Including Spectrometer Or Spectrophotometer Patents (Class 250/339.07)
  • Patent number: 11686621
    Abstract: A method of spectroscopy, comprises: transmitting output radiation to a sample; collecting from the sample input radiation being indicative of interaction between the output radiation and the sample; modulating at least one of the output radiation and the input radiation, wherein at least one of the output radiation and the modulation is characterized by a scanned parameter; combining the input radiation, following the modulation, with a reference signal to provide a combined signal; processing the combined signal to construct a vector describing a dependence of a radiation property of the input radiation on the parameter; and at least partially identifying the sample or a change in comprises sample based on at least the vector.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: June 27, 2023
    Assignee: Ariel Scientific Innovations Ltd.
    Inventors: Shmuel Sternklar, Ziv Glasser
  • Patent number: 11629946
    Abstract: A mirror unit 2 includes a mirror device 20 including a base 21 and a movable mirror 22, an optical function member 13, and a fixed mirror 16 that is disposed on a side opposite to the mirror device 20 with respect to the optical function member 13. The mirror device 20 is provided with a light passage portion 24 that constitutes a first portion of an optical path between the beam splitter unit 3 and the fixed mirror 16. The optical function member 13 is provided with a light transmitting portion 14 that constitutes a second portion of the optical path between the beam splitter unit 3 and the fixed mirror 16. A second surface 21b of the base 21 and a third surface 13a of the optical function member 13 are joined to each other.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 18, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomofumi Suzuki, Kyosuke Kotani, Tatsuya Sugimoto, Yutaka Kuramoto, Katsumi Shibayama, Noburo Hosokawa, Hirokazu Yamamoto, Takuo Koyama
  • Patent number: 11614402
    Abstract: A system for recording transmission spectra of a sample with a spectrometer that produces baseline-free molecular response signal. A method for producing baseline-free signals includes applying a logarithmic function to a measured transmission spectrum to form an intermediate spectrum. Applying an inverse Fourier transform to the intermediate spectrum generates a modified free-induction-decay (m-FID) signal, which allows for the separation of molecular absorption features from baseline effects present in the m-FID signal. A weighting function is then applied that suppresses temporal portions of the m-FID signal that correspond to sources of baseline fluctuations as well as periodic effects (e.g. etalons). The method generates a baseline-suppressed m-FID signal that is converted to an absorption spectrum, which exhibits suppressed contributions from baseline fluctuations and periodic effects.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: March 28, 2023
    Assignee: THE REGENTS OF THE UNIV. OF COLORADO, A BODY CORP.
    Inventors: Amanda Makowiecki, Ryan Cole, Nazanin Hoghooghi, Greg Rieker
  • Patent number: 11536605
    Abstract: An electronic device such as a portable electronic device may include a single-shot alignment-free spectrometer with no moving parts. The spectrometer may include a diffractive member, such as a grating, an aperture, and an image sensor that generates data in response to incident light. The diffractive member may diffract the incident light based on its wavelength and angle of incidence, and the aperture may further encode the light. The data generated by the image sensor may be used by control circuitry in combination with correlations between spectrometer measurements and known light profiles to determine the wavelength and angle of incidence of the light. These correlations may be determined using a deep neural network. Control circuitry may adjust one or more settings of the electronic device based on the wavelength and angle of incidence, or may use the wavelength and angle of incidence to determine information regarding an external object.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: December 27, 2022
    Assignee: Apple Inc.
    Inventors: Sixian You, Sheng Liu, Christopher M. Dodson, Guocheng Shao, Mahdi Nezamabadi
  • Patent number: 11506598
    Abstract: A multiband IR adjunct (MIRA) sensor to spectroscopically determine the content and the concentration of chemical composition of a targeted object, includes a sensor housing, a first front optics in a first optical channel, a second front optics in the first optical channel, an acousto-optic tunable filter (AOTF), a photo detector (PD), a set of back optics in the first optical channel that focuses polarized narrow-band light beams received from the AOTF device onto the PD, the PD converting the polarized narrow-band light beams into an electrical signal, and a data acquisition unit signal-connected to the PD, the data acquisition unit collecting the electrical signals. Multiple optical channels can be provided within the housing to analyze UV/VIS/near infrared (NIR), short-wavelength infrared (SWIR), mid-wavelength infrared (MWIR), and LWIR wavelength ranges respectively.
    Type: Grant
    Filed: November 29, 2019
    Date of Patent: November 22, 2022
    Assignee: EPIR, INC.
    Inventors: Wei Gao, Chang Yong, Silviu Velicu, Sivalingam Sivananthan
  • Patent number: 11456165
    Abstract: In a method for spatially localizing mass-spectrometry analysis of an analyte derived from an energy event, an electrical device is used to deliver an energy event to a substrate, and the analyte produced is analyzed using mass spectrometry. Electrical signals sent to and received from the electrical device under different modes of operation are sensed and classified according to each different mode of operation. A location of the electrical device is tracked in three dimensions during the energy event, and a processor is used to perform spatial-temporal alignment of the mass-spectrometry, the determined modes of operation of the electrical device, and the tracked location of the electrical device, wherein mass spectrometry data corresponding to the determined modes of the electrical device are identified and localized within the site of the energy event. The substrate may be tissue in a surgical site, and the electrical device may be an electrocautery device.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: September 27, 2022
    Assignee: Queen's University at Kingston
    Inventors: Mark Asselin, Gabor Fichtinger
  • Patent number: 11448587
    Abstract: Devices and methods for detecting drugs, such as gamma hydroxybutyrate and gamma butyrolactone, using infrared spectrometry, and alerting an intended target of the drug, or others, to the presence of the drug.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: September 20, 2022
    Inventor: Mai Blaustein
  • Patent number: 11414231
    Abstract: An inspection device is used in manufacture of a PTP sheet that comprises a container film including a pocket portion in which a content is placed and a cover film closing the pocket portion. The inspection device includes: an illumination device that emits near infrared light; a light shield that is placed between the illumination device and the container film and prevents the near infrared light from entering the container film; a through hole in the light shield that allows the near infrared light to pass through; a spectroscope that disperses reflected light from the content; an imaging device that images an optical spectrum of the reflected light and obtains spectroscopic image data; and a controller that: obtains spectral data of the content based on the spectroscopic image data; and performs a predetermined inspection with regard to the content based on the spectral data of the content.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: August 16, 2022
    Assignee: CKD CORPORATION
    Inventors: Yukihiro Taguchi, Tsuyoshi Ohyama, Norihiko Sakaida
  • Patent number: 11408768
    Abstract: A terahertz spectrometer includes: a terahertz-wave emitter and a terahertz receiver elements. The terahertz wave generated by means of generating beat frequency corresponding to the difference between two rapidly tunable continuous wave lasers. Having a difference in time between the interrogating signal and the reference signal at the receiver end side, which corresponds to intermediate frequency (IF), not centered around the baseband, i.e. zero Hertz. The offset step size of the intermediate frequency from zero Hertz is linearly correlated to the position of the interrogated object position.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: August 9, 2022
    Assignee: NOVATRANS GROUP SA
    Inventors: John F. Roulston, Daniel Mandelik
  • Patent number: 11337611
    Abstract: Methods and systems are provided for detecting infectious pathogens in a saliva sample by using a Raman spectrometer to obtain Raman spectrum data of the saliva sample. A score is determined based on the Raman spectrum data using a machine learning, the score indicates whether an infectious pathogen is present in the saliva sample. In certain aspects, the methods and systems operate to determine if an individual is infected with COVID-19 based on Raman spectrum data of a saliva sample of the individual.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: May 24, 2022
    Assignee: KALIGIA BIOSCIENCES, LLC
    Inventors: Fazal A Fazlin, Arsenii Zhdanov, Keith Michael Bunch
  • Patent number: 11327019
    Abstract: An integrated spectro-microscopic system for multimodality imaging on a sample includes a reflected differential interference contrast (RDIC) microscope, a Raman spectroscope optically coupled with the RDIC microscope and a total internal reflection fluorescence/scattering (TIRF/TIRS) microscope optically coupled with the RDIC microscope such that the integrated spectro-microscopic system is capable of simultaneously acquiring both the RDIC images, the Raman spectra and TIRF/TIRS images on the same sample.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 10, 2022
    Inventors: Ning Fang, Bin Dong, Kuangcai Chen, Fei Zhao
  • Patent number: 11320307
    Abstract: A spectrometer system may be used to determine one or more spectra of an object, and the one or more spectra may be associated with one or more attributes of the object that are relevant to the user. While the spectrometer system can take many forms, in many instances the system comprises a spectrometer and a processing device in communication with the spectrometer and with a remote server, wherein the spectrometer is physically integrated with an apparatus. The apparatus may have a function different than that of the spectrometer, such as a consumer appliance or device.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: May 3, 2022
    Assignee: VERIFOOD, LTD.
    Inventors: Damian Goldring, Dror Sharon, Sagee Rosen, Ittai Nir, Uri Kinrot, Omer Keilaf, Guy Brodetzki, Assaf Carmi, Oren Buskila
  • Patent number: 11307139
    Abstract: Disclosed are methods and systems for spectral imaging of soybean samples to accurately and non-destructively measure the amount of sucrosyl-oligosaccharide in the soybean samples. Populations containing modified and unmodified soybean seeds and having varying amounts of sucrosyl-oligosaccharides, oil or protein can be sorted and separated and further used in soybean processing or breeding.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: April 19, 2022
    Inventors: Ross M Allen, John D Everard, Min Ren
  • Patent number: 11287647
    Abstract: Devices, systems and techniques are provided for adaptive transformation of wavefronts of optical waves or other electromagnetic waves to either correct the undesirable aberration or provide desirable wavefronts or aberrations for various applications, including imaging, sensing, signaling and other applications.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 29, 2022
    Assignee: C URCHIN TECHNOLOGIES LLC
    Inventor: Feiling Wang
  • Patent number: 11237369
    Abstract: An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: February 1, 2022
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Miles James Weida, Timothy Day
  • Patent number: 11237100
    Abstract: Provided are methods and/or systems having advantages of cost effective, time saving, and informative user-friendly characteristics to accomplish trait introgression. The methods provided comprise determining presence of omega-3 fatty acids (for example docosahexaenoic acid or DHA; docosapentaenoic acid or DPA; Alpha linolenic acid or ALA; and eicosapentaenoic acid or EPA) using Fourier Transformed infra Red (FTIR) spectrum. The use of FTIR enables analysis of the oil contained in the seeds using a multivariate-based Mid-FTIR model. The methods and/or systems provided advantages of non-destructive analysis to provide information to facilitate trait introgression and other breeding applications.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 1, 2022
    Assignee: Corteva Agriscience LLC
    Inventors: Bala Bhaskar Pudota, Daniel Gachotte, Virginia Stoltz, Terence A. Walsh
  • Patent number: 11105776
    Abstract: A detector module is disclosed. In one example, the detector module is for a photo-acoustic gas sensor and comprises a first substrate made of a semiconductor material and comprising a first surface and a second surface opposite to the first surface, a second substrate comprising a third surface, a fourth surface opposite to the third surface, and a first recess formed in the fourth surface. The second substrate is connected with its fourth surface to the first substrate so that the first recess forms an airtight-closed first cell which is filled with a reference gas and a pressure sensitive element comprising a membrane disposed in contact with the reference gas. The detector module is further configured such that a beam of light pulses passes through the first substrate and thereby enters the first cell.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: August 31, 2021
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Rainer Markus Schaller
  • Patent number: 11016309
    Abstract: A sample may be illuminated in such a way that light passes through the sample, reflects from a set of reflectors, passes through the sample again and travels to a light sensor. The reflectors may be staggered in depth beneath the sample, each reflector being at a different depth. Light reflecting from each reflector, respectively, may arrive at the light sensor during a different time interval than that in which light reflecting from other reflectors arrives—or may have a different phase than that of light reflecting from the other reflectors. The light sensor may separately measure light reflecting from each reflector, respectively. The reflectors may be extremely small, and the separate reflections from the different reflectors may be combined in a super-resolved image. The super-resolved image may have a spatial resolution that is better than that indicated by the diffraction limit.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: May 25, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Barmak Heshmat Dehkordi, Albert Redo-Sanchez, Gordon Moseley Andrews, Ramesh Raskar
  • Patent number: 10983045
    Abstract: A spectrometer apparatus for measuring spectra of a liquid sample, such as a beverage like wine. The apparatus has an integrating cavity with a reflective inner wall to receive a cuvette containing the liquid sample within the integrating cavity. A combination of light inlet ports and light outlet ports are provided to receive light from at least one light source and deliver light to a spectrometer. A light path adjuster is configured to selectively adjust a light path through the integrating cavity so at least two distinct light paths are provided wherein when the light path adjuster is in a first configuration, the apparatus is in transmission mode in which light from the light source follows a first light path; when the light path adjuster is in a second configuration, the apparatus is in a diffusely reflecting mode in which light from the light source follows a second light path.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: April 20, 2021
    Assignee: VICTORIA LINK LIMITED
    Inventors: Brendan Liam Darby, Eric Le Ru, Matthias Meyer
  • Patent number: 10948403
    Abstract: Systems for protein quantitation using a Fabry-Perot interferometer. In one arrangement, a quantitation device includes an infrared source, a sample holder, and a Fabry-Perot interferometer positioned to receive infrared radiation from the source passing through a sample on the sample holder. A band pass optical filter sets the working range of the interferometer, and radiation exiting the interferometer falls on a detector that produces a signal indicating the intensity of the received radiation. A controller causes the interferometer to be tuned to a number of different resonance wavelengths and receives the intensity signals, for determination of an absorbance spectrum.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: March 16, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Evan Thrush, Steven Swihart, William Strong, Trey Marlowe, Li Lu
  • Patent number: 10948405
    Abstract: The present invention relates to a gas sensor employing a non-dispersive infrared (NDIR) scheme. The gas sensor may comprise: a light source portion for emitting light; a light cavity portion for multi-reflecting the emitted light; a light detecting portion for detecting the multi-reflected light; a first light coupling portion for reflecting and concentrating the light emitted by the light source portion toward the light cavity portion; and a second light coupling portion for reflecting and concentrating the light reflected by the light cavity portion toward the light detecting portion.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: March 16, 2021
    Assignee: LG ELECTRONICS INC.
    Inventors: Minwoo Lee, Junho Sung
  • Patent number: 10876893
    Abstract: Systems and methods are provided for a UV-VIS spectrophotometer, such as a UV-VIS detector unit included in a high-performance liquid chromatography system. In one example, a system for the UV-VIS detector unit may include a first light source, a signal detector, a flow path positioned intermediate the first light source and the signal detector, a second light source, and a reference detector. The first light source, the signal detector, and the flow path may be aligned along a first axis, and the second light source and the reference detector may be aligned along a second axis, different than the first axis.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: December 29, 2020
    Assignee: Phoseon Technology, Inc.
    Inventors: Lowell Brunson, John Christopher Freitag, Theresa Thompson
  • Patent number: 10859557
    Abstract: An apparatus, method, and system for on-the-go soil nitrate level sensing, and optionally using the sensing to inform or instruct nitrogen fertilizer application across the field. In one form, the apparatus includes a soil sensing tool which carries a diamond ATR cell in combination with an FTIR field ruggedized spectrometer. The optical surface of the diamond ATR cell can be adjusted in pitch and depth to the soil. A processor is programmed to manipulate acquired spectra to derive a prediction of nitrate level for a given soil position in the field. This can be used to modulate a fertilizer applicator operation or coupled with georeference data collected simultaneously to generate a map of soil nitrate levels for the field, which can be used as a prescription for nitrogen fertilizer application.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 8, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: David Laird, Natalia Rogovska, Chien-Ping Chiou
  • Patent number: 10841506
    Abstract: A method and arrangement for acquiring image data, wherein a pixel area of a specimen to be imaged is illuminated in a plurality of illumination events with illumination light of a respective selected intensity, which intensities are different from one another. Subsequently, detection light emanating from the respective pixel area is acquired for each of the intensities as image data of a subpixel and resulting image data of the pixel area are determined from the number of acquired image data of the subpixels. According to the invention, the illumination events are triggered successively. The image data of all subpixels of the pixel area are acquired before a further pixel area is illuminated.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: November 17, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Mirko Liedtke, Jakob Haarstrich
  • Patent number: 10794824
    Abstract: A method, system, and device for terahertz spectroscopy to analyze a sample. The device comprises a transmitter, a waveguide, a receiver, and a processor. The transmitter generates electromagnetic (EM) radiation in a terahertz frequency band from about 0.1 terahertz to about 10 terahertz. The waveguide propagates the EM radiation generated from the transmitter and houses the sample to attenuate the EM radiation. The receiver is in communication with the waveguide and generates a signal in response to EM radiation propagating in the waveguide. The processor analyzes the signal to identify a parameter associated with the sample.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 6, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wolfgang Hartmut Nitsche, Michael T. Pelletier, John Laureto Maida
  • Patent number: 10790052
    Abstract: A medication assurance system for verification of both the medication and the patient is disclosed. A portable spectrometer is used to obtain a light spectrum of the medication. A subject identification or biometric device is used to identify the patient. A controller coupled to the portable spectrometer and the subject identification device identifies the medication by performing a chemometric analysis of the light spectrum. Based on the medication identified and the patient identified, the controller can determine if the medication is to be taken by the patient.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 29, 2020
    Assignee: VIAVI Solutions Inc.
    Inventors: Nada A. O'Brien, Christopher G. Pederson
  • Patent number: 10782270
    Abstract: A photoacoustic sensor device may include a housing and first and second ceramic cavity packages disposed in the housing. The first ceramic cavity package may include a first sidewall having a first set of electrical contact elements, a first cavity structure, and a light source electrically coupled to the first set of electrical contact elements. The second ceramic cavity package may include a second sidewall having a second set of electrical contact elements, a second cavity structure, and a photoacoustic detector electrically coupled to the second set of electrical contact elements. The first and second ceramic cavity packages may be arranged such that the light source and the photoacoustic detector face one another, and oriented such that the first and second sets of electrical contact elements align with electrical contact points of a PCB when the photoacoustic sensor device is positioned over the PCB for coupling to the PCB.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Rainer Markus Schaller, Thomas Mueller
  • Patent number: 10739257
    Abstract: A method for operating an optical measuring system including a wavelength-tunable temperature-stabilized laser light source for measuring the concentration of a target gas in a measured gas, wherein an instantaneous base current IDC_ZG,act corresponding to a wavelength ?ZG of a target gas absorption line is set so that a wavelength distance ??DC defined during calibration between a target gas absorption line for a target gas and a reference gas absorption line for a reference gas is maintained. During operation, a temperature difference in the laser light source, defined in advance during calibration, between the operating points selected at the time of calibration of the reference gas, with a base current IDC_RG,cal, and the target gas, with a base current IDC_ZG,cal, is maintained by determining the required instantaneous base current IDC_ZG,act for the target gas, as a function of an instantaneous base current IDC_RG,act for the reference gas.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 11, 2020
    Assignee: Axetris AG
    Inventors: Andreas Wittmann, Sven Schlesinger, Torsten Platz
  • Patent number: 10712259
    Abstract: The present invention relates to a photoacoustic sensor system for detecting target molecules in air samples or compressed air samples. The photoacoustic sensor system comprises an acoustic resonator forming a cylindrical resonant cavity and an air or compressed air sampling system configured for directing a flow of air or compressed air through the cylindrical resonant cavity. The photoacoustic sensor system comprises first and second microphones for generating first and second photoacoustic signals in response to absorption of modulated light within the cylindrical resonant cavity. A light source is configured to direct a modulated light beam through the cylindrical resonant cavity of the photoacoustic spectroscopy cell.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 14, 2020
    Inventors: Poul Jessen, Søren Laungaard, Jan Petersen, Mikael Lassen, David Balslev-Harder
  • Patent number: 10712265
    Abstract: A system for providing active real-time characterization of an article under test. A broadband infrared light source outputs a beam of infrared light. The infrared light source is configured to direct the beam of infrared light at a particular area on the article under test. A broadband IR light detector is configured to receive a first predetermined return beam of light from the particular area on the article under test. A processor receives signals from the broadband IR light detector and calculates in real time a spectrally sensitive signal. The processor analyzes the calculated signal to ensure that the article under test conforms to an expected value.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: July 14, 2020
    Assignee: THE BOEING COMPANY
    Inventor: Jeffrey H. Hunt
  • Patent number: 10680399
    Abstract: The disclosure provides an optical module, including a laser, the laser including a light emitting region and a modulation region, and light emitted by the light emitting region emitting toward the modulation region; a first driver circuit, the first driver circuit being connected to the light emitting region, so that the light emitting region emits light with adjusted optical power; and a second driver circuit, the second driver circuit being connected to the modulation region, so that the modulation region changes the optical power of the light emitted from the light emitting region.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 9, 2020
    Assignee: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventors: Qiang Zhang, Qisheng Zhao, Shihai Yang
  • Patent number: 10657998
    Abstract: A slider configured for heat-assisted magnetic recording comprises a magnetic writer, a near-field transducer, and an optical waveguide coupling the near-field transducer to a light source. The writer is situated proximate the near-field transducer at an air bearing surface of the slider and comprises a first return pole, a second return pole, and a write pole situated between and spaced apart from the first return pole and the second return pole. A structural element is situated at or near the air bearing surface between the write pole and one of the first and second return poles. The structural element comprises a cavity. A thermal sensor is disposed in the cavity. The thermal sensor is configured for sensing contact between the slider and a magnetic recording medium, asperities of the medium, and output optical power of the light source.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 19, 2020
    Assignee: Seagate Technology LLC
    Inventor: James Gary Wessel
  • Patent number: 10648861
    Abstract: A protective sheath having a closed end and an open end is sized to receive a hand held spectrometer. The spectrometer can be placed in the sheath to calibrate the spectrometer and to measure samples. In a calibration orientation, an optical head of the spectrometer can be oriented toward the closed end of the sheath where a calibration material is located. In a measurement orientation, the optical head of the spectrometer can be oriented toward the open end of the sheath in order to measure a sample. To change the orientation, the spectrometer can be removed from the sheath container and placed in the sheath container with the calibration orientation or the measurement orientation. Accessory container covers can be provided and placed on the open end of the sheath with samples placed therein in order to provide improved measurements.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 12, 2020
    Assignee: VERIFOOD, LTD.
    Inventors: Damian Goldring, Dror Sharon, Guy Brodetzki, Sagee Rosen, Omer Keilaf, Uri Kinrot, Ittai Nir, Nitzan Waisberg, Ofer Rachman, Assaf Carmi
  • Patent number: 10571351
    Abstract: A group and method for measuring the pressure in closed containers made from optically transparent material at least at a portion of a top space without contacting the containers, and a filling and/or packaging plant using the measuring group. The measuring group comprises an inspection area; a laser source with optical axis for the emission of a laser beam at a wavelength tunable with an absorption wavelength of a gas contained in a container top space; at least one detector to detect the laser beam once it has travelled through the inspection area to provide an absorption spectrum of said gas; a device for detecting the signal acquisition time period corresponding to the passage of a top space through the inspection area; having means for identifying signal contributions useful for the pressure measurement amongst the data representative of an absorption spectrum acquired during the signal acquisition time period.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: February 25, 2020
    Assignee: FT SYSTEM S.R.L.
    Inventors: Fabio Forestelli, Massimo Fedel
  • Patent number: 10527546
    Abstract: Embodiments of the present disclosure describe a method for determining a property of an uncharacterized crude oil sample using a polynomial equation correlating the property to a spectrum index and density of crude oil. The polynomial equation may include constants determined using a data fitting method and a data base of spectral data, density data, and standard properties data of a plurality of crude oils.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: January 7, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ezzat Hegazi
  • Patent number: 10444142
    Abstract: The invention relates to a characterization device (50) for characterizing a sample (S) comprising: a memory (MEM) storing a measured spectrum (As+p) of said sample, performed through a translucent material, and a measured spectrum of the translucent material (Ap), a processing unit (PU) configured to: determine a spectral energy (Es+p) of the measured spectrum (As+p) of the sample through the translucent material (As+p), estimate a coefficient ({circumflex over (?)}) from said spectral energy (Es+p) and, determine a corrected spectrum (Âs) of the sample from the measured spectrum (As+p) of the sample through the translucent material and from a corrected spectrum of the translucent material (Âp), said corrected spectrum of the translucent material (Âp) being determined from the measured spectrum of the translucent material (Ap) and from the estimated coefficient ({circumflex over (?)}).
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: October 15, 2019
    Assignee: GREENTROPISM
    Inventors: Antoine Laborde, Aude Bourdeau, Anthony Boulanger
  • Patent number: 10365158
    Abstract: A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follows a beam path (16B) from the sample (10) to the image sensor (28). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), and controls the image sensor (28) to capture the data. Further, during the data acquisition time (346), an effective optical path segment (45) of the beam path (16B) is modulated.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: July 30, 2019
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Jeremy Rowlette, Edeline Fotheringham, William Chapman, Miles Weida, David Arnone
  • Patent number: 10298320
    Abstract: Interference noise is eliminated and fitting accuracy is enhanced. A spectrum analysis apparatus includes an electromagnetic wave source configured to emit an electromagnetic wave having a wavelength from 0.1 mm to 10 mm, a spectrometer a detecting section configured to detect an emitted electromagnetic wave that exits from the measurement object, the wave being transmitted through or reflected by the measurement object, and to generate a detection signal; and an analyzing section configured to analyze the detection signal. The analyzing section has a noise eliminating unit configured to generate a noise eliminated signal by eliminating from the detection signal a round-trip electromagnetic wave having reciprocated twice or more inside the measurement object and then emitted from the measurement object, in the emitted electromagnetic wave.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: May 21, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Tazuko Kitazawa
  • Patent number: 10226959
    Abstract: A substrate processing device, which processes by immersing the substrate in the processing liquid comprising a mixture of a chemical and a diluting liquid, is provided with: a processing tank (1) that retains the processing liquid; heating means (2, 3) that heat the processing liquid; a temperature detection means (4) that detects the temperature of the processing liquid; a temperature control means (5) that operates the aforementioned heating means (2, 3) in a manner so that the detected temperature approaches a set temperature; a replenishing means (6) that replenishes the diluting liquid in the processing liquid; a concentration detection means (7) that detects the concentration of the processing liquid by measuring the light absorption characteristics of the processing liquid; and a concentration control means (8) that operates the aforementioned replenishing means (6) in a manner so that the detected concentration approaches a set concentration.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: March 12, 2019
    Assignees: Kurashiki Boseki Kabushiki Kaisha, Chemical Art Technology, Inc.
    Inventors: Hiromi Kiyose, Satoru Hiraki, Hiroshi Watanabe
  • Patent number: 10222204
    Abstract: Provided is a high-speed 3D imaging system using continuous-wave THz beam scan, and more particularly, a high-speed 3D imaging system using continuous-wave THz beam scan capable of acquiring a 3D image for a sample at a high speed and high precision by measuring a signal reflected from a sample using the continuous-wave THz beam generated from a wavelength-fixed laser and a wavelength-swept laser and having a frequency varying at a high speed to obtain depth direction information on a sample and performing a 2D scan on the sample using a THz beam scanner.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 5, 2019
    Assignee: KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE
    Inventors: Ji Sang Yahng, Dae-Su Yee
  • Patent number: 10175215
    Abstract: A system for measuring chlorophyll concentration in a leaf sample includes a leaf-holding illuminator device with a main body containing a power source, a plurality of switchable light sources emitting light at different spectra (e.g., red and white light from a broadband light source), and a cap detachably secured to the main body using one or more fastening means. The leaf sample is interposed between the main body and the cap and held in place during imaging. The system includes a mobile electronic device having a camera configured to capture an image of the leaf illuminated by the plurality of switchable light sources, the mobile electronic device having wireless connectivity to a network and an application contained therein configured to transfer the images to a remote sever or computer via the network for data processing. A final chlorophyll index value is calculated based on the transferred images.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 8, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Bingen Cortazar, Hatice Ceylan Koydemir, Derek Tseng, Steve Feng
  • Patent number: 10132682
    Abstract: The invention relates to a microscope having an acousto-optic apparatus (13) that, with a mechanical wave that is characterized by a preferably adjustable frequency, removes from a polychromatic and collinear detected light bundle (18) portions of illuminated light, scattered and/or reflected at a sample, having an illuminating light wavelength associated with the frequency.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: November 20, 2018
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Volker Seyfried, Vishnu Vardhan Krishnamachari
  • Patent number: 10119868
    Abstract: A system and method for a higher speed auto-correcting temperature measurement in a system using a fiber optic distributed sensor.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: November 6, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason E. Therrien, Mikko Jaaskelainen
  • Patent number: 10082654
    Abstract: An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: September 25, 2018
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Miles James Weida, Timothy Day
  • Patent number: 10082600
    Abstract: A method of calibration transfer for a testing instrument includes: collecting a first sample; generating a standard response of a first instrument based, at least in part, on the first sample; and performing instrument standardization of a second instrument based, at least in part, on the standard response of the first instrument. Data corresponding to a second sample is then obtained using the second instrument and a component of the second sample is identified based, at least in part, on a calibration model.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 25, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jing Shen, Christopher Jones, Dingding Chen, Michael T. Pelletier, Robert Atkinson, David Perkins
  • Patent number: 10073031
    Abstract: Optical analyzer (10,50,60) comprises an optically integrating cavity (20), the optically integrating cavity (20) formed by at least one optical light diffusing wall (31) and adapted to contain a sample of a solid agricultural product, the sample consisting of one or more sample elements (41,48), a light source (13,33), emitting light into the optically integrating cavity (20), whereas the at least one optical light diffusing wall (31) is utilized to convert emitted light to diffused light, whereas the sample at least partially or completely converts the diffused light to spectrally filtered light, and a spectral sensor (26). The sample is confined in the optically integrating cavity (20) while the spectral sensor (26) is being exposed to the spectrally filtered light. Patent application has independent claims also for optical analyzing method and sample preparation device.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: September 11, 2018
    Assignee: GrainSense Oy
    Inventor: Ralf Marbach
  • Patent number: 10019791
    Abstract: A method for generating a yield estimate for a crop of corn includes capturing a digital image of an ear of corn; processing the digital image of an ear of corn to determine a plurality of dimensions for each of a plurality of kernels on the ear of corn; estimating, from the plurality of dimensions, an average kernel volume for the ear of corn; determining, from the average kernel volume and an estimated kernel density, an average kernel weight for the ear of corn; and estimating, from the average kernel weight, a kernels-per-bushel for the ear of corn.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: July 10, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Darrell L. Young, Charlotte DeKeyrel, Michael Henry Lewis
  • Patent number: 10007920
    Abstract: One aspect of the invention provides a device for detecting a counterfeit product. The device includes: a plurality of light sources configured to emit light at a plurality of different wavelengths onto an object potentially including a suspect product; at least one image acquisition device adapted and configured to acquire image data; and a communications interface adapted and configured to transmit the image data to a computing device selected from the group consisting of: a tablet computer and a smartphone.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: June 26, 2018
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Nicola Ranieri, Mark R. Witkowski, Mike D. Green
  • Patent number: 9989412
    Abstract: A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follow a beam path (16B) from the sample (10) to the image sensor (28). The refractive, optical element (24A) is spaced apart a separation distance (42) from the sample (10) along the beam path (16B). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), controls the mover assembly (29) (24C) to modulate the separation distance (42), and controls the image sensor (28) to capture the data.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: June 5, 2018
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Jeremy Rowlette, Edeline Fotheringham, William Chapman, Miles Weida, David Arnone
  • Patent number: 9970866
    Abstract: A Terahertz laser system for remote weapon detection is disclosed. The human target potentially having a weapon is swept with multiple wavelengths of Terahertz laser beams and the reflected return radiation is detected and transformed into a composite image gradated by brightness or color to represent gradations in intensity of the returned radiation indicative of possible weapon(s) or the absence thereof.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: May 15, 2018
    Inventors: Charlie Louis Tolliver, Justin Forman, Nathaniel Tolliver, II