Positive Ion Probe Or Microscope Type Patents (Class 250/309)
  • Publication number: 20120068068
    Abstract: Disclosed are devices, systems, and methods are disclosed that include: (a) a first material layer positioned on a first surface of a support structure and configured to generate secondary electrons in response to incident charged particles that strike the first layer, the first layer including an aperture configured to permit a portion of the incident charged particles to pass through the aperture; and (b) a second material layer positioned on a second surface of the support structure and separated from the first layer by a distance of 0.5 cm or more, the second layer being configured to generate secondary electrons in response to charged particles that pass through the aperture and strike the second layer, where the device is a charged particle detector.
    Type: Application
    Filed: October 20, 2011
    Publication date: March 22, 2012
    Applicant: CARL ZEISS NTS, LLC
    Inventors: Raymond Hill, Shawn McVey, John Notte, IV
  • Publication number: 20120061564
    Abstract: A surface analyzer 1 includes: a sample stage 6 for placing a sample 5; a source for generating multicharged ions 3 for irradiating a beam 4 of multicharged ions having a valence of 15 or higher to the sample 5 placed on the sample stage 6; a mass analyzer 8 for detecting secondary ions 7 generated as a result of irradiating the beam of multicharged ions 4 to the sample 5; a secondary electron detector 10 for detecting secondary electrons 9 generated as a result of irradiating the beam of multicharged ions 4 to the sample 5; and a controller of mass analyzer 12 for generating analysis start signals in response to the secondary electron signals received, and transmitting the start signals to the mass analyzer. The surface analyzer 1 enables high-quality analysis of the surface of the sample in short time by using the multicharged ions.
    Type: Application
    Filed: April 7, 2009
    Publication date: March 15, 2012
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY, THE UNIVERSITY OF ELECTRO-COMMUNICATIONS
    Inventors: Masahide Tona, Shunsuke Ohtani, Makoto Sakurai
  • Patent number: 8124941
    Abstract: Disclosed are charged particle systems that include a tip, at least one gas inlet configured to supply gas particles to the tip, and a element having a curved surface positioned to adsorb un-ionized gas particles, and to direct desorbing gas particles to propagate toward the tip. The charged particle systems can include a field shunt connected to the tip, and configured to adjust an electric field at an apex of the tip.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: February 28, 2012
    Assignee: Carl Zeiss NTS, LLC
    Inventors: John A. Notte, IV, Randall Percival, Colin A. Sanford, Alexander Grohloski
  • Patent number: 8119985
    Abstract: A method and apparatus for determining statistical characteristics of nano-particles includes distributing the nano-particles over a surface and then determining properties of the nano-particles by automatic measurement of multiple particles or by a measurement that determines properties of multiple particles at one time, without manipulating individual nano-particles.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: February 21, 2012
    Assignee: FEI Company
    Inventors: Diane K. Stewart, Daniel Rosenthal, Michel Epsztein
  • Patent number: 8119994
    Abstract: Method and apparatus have a film including a first surface to hold the liquid sample thereon, a vacuum chamber for reducing the pressure of an ambient in contact with a second surface of the film, primary beam irradiation means connected with the vacuum chamber and irradiating the sample with a primary beam via the film, signal detection means for detecting a secondary signal produced from the sample in response to the beam irradiation, a partitioning plate for partially partitioning off the space between the film and the primary beam irradiation means in the vacuum chamber, and a vacuum gauge for detecting the pressure inside the vacuum chamber.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: February 21, 2012
    Assignee: JEOL Ltd.
    Inventors: Hidetoshi Nishiyama, Mitsuru Koizumi
  • Patent number: 8115184
    Abstract: A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: February 14, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Shichi, Shinichi Matsubara, Takashi Ohshima, Satoshi Tomimatsu, Tomihiro Hashizume, Tohru Ishitani
  • Patent number: 8108942
    Abstract: A probe microscope includes a cantilever having a probe, a displacement detecting optical system, an observation optical system, an objective lens, and a parallel glass. The displacement detecting optical system includes a first light source and a light detecting element. The observation optical system includes a second light source, an image forming lens, and a camera. The objective lens is disposed between the cantilever and the first and second light sources, and is commonly used by the displacement detecting optical system and the observation optical system. The parallel glass is capable of being inserted and retracted freely between the cantilever and the objective lens to adjust a focal point of the objective lens.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: January 31, 2012
    Assignee: Mitutoyo Corporation
    Inventors: Yoshimasa Suzuki, Kazuhiko Kawasaki, Satoshi Koga
  • Publication number: 20120018630
    Abstract: Methods and devices for mass spectrometry are described, specifically the use of nanoparticulate implantation as a matrix for secondary ion and more generally secondary particles. A photon beam source or a nanoparticulate beam source can be used a desorption source or a primary ion/primary particle source.
    Type: Application
    Filed: June 8, 2011
    Publication date: January 26, 2012
    Applicant: Ionwerks, Inc.
    Inventors: J. Albert Schultz, Thomas F. Egan, Ernest K. Lewis, Steven Ulrich, Kelley L. Waters
  • Patent number: 8097847
    Abstract: A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first re
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: January 17, 2012
    Assignees: Carl Ziess SMT AG, Applied Materials Isreal Ltd
    Inventors: Rainer Knippelmeyer, Oliver Kienzle, Thomas Kemen, Heiko Mueller, Stephan Uhlemann, Maximilian Haider, Antonio Casares
  • Patent number: 8093556
    Abstract: A device and method for analyzing a sample, in particular a sample which contains low-density materials, is provided. Ions of a predefined mass and/or a predefined elementary charge are selected from a plurality of ions. The selected ions are directed onto the sample for sample preparation. An electron beam is then directed onto the prepared sample and a spatial distribution of scattered electrons is measured.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 10, 2012
    Assignee: Carl Zeiss NTS GmbH
    Inventor: Ulrike Zeile
  • Patent number: 8093567
    Abstract: An apparatus for visualizing an ion beam editing operation of a sample. The apparatus comprises a charged particle beam column for producing an charged particle beam and for directing the charged particle beam onto the sample and beam rastering electronics (BRE) for controlling a movement and a dwell time of the charged particle beam. The apparatus further comprises a detector for detecting charged particles stemming from the sample as a result of the charged particle beam impinging on the sample and a multi-channel scalar (MCS) coupled to the detector and to the IBRE, and time-correlated with the BRE, the MCS for binning events detected at the detector as a function of time duration from a start event. Finally, the apparatus comprises an analysis module connected to the MCS for processing data from the MCS into a display signal, and a display module connected to the analysis module for displaying the display signal.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: January 10, 2012
    Assignee: Fibics Incorporated
    Inventors: Ken Guillaume Lagarec, Michael William Phaneuf
  • Patent number: 8089044
    Abstract: A method for correcting astigmatism of an electronic optical column of an electron emission spectromicroscope, comprising the steps of: forming a reference structure on a surface of a sample comprising a structure of interest to be imaged, imaging the reference structure by the spectromicroscope with secondary electrons and with core level photoelectrons, eliminating astigmatism defects appearing during the imaging of the reference structure with secondary electrons and with core level photoelectrons, a material of the reference structure being chosen such that, during core level photoelectron imaging, the contrast C between the average intensity Ia of the material of the reference structure and the average intensity Ib of the material of the sample is such that: C = I a - I b I a + I b ? 0.2 .
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 3, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Olivier Renault, Maylis Lavayssiere, Denis Mariolle
  • Patent number: 8076641
    Abstract: The invention relates to a method and to a device (1) for producing an image of an object (5) by means of a particle beam. According to the method and in the device (1), the particle beam is scanned by the object (5). The aim of the invention is to provide a method and a device for producing an image of an object (5) by means of a particle beam that can be used with a cold field emitter (2) in such a manner that a good image quality is constantly ensured. Said aim is achieved by virtue of the fact that, according to the invention, when a radiation parameter is altered, the object (5) is rescanned preferably with the corrected parameter. The inventive device (1) comprises the corresponding means (4, 6, 7) therefor.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: December 13, 2011
    Assignee: CarlZeiss NTS GmbH
    Inventor: Josef Sellmair
  • Publication number: 20110297826
    Abstract: An object of the present invention is to eliminate a distortion in an image even if there is an angular difference between the deflection direction of the charged particle beam and the tilt axis of a specimen, and to accurately observe and process the specimen. When the deflection direction of the charged particle beam is not parallel to the tilt axis of the specimen, the deflection rotation angle to the observation direction of the charged particle beam is determined, and the deflection pattern is changed. Thereby the distortion in the image is corrected. The deflection pattern is changed to a parallelogram. A distortion-free image is obtained even if the specimen is tilted, and the specimen can be observed and processed with high accuracy. This allows automatically recognizing the position correction mark to perform observation and processing after correcting the positional relation.
    Type: Application
    Filed: October 23, 2009
    Publication date: December 8, 2011
    Inventors: Yuichi Madokoro, Megumi Aizawa, Yukio Yoshizawa
  • Patent number: 8074293
    Abstract: For adjusting a positional relationship between a specimen and a probe to measure an electric characteristic of the specimen through a contact therebetween, a base table holding a specimen table holding the specimen and a probe holder holding the probe is positioned at a first position to measure the positional relationship between the probe and the specimen at the first position, and subsequently positioned at a second position to measure the positional relationship therebetween at the second position so that the probe and the specimen are contact each other at the second position, the specimen table and the probe holder are movable with respect to each other on the base table at each of the first and second positions to adjust the positional relationship between the probe and the specimen, and a measuring accuracy at the second position is superior to a measuring accuracy at the first position.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: December 6, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Eiichi Hazaki, Yasuhiro Mitsui, Takashi Furukawa, Hiroshi Yanagita, Susumu Kato, Osamu Satou, Osamu Yamada, Yoshikazu Inada
  • Patent number: 8074291
    Abstract: A scanning probe microscope and method for operating the same to correct for errors introduced by a repetitive scanning motion are disclosed. The microscope includes an actuator that moves the probe tip relative to the sample in three directions. The actuator executes a repetitive motion, characterized by a repetitive motion frequency, in one of the directions, and changes a distance between the sample and the probe tip in a second one of the directions. A probe position signal generator generates a probe position signal indicative of a position of the probe tip relative to the cantilever arm. A probe signal correction generator generates a corrected probe position signal by correcting the probe position signal for errors introduced by the repetitive motion. A controller maintains the probe tip in a fixed relationship with respect to the sample in the second one of the dimensions based on the corrected probe position signal.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 6, 2011
    Assignee: Agilent Technologies, Inc.
    Inventor: Daniel Yves Abramovitch
  • Patent number: 8063364
    Abstract: A particle optical apparatus has a particle source for generating at least one beam of charged particles, and a magnet arrangement having two pole plates, which are arranged spaced apart from one another, such that the at least one beam of charged particles in operation passes through the pole plates, wherein trenches are provided in the pole plates, in which trenches coil wires are arranged. The trenches, when viewed in a cross section transverse to an extension direction of the trenches, have a smaller width in a region of a surface of the pole plates, than in a region arranged at a distance from the surface.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 22, 2011
    Assignee: Carl Zeiss NTS GmbH
    Inventors: Dirk Preikszas, Michael Steigerwald, Daniel Tobias, Andreas Eisele, Momme Mommsen, Dietmar Doenitz, Christian Hendrich
  • Patent number: 8053724
    Abstract: An instrumentation setup is provided to process electronic signals in a positron imager functioning in two different modes of operations for scanning both bulk and thin film materials. According to one part of an implementation, an instrumentation setup comprises an XY-rastering stepper motor apparatus coupled with LVDTs (Linear Variable Differential Transformers), and nuclear signal processing and high speed data acquisition sections. Imaging of bulk material samples may be enabled by scanning a positron point source across a surface of samples. In another part of the irnplenientation, the instrumentation setup may comprise an electromagnetic deflection control arrangement in conjunction with a guided monoenergetic positron beam together with nuclear signal processing and data acquisition arrangements. This part of the implementation may scan and produce images for thin film samples. The instrumentation setup is capable of producing high quality real-time S-parameter images.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: November 8, 2011
    Assignee: The University of Hong Kong
    Inventors: Pranab Sabitru Naik, Christopher David Beling, Stevenson H. Y. Fung
  • Patent number: 8053725
    Abstract: Applicants have found that the asymmetrical energy distribution of ions from an ion source allow chromatic aberration to be reduced by filtering ions in the low energy beam tail without significantly reducing processing time. A preferred embodiment includes within an ion beam column a filter that removes the low energy ions from the beam.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: November 8, 2011
    Assignee: FEI Company
    Inventors: Gregory A. Schwind, Jonathan H. Orloff
  • Patent number: 8049181
    Abstract: A lithography method and system have means for determining a convergence value dc from a relation of beam current to beam position drift (or beam dimension drift) produced in the past; means for finding a beam current i(t) as a function of the convergence value dc of beam position drift (or beam dimension drift), a measured value dm of beam position drift (or beam dimension drift), a gain constant g, and a convergence value c of beam position drift (or beam dimension drift) per unit beam current and using an equation given by i(t)={(1+g)·dc?g·dm(t)}/c; means for making a check regarding dm and dc as to whether dm approaches dc and, thus, a relationship given by |dm?dc|<? holds, where ? is a positive number providing a decision criterion under the condition where the gain constant g of the beam current i(t) satisfies a relationship given by g>0.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: November 1, 2011
    Assignee: JEOL Ltd.
    Inventor: Kazuya Goto
  • Patent number: 8049180
    Abstract: An ion beam device is described. The ion beam device includes an ion beam source for generating an ion beam, the ion beam being emitted along a first axis, an aperture unit adapted to shape the ion beam, and an achromatic deflection unit adapted to deflect ions of the ion beam having a predetermined mass by a deflecting angle. The achromatic deflection unit includes: an electric field generating component for generating an electric field, and a magnetic field generating component for generating a magnetic field substantially perpendicular to the electric field. The device further includes a mass separation aperture adapted for blocking ions with a mass different from the predetermined mass and for allowing ions having the predetermined mass to trespass the mass separator, and an objective lens having a second optical axis, wherein the second optical axis is inclined with regard to the first axis.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 1, 2011
    Assignee: ICT, Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik MBH
    Inventors: Juergen Frosien, Helmut Banzhof
  • Patent number: 8044370
    Abstract: A gas field ion source is described for a charged particle beam device having a charged particle beam column. The gas field ion source includes an emitter unit, a cooling unit, and a thermal conductivity unit for thermal conductivity from the cooling unit to the emitter unit, wherein the thermal conductivity unit is adapted for reduction of vibration transfer from the cooling unit to the emitter unit.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 25, 2011
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Dieter Winkler, Thomas Jasinski
  • Publication number: 20110248164
    Abstract: A combined laser and charged particle beam system. A pulsed laser enables milling of a sample at material removal rates several orders of magnitude larger than possible for a focused ion beam. In some embodiments, a scanning electron microscope enables high resolution imaging of the sample during laser processing. In some embodiments, a focused ion beam enables more precise milling of the sample. A method and structure for deactivating the imaging detectors during laser milling enables the removal of imaging artifacts arising from saturation of the detector due to a plasma plume generated by the laser beam. In some embodiments, two types of detectors are employed: type-1 detectors provide high gain imaging during scanning of the sample with an electron or ion beam, while type-2 detectors enable lower gain imaging and endpoint detection during laser milling.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 13, 2011
    Applicant: FEI COMPANY
    Inventors: Marcus Straw, Mark W. Utlaut, N. William Parker
  • Patent number: 8030622
    Abstract: A specimen holder is offered which can reduce the amount of chemical sprayed over a specimen consisting of cultured cells. The specimen holder has an open specimen-holding surface. At least a part of the specimen-holding surface is formed by a film and a tapering portion formed around the film. The specimen can be cultured on the specimen-holding surface of the film. The presence of the tapering portion can reduce the amount of used reagent. The specimen can be irradiated via the film with a primary beam for observation or inspection of the specimen. Consequently, the specimen, such as cells, can be well observed or inspected in vivo while the specimen is being cultured. Especially, if an electron beam is used as the primary beam, the specimen can be well observed or inspected in vivo by SEM (scanning electron microscopy).
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: October 4, 2011
    Assignee: JEOL Ltd.
    Inventors: Hidetoshi Nishiyama, Mitsuru Koizumi, Mitsuo Suga
  • Patent number: 8030620
    Abstract: A method is provided for creating a plurality of substantially uniform nano-scale features in a substantially parallel manner in which an array of micro-lenses is positioned on a surface of a substrate, where each micro-lens includes a hole such that the bottom of the hole corresponds to a portion of the surface of the substrate. A flux of charged particles, e.g., a beam of positive ions of a selected element, is applied to the micro-lens array. The flux of charged particles is focused at selected focal points on the substrate surface at the bottoms of the holes of the micro-lens array. The substrate is tilted at one or more selected angles to displace the locations of the focal points across the substrate surface. By depositing material or etching the surface of the substrate, several substantially uniform nanometer sized features may be rapidly created in each hole on the surface of the substrate in a substantially parallel manner.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: October 4, 2011
    Assignee: University of Houston
    Inventors: Vincent M. Donnelly, Demetre J. Economou, Paul Ruchhoeft, Lin Xu, Sri Charan Vemula, Manish Kumar Jain
  • Patent number: 8026482
    Abstract: Potentials at a plurality of points on a diameter of a semiconductor wafer 13 are measured actually. Then, a potential distribution on the diameter is obtained by spline interpolation of potentials between the actually-measured points adjacent in the diameter direction. Thereafter, a two-dimensional interpolation function regarding a potential distribution in the semiconductor wafer 13 is obtained by spline interpolation of potentials between points adjacent in the circumferential direction around the center of the semiconductor wafer 13. Then, a potential at a observation point on the semiconductor wafer 13 is obtained by substituting the coordinate value of this observation point into the two-dimensional interpolation function. As a result, a potential distribution due to electrification of the wafer can be estimated accurately, and the retarding potential can be set to a suitable value.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: September 27, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Muneyuki Fukuda, Hiromasa Yamanashi, Sayaka Tanimoto, Yasunari Souda, Osamu Nasu
  • Publication number: 20110220794
    Abstract: Disclosed are systems, devices and methodologies relating to proton computed tomography. In some implementations, detection of protons can yield track information before and after an object for each proton so as to allow determination of a likely path of each proton within the object. Further, measurement of energy loss experienced by each proton allows determination that a given likely path results in a given energy loss. A collection of such data allows characterization of the object. In the context of energy loss, such a characterization can include an image map of relative stopping power of the object. Various reconstruction methodologies for obtaining such an image, including but not limited to superiorization of a merit function such as total variation, are disclosed. In some implementations, various forms of total variation superiorization methodology can yield excellent results while being computationally efficient and with reduced computing time.
    Type: Application
    Filed: February 11, 2011
    Publication date: September 15, 2011
    Inventors: Yair Censor, Scott N. Penfold, Reinhard W. Schulte
  • Patent number: 8017920
    Abstract: A spin polarized ion beam generation apparatus (30) can efficiently generate a spin polarized ion by using a pumping light generator (33) to an ion in a high frequency discharge tube (15) to irradiate optical pumping (33,34) by circularly polarized light and linearly polarized light orthogonal to each other to a metastable atom. For example, a polarized helium ion beam having a spin polarization rate that exceeds 18% and that is as high as 25% can be generated. The spin polarized ion beam generation apparatus (30) also can be applied to a processing apparatus and an analysis apparatus that can irradiate a polarized ion beam to a specimen. According to the spin polarized ion scattering spectroscopy apparatus, the spin status in a region at a depth of about 2 to 3 atomic layers from the surface of the specimen can be measured while discriminating the elements from the atomic layer with a reduced measurement time and with a high accuracy impossible in the conventional technique.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: September 13, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Taku Suzuki, Yasushi Yamauchi
  • Patent number: 8013315
    Abstract: A charged particle beam apparatus 300 for observing and estimating a sample W by applying a charged particle beam to sample W to detect secondary charged particles, such as electrons emitted from the sample, reflected electrons and backscattered electrons comprises astigmatism adjusting means 17 for adjusting astigmatism of the charged particle beam. Astigmatism adjusting means 17 is supplied with a correction voltage which maximizes a focal estimation value obtained from a pattern formed on sample W. Astigmatism adjusting means 17 is a multipole including a plurality of pairs of electrodes or coils facing each other to place the optical axis of the charged particle beam at the center. Also disclosed is a charged particle beam apparatus 400 capable of observation and estimation of a sample surface in a condition where no charge up exists over the whole sample W.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: September 6, 2011
    Assignee: Ebara Corporation
    Inventors: Kenji Watanabe, Takeshi Murakami, Ryo Tajima, Masahiro Hatakeyama, Masatoshi Tsuneoka, Nobuharu Noji
  • Patent number: 8008635
    Abstract: Method and system for preparing samples for use in electron microscopy. The method and system use a focused ion beam (FIB) instrument and a scanning electron microscope to improve the time efficiency of the FIB instrument. The FIB instrument incorporates machining means for preparing thin-film samples by ion beam irradiation. The scanning electron microscope incorporates a gas supply means and a manipulator equipped with a probe. The gas supply means ejects gas at the sample after it has been shifted from the FIB instrument together with a sample holder. The sample is irradiated with an electron beam while the gas is injected at the sample from the gas supply means under the condition where the probe is contacted with the sample. Thus, the sample is bonded to the probe.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: August 30, 2011
    Assignee: Jeol, Ltd.
    Inventor: Yusuke Kagaya
  • Patent number: 8003939
    Abstract: A foreign matter detecting apparatus includes a detecting device for detecting foreign matter by measuring smoothness of a surface of an object undergoing measurement, a marking device for providing a dent on the surface of the object with a predetermined horizontal distance from the foreign matter detected by the detecting device, and a mass spectrum measuring device for irradiating and scanning a small area with a primary ion beam, as a part of the object, including the foreign matter and the dent, so as to measure a mass spectrum of secondary ions emitted from the foreign matter located at a position within a predetermined horizontal distance from the dent.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 23, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuhiro Jindai, Hideto Yokoi
  • Publication number: 20110189593
    Abstract: A defect repair apparatus for an EUV mask includes: a gas field ion source that generates a hydrogen ion beam; an ion optical system that scans and irradiates the hydrogen ion beam by focusing the hydrogen ion beam onto the EUV mask; a sample stage on which to place the EUV mask; a detector that detects secondary charged-particles generated from the EUV mask; and an image forming unit that forms an observation image of the EUV mask on the basis of an output signal from the detector.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Inventors: Takashi Ogawa, Hiroshi Oba, Fumio Aramaki, Anto Yasaka
  • Patent number: 7989782
    Abstract: A specimen fabricating apparatus comprises: a specimen stage, on which a specimen is placed; a charged particle beam optical system to irradiate a charged particle beam on the specimen; an etchant material supplying source to supply an etchant material, which contains fluorine and carbon in molecules thereof, does not contain oxygen in molecules thereof, and is solid or liquid in a standard state; and a vacuum chamber to house therein the specimen stage. A specimen fabricating method comprises the steps of: processing a hole in the vicinity of a requested region of a specimen by means of irradiation of a charged particle beam; exposing the requested region by means of irradiation of the charged particle beam; supplying an etchant material, which contains fluorine and carbon in molecules thereof, does not contain oxygen in molecules thereof, and is solid or liquid in a standard state, to the requested region as exposed; and irradiating the charged particle beam on the requested region as exposed.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: August 2, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Satoshi Tomimatsu, Miyuki Takahashi, Hiroyasu Shichi, Muneyuki Fukuda
  • Patent number: 7982187
    Abstract: Described are a method and apparatus for evaluating a least one characteristic of a plasma. The described method uses photons to raise the excitation state to or past the point of ionization of atoms which will traverse the plasma to be evaluated. The ionization of the atoms, followed by the measurement of the energy of any resulting secondary ions, facilitates the determining of one or more characteristics of the plasma. In one example, the photons are provided by a laser which directs a beam to intersect, and in some examples to be collinear with, a beam of atoms directed through the plasma.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 19, 2011
    Inventor: Alvaro Garcia de Gorordo
  • Patent number: 7977631
    Abstract: The invention relates to a method for obtaining images from slices of a specimen, the method comprising: repeatedly obtaining an image of the surface layer of the specimen (1) and removing the surface layer of the specimen, thereby bringing the next slice to the surface; characterized in that after at least one of the removals of a surface layer the specimen is exposed to a staining agent. This method is especially suited for use in a particle-optical instrument equipped with both a scanning electron microscope column (20) and a focused ion beam column (10). The specimen can e.g. be stained in situ by admitting a gas, such as OsO4 (osmiumtetroxide), to the specimen. This method also makes it possible to perform differential staining by first making an image of the specimen exposed to a first staining agent, and subsequently making an image of the specimen when it is additionally stained by a second staining agent.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: July 12, 2011
    Assignee: FEI Company
    Inventors: Johannes Jacobus Lambertus Mulders, Laurent Roussel, Wilhelmus Michael Busing
  • Patent number: 7964844
    Abstract: The invention avoids charge up when creating a focus map for an electron beam apparatus for inspecting a sample. An auto-focus (AF) control apparatus controls to drive an actuator for moving a focus lens of an optical microscope while acquiring a contrast signal from the optical microscope for each of focus measurement points on a surface of a sample under control of a PC device, to automatically focus on the surface of the sample. The control apparatus detects a focus value of the optical microscope corresponding to a position (height) of the sample surface in an optical axis direction. The PC device receives the detected focus value, and converts the focus value into a voltage to be applied to an electrostatic lens of the electron beam device during actual sample inspection, and stores the converted value.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: June 21, 2011
    Assignee: Ebara Corporation
    Inventor: Toshifumi Kimba
  • Publication number: 20110133081
    Abstract: Provided is a spectrophotometer using medium energy ion. The spectrophotometer using medium energy ion is configured to include: an ion source 10 generating ions; a collimator 20 collimating the ions as a parallel beam; an accelerator 30 accelerating the parallel beam; an ion beam pulse generator 40 pulsing the accelerated ion beam; a focusing objective 50 focusing the pulsed ion beam on a specimen 1; a detector 60 detecting a spectroscopic signal of scattered ion from a specimen 1; and a data analyzer 70 analyzing and processing the spectroscopic signal detected by the detector 60.
    Type: Application
    Filed: July 28, 2009
    Publication date: June 9, 2011
    Applicants: K-MAC, KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE
    Inventors: Dae Won Moon, Ju Hwang Kim, Yeon Jin Yi, Kyu-Sang Yu, Wan Sup Kim
  • Patent number: 7956336
    Abstract: An object of the present invention is to provide a focused ion beam apparatus that is capable of obtaining a much larger beam current and forming a focused ion beam with smaller aberration than a conventional focused ion beam apparatus no matter whether the level of acceleration is high or low. The focused ion beam apparatus according to the present invention includes a liquid metal ion source, an extraction electrode for extracting an ion beam from the liquid metal ion source, an acceleration (ground) electrode for accelerating an ion beam, and an electrostatic lens for converging an ion beam. When the acceleration voltage applied to the liquid metal ion source is lower than an emission threshold voltage of the liquid metal ion source, the voltage of the extraction electrode is at a lower potential than the voltage of the acceleration (ground) electrode. The polarity of a voltage applied to the electrostatic lens changes in accordance with the polarity of a voltage applied to the extraction electrode.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: June 7, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Hiroyasu Kaga
  • Patent number: 7947951
    Abstract: This invention is a multi-beam charged particle instrument that can simultaneously focus electrons and a variety of positive and negative ions, such as Gallium, Oxygen and Cesium ions, onto the same material target. In addition, the instrument has provision to simultaneously capture the spectrum of both secondary electrons and ions. The highly dispersive, high resolution mass spectrometer portion of the instrument is expected to detect and identify secondary ion species across the entire range of the periodic table, and also record a portion of their emitted energy spectrum. The electron energy spectrometer part of the instrument is designed to acquire the entire range of scattered electrons, from the low energy secondary electrons through to the elastic backscattered electrons.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: May 24, 2011
    Assignee: National University of Singapore
    Inventor: Anjam Khursheed
  • Patent number: 7947953
    Abstract: A detection apparatus for use in a charged particle beam device is provided. The detection apparatus includes a separation field generating portion adapted to generate a separation field separating positively and negatively charged secondary particles, at least one first detector for detecting positively charged particles, at least one second detector for detecting negatively charged particles, wherein the detection apparatus is adapted to simultaneously detect the positively charged secondary particles in the at least one first detector and the negatively charged secondary particles in the at least one second detector. Further, a method of simultaneously detecting negatively and positively charged particles is provided.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: May 24, 2011
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Juergen Frosien
  • Patent number: 7935943
    Abstract: A focused ion beam (FIB) processing system includes a FIB irradiation unit that irradiates a FIB onto a pattern formed in a wafer, to form a section of the pattern, an imaging unit that images the section of the pattern, a calculation unit that calculates a pattern size based on the image of the section, a judgment unit that judges whether or not a differential of the pattern size with respect to time is equal to or below a threshold; and a control unit that stops the FIB irradiation unit if the judgment unit judges that the differential of the pattern size is equal to or below the threshold.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: May 3, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Daisuke Watanabe
  • Patent number: 7928377
    Abstract: It is possible to carry out a highly accurate thin film machining by irradiation of an ion beam to a sample and a high-resolution STEM observation of the sample by irradiating an electron beam with a high throughput almost without moving the sample. The FIB irradiation system has an irradiation axis almost orthogonally intersecting an irradiation axis of the STEM observation electron beam irradiation system. The sample is arranged at the intersection point of the irradiation axes. The FIB machining plane of the sample is extracted from the thin film plane of the STEM observation sample. The transmitting/scattered beam detector are arranged at backward of the sample on the electron beam irradiation axis viewed from the electron beam irradiation direction.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: April 19, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tohru Ishitani, Tsuyoshi Ohnishi, Mitsugu Sato, Koichiro Takeuchi
  • Patent number: 7923701
    Abstract: Charged particle beam equipment has a processing unit for calibrating dimension values of an enlarged specimen image, and means for changing the amount by which a charged particle beam is scanned. Also, a specimen stand has a mechanism for holding a specimen having a periodical structure or a specimen simultaneously having a periodical structure and a non-periodical structure, and a storage device for automatically changing a magnification for an enlarged specimen image, and storing measured values at all magnifications.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiromi Inada, Hiroyuki Tanaka, Shun-ichi Watanabe, Shigeto Isakozawa, Mitsugu Sato, Atsushi Takane, Satoshi Yamaguchi
  • Patent number: 7923700
    Abstract: Sample inspection apparatus, sample inspection method, and sample inspection system are offered which can give a stimulus to a sample held on a film when the sample is inspected by irradiating it with a primary beam (e.g., an electron beam or other charged-particle beam) via the film. The apparatus has the film, a vacuum chamber, primary beam irradiation column, signal detector, and a controller for controlling the operations of the beam irradiation column and signal detector. The sample is held on a first surface of the film opened to permit access to the film. The vacuum chamber reduces the pressure of the ambient in contact with a second surface of the film. The irradiation column irradiates the sample with the primary beam via the film from the second surface side. The detector detects a secondary signal produced from the sample in response to the irradiation.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 12, 2011
    Assignee: JEOL Ltd.
    Inventor: Hidetoshi Nishiyama
  • Publication number: 20110073758
    Abstract: As sample sizes have decreased to microscopic levels, it has become desirable to establish a method for thin film processing and observation with a high level of positional accuracy, especially for materials which are vulnerable to electron beam irradiation. The technological problem is to judge a point at which to end FIB processing and perform control so that the portion to be observed ends up in a central portion of the thin film. The present invention enables display of structure in cross-section by setting a strip-like processing region in an inclined portion of a sample cross-section and enlarging the display of the strip-like processing region on a processing monitor in a short-side direction. It is then possible to check the cross-sectional structure without additional use of an electron beam. Since it is possible to check the processed section without using an electron beam, electron beam-generated damage or deformation to the processed section is avoided.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 31, 2011
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventor: Tsuyoshi OHNISHI
  • Patent number: 7902505
    Abstract: When a sample includes repeated cells, a scale pattern corresponding to the repeated cells is generated. Next, the scale pattern generated is superimposed on the image of the repeated cells of the sample, thereby identifying a destination cell. Moreover, disposition of the repeated cells of the sample is determined based on positions of at least three ends of the repeated cells. Then, the position of the destination cell is identified from this disposition of the repeated cells. Furthermore, a zoom image is generated by a combination of a zoom based on beam deflection function and a zoom based on software. Then, the image shift is performed by software without displacing a sample stage.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: March 8, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Tsuyoshi Ohnishi
  • Patent number: 7897918
    Abstract: A system and method for improving FIB milling endpointing operations. The methods involve generating real-time images of the area being milled and real-time graphical plots of pixel intensities with an increased sensitivity over native FIB system generated images and plots. The images and plots are generated with raw signal data obtained from the native FIB system. More specifically, the raw signal data is processed according to specific algorithms for generating images and corresponding intensity graphs which can be reliably used for accurate endpointing. In particular, the displayed images will display more visual information regarding changes in milled material, while the intensity graphs will plot aggregate pixel intensity data on a dynamically adjusting scale to dramatically highlight relative changes in milled material.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: March 1, 2011
    Assignee: DCG Systems
    Inventors: Michael William Phaneuf, Michael Anthony Anderson, Ken Guillaume Lagarec
  • Patent number: 7897936
    Abstract: A sample fabricating method of irradiating a sample with a focused ion beam at an incident angle less than 90 degrees with respect to the surface of the sample, eliminating the peripheral area of a micro sample as a target, turning a specimen stage around a line segment perpendicular to the sample surface as a turn axis, irradiating the sample with the focused ion beam while the incident angle on the sample surface is fixed, and separating the micro sample or preparing the micro sample to be separated. A sample fabricating apparatus for forming a sample section in a sample held on a specimen stage by scanning and deflecting an ion beam, wherein an angle between an optical axis of the ion beam and the surface of the specimen stage is fixed and formation of a sample section is controlled by turning the specimen stage.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: March 1, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyasu Shichi, Tohru Ishitani, Hidemi Koike, Kaoru Umemura, Eiichi Seya, Mitsuo Tokuda, Satoshi Tomimatsu, Hideo Kashima, Muneyuki Fukuda
  • Patent number: 7888642
    Abstract: The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 15, 2011
    Assignee: Ebara Corporation
    Inventors: Mamoru Nakasuji, Nabuharu Noji, Tohru Satake, Masahiro Hatakeyama, Kenji Watanabe, Takao Kato, Hirosi Sobukawa, Tsutomu Karimata, Shoji Yoshikawa, Toshifumi Kimba, Shin Oowada, Mutsumi Saito, Muneki Hamashima
  • Patent number: RE43117
    Abstract: The invention is an apparatus and method including hardware and software, which allows collecting and analyzing data to obtain information about mechanical properties of soft materials in a much faster way. The apparatus can be used as a stand-alone deice or an add-on to the existing AFM device. The apparatus allows collecting dynamical measurements using a set of multiple frequencies of interest at once, in one measurement instead of sequential, one frequency in a time; measurements.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 17, 2012
    Assignee: Clarkson University
    Inventor: Igor Sokolov