wing, wherein the associated shrouding defines an air duct that is axially delimited by an air inlet region and an air outlet region, wherein the air inlet region exhibits in circumferential direction of the air duct at least two different aerodynamic profiles.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 17, 2020
    Assignee: AIRBUS HELICOPTERS DEUTSCHLAND GMBH
    Inventors: Rupert Pfaller, Uwe Kiesewetter, Sebastian Mores, Marius Bebesel
  • Patent number: 10752351
    Abstract: An unmanned air vehicle is provided. The unmanned air vehicle includes a frame having a center portion connecting two substantially parallel transversely spaced apart ele-wings. The ele-wings may store batteries and rotate along a forward axis to provide lift during a transition from vertical flight to linear flight. The landing gear may be connected to the ele-wings and configured to change pitch of the ele-wing to ensure stable flight during flight mode transition. A plurality of propellers, each having propeller drive motors, are attached to the frame and able to rotate from parallel position, relative to the center portion, for vertical flight to a perpendicular position, relative to the center portion, for linear flight. The propeller drives rotate on its axis and may be configured to propel the vehicle in a ground and flight mode.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 25, 2020
    Assignee: Detroit Aircraft Corporation
    Inventors: Jon Rimanelli, Lai Yizhang
  • Patent number: 10739791
    Abstract: A method and apparatus provide for automatically controlling the flight of a tiltrotor aircraft while the aircraft is in flight that is at least partially rotor-borne. The method and apparatus provide for automatically tilting nacelles in response to a longitudinal-velocity control signal so as to produce a longitudinal thrust-vector component for controlling longitudinal velocity of the aircraft. Simultaneously, cyclic swashplate controls are automatically actuated so as to maintain the fuselage in a desired pitch attitude. The method and apparatus also provide for automatically actuating the cyclic swashplate controls for each rotor in response to a lateral-velocity control signal so as to produce a lateral thrust-vector component for controlling lateral velocity of the aircraft. Simultaneously, collective swashplate controls for each rotor are automatically actuated so as to maintain the fuselage in a desired roll attitude.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 11, 2020
    Assignee: Textron Innovations Inc.
    Inventor: Kenneth E. Builta
  • Patent number: 10710717
    Abstract: A multirotor aircraft and a method for controlling the multirotor aircraft are disclosed. The multirotor aircraft comprises a body and a H-shaped frame, wherein, the body is mounted with a bearing, a first person view camera and a servo mechanism, the end of each arm of the H-shaped frame far away from a lateral shaft thereof is mounted with an actuator assembly, the lateral shaft of the H-shaped frame is connected with the body by the bearing, and the servo mechanism is coupled with the lateral shaft of the H-shaped frame and is configured to control the rotation of the lateral shaft of the H-shaped frame, in order to control the angle between the body and the H-shaped frame. The method comprises a first mode and a second mode, wherein in the first mode, keeping the horizon within the camera view of the aircraft; and in the second mode, generating control command on the basis of the camera aligned axis.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 14, 2020
    Assignee: AUTEL ROBOTICS CO., LTD.
    Inventors: Thomas Raffler, Jian Wang
  • Patent number: 10689102
    Abstract: There is disclosed a multicopter vertical takeoff and landing (VTOL) aircraft. The aircraft comprises am airframe with spatial design, a pilot seat, a cockpit, controls, engine units, engine compartment, control system, remote control system. The airframe consists of a central section and, at least, two peripheral sections, wherein peripheral sections can be folded up or down, or be retracted under the central section. The central section and peripheral sections of the airframe have spatial design. Each of the peripheral sections comprises at least three standard engine compartments which are connected to each other. Inside each engine compartment there is an engine unit which comprises at least one engine and at least one horizontally rotating propeller together with the control hardware. Each engine unit is an autonomous member of the distributed control system (DCS).
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: June 23, 2020
    Assignee: OBSHCHESTVO S OGRANICHENNOJ OTVETSTVENNOSTYU “AVIANOBATSII”
    Inventors: Sergei Evgenievich Tovkach, Aleksei Viktorovich Shanin, Igor Chudakov
  • Patent number: 10676186
    Abstract: An aircraft includes a fuselage and a wing extending from each lateral side of the fuselage. A nacelle is pivotably se cured to each wing. The nacelle has a rotor located thereat, with the rotor having a rotor tip path plane defined by rotation of the rotor about a rotor axis of rotation. When the rotor tip path plane is changed relative to the wing, the nacelle pivots relative to the wing about a nacelle hinge axis to reduce flapping required by the rotor. A method of operating an aircraft includes changing a rotor tip path plane orientation relative to a wing of the aircraft. The rotor disposed at a nacelle, with the nacelle pivotably secured to the wing. The nacelle is pivoted relative to the wing to reduce an overall tip path plane change requirement of the rotor.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: June 9, 2020
    Assignee: SIKORKSY AIRCRAFT CORPORATION
    Inventor: Mark R. Alber