Scintillation System Patents (Class 250/370.11)
  • Patent number: 9057903
    Abstract: A flat panel display such as an organic light emitting diode (OLED) display or a liquid crystal display (LCD) is disclosed. In one aspect, the OLED display includes: an OLED panel, a foam member attached to the bottom side of the panel by interposing an adhesive layer therebetween and a flexible circuit board electrically connected to the panel and curved and then attached to the foam member. The foam member includes a corresponding portion corresponding to the flexible circuit board and a non-corresponding portion not corresponding to the flexible circuit board, and the adhesive layer forms an air outlet path in at least the non-corresponding portion.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: June 16, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Yang-Han Son
  • Patent number: 9054012
    Abstract: A method of manufacturing a radiation detection apparatus is provided. On a sensor substrate on which a pixel array is formed, a scintillator layer that covers the pixel array, a sealing layer that covers a side face of the scintillator layer, and a protection layer that covers an upper face of the scintillator layer and an upper face of the sealing layer are formed. The sensor substrate, the sealing layer, and the protection layer along a side of the pixel array are cut such that a cut surface of the sensor substrate, a cut surface of the sealing layer, and a cut surface of the protection layer are arranged on the same plane.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: June 9, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Keiichi Nomura, Kazumi Nagano, Satoshi Okada, Yohei Ishida, Shoshiro Saruta, Yoshito Sasaki, Tomoaki Ichimura
  • Patent number: 9040927
    Abstract: A radiation detection apparatus according to an embodiment includes: a scintillator including a fluorescent material to convert radiation to visible radiation photon; a photon detection device array having a plurality of cells each of which includes a photon detection device to detect visible radiation photon emitted from a fluorescent material in the scintillator and convert the visible radiation photon to an electric signal; and a plurality of lenses provided on cells respectively in association with the cells to cause the visible radiation photon to be incident on the photon detection device in an associated cell.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 26, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Go Kawata, Hideyuki Funaki, Honam Kwon, Risako Ueno, Kazuhiro Suzuki
  • Patent number: 9029768
    Abstract: A detector (100) is used to detect a charged particle beam (EB), and includes a first light emission portion (10) for converting the charged particle beam into light, a second light emission portion (20) for converting the charged particle beam transmitted through the first light emission portion (10) into light, and a light detector (30) for detecting the light produced by the first light emission portion (10) and the light produced by the second light emission portion (20). The first light emission portion (10) is a powdered scintillator. The second light emission portion (20) is a single crystal scintillator.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: May 12, 2015
    Assignee: JEOL Ltd.
    Inventor: Takeshi Kaneko
  • Patent number: 9018588
    Abstract: A radiation detection apparatus can have optical coupling material capable of absorbing wavelengths of light within approximately 75 nm of a wavelength of scintillating light of a scintillation member of the radiation detection apparatus. In an embodiment, the optical coupling material can be disposed between a photosensor of the radiation detection apparatus and the scintillation member. In a particular embodiment, the composition of the optical coupling material can include a dye. In an illustrative embodiment, the dye can have a corresponding a* coordinate, a corresponding b* coordinate, and an L* coordinate greater than 0. In another embodiment, the optical coupling material can be disposed along substantially all of a side of the photosensor.
    Type: Grant
    Filed: December 15, 2012
    Date of Patent: April 28, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: Peter R. Menge
  • Patent number: 9018591
    Abstract: A tool comprising a tool body having an opening defined by interior walls extending into the tool body and a casing disposed within the opening. The tool further includes a scintillator material disposed within the casing and a first compressive member disposed within the tool body at a first axial location. The first axial location extends for a fraction of a total axial length of the casing and exerts a first radially compressive force at the first axial location.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: April 28, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Daniel J. Herr, John H. Frank
  • Publication number: 20150108358
    Abstract: According to an embodiment, a photodetector includes a scintillator layer, a photodetection layer, an antireflective member, and an intermediate layer. The scintillator layer is configured to convert radiation into light. The photodetection layer has a first surface facing the scintillator layer. The photodetection layer includes a pixel region that includes multiple photodetection devices configured to detect light, and a peripheral region that surrounds the pixel region. The pixel region and the peripheral region are provided on the first surface. The antireflective member is provided between the scintillator layer and the photodetection layer and opposed to at least part of the peripheral region. The antireflective member is configured to prevent reflection of at least part of light in a sensitive wavelength range of the photodetection devices. The intermediate layer is provided in a region other than the antireflective member between the scintillator layer and the photodetection layer.
    Type: Application
    Filed: September 4, 2014
    Publication date: April 23, 2015
    Inventors: Keita SASAKI, Rei HASEGAWA
  • Patent number: 9012859
    Abstract: A tiled imager panel is disclosed. In certain embodiments, the tiled imager panel is formed from separate imager chips that are mechanically tiled together so as to minimize the gap between the tiled imager chips. In addition, in certain embodiments, a scintillator material associated with the tiled imager panel is in a hermetically sealed environment so as to be protected from moisture.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: April 21, 2015
    Assignee: General Electric Company
    Inventor: Ching-Yeu Wei
  • Patent number: 9012857
    Abstract: An imaging system (100) includes a radiation sensitive detector array (110). The detector array includes at least two scintillator array layers (116). The detector array further includes at least two corresponding photosensor array layers (114). At least one of the at least two photosensor array layers is located between the at least two scintillator array layers in a direction of incoming radiation. The at least one of the at least two photosensor array layers has a thickness that is less than thirty microns.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: April 21, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Nicolaas Johannes Anthonius Van Veen, Amiaz Altman, Igor Uman, Rafael Goshen
  • Patent number: 9006662
    Abstract: A scintillator includes a plurality of columnar crystals. A surface protection film is made of poly-para-xylyene and covers a surface of the scintillator, and the front ends of the columnar crystals penetrate thereinto. A photoelectric conversion panel includes a glass substrate and an element unit formed on the glass substrate. The element unit includes a plurality of pixels, is disposed opposite to the front ends of the columnar crystals, and detects visible light which is emitted from the front ends and is transmitted through the surface protection film in a light receiving region of each pixel so as to be converted into electric charge. To improve an SN ratio, a penetration amount P of the front end into the surface protection film and an area A of the light receiving region of each pixel are set to satisfy a relationship of 0 m?1<P/A?1.4×103 m?1.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: April 14, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Munetaka Kato, Shinichiro Sonoda, Seiji Yamashita
  • Patent number: 9000388
    Abstract: A connection substrate 13 includes a base material 130 formed by stacking a plurality of dielectric layers 130a to 130f and a plurality of through conductors 20 provided penetrating through the dielectric layers 130c to 130f adjacent to each other. A plurality of radiation shielding films 21a to 23a formed integrally with each of the plurality of through conductors 20 and separated from each other are provided at two or more interlayer parts in the dielectric layers 130c to 130f. A region PR1 of the radiation shielding film 21a (21b) formed integrally with one through conductor 20 in one interlayer part projected onto a virtual plane normal to a predetermined direction and a region of the radiation shielding film 22b or 22c (22c) formed integrally with another through conductor 20 in another interlayer part projected onto the virtual plane do not overlap each other.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 7, 2015
    Assignee: Hamamatsu Photonics K. K.
    Inventors: Fumiyuki Tokura, Mitsutoshi Sugiya, Shigeru Suzuki, Takashi Tonbe
  • Patent number: 9000387
    Abstract: A radiation detector, in particular an X-ray radiation detector, in the form of a flat-panel detector, may comprise a scintillator layer applied to a substrate and comprising elongated needles made from a scintillator material forming the scintillator layer, and an actively readable pixel array composed of photodiodes, wherein the thickness of the scintillator layer may be in the range of 900 ?m-2500 ?m, and wherein the angle at which the needles stand relative to the pixel array, starting from 90° in the center of the detector, may decrease with increasing distance from the center of the detector.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: April 7, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Philipp Bernhardt, Martin Spahn
  • Patent number: 8993978
    Abstract: A method for assessing an alpha particle emission potential of a metallic material. A metallic material is initially subjected to a secular equilibrium disruption process, such as melting and/or refining, to disrupt the secular equilibrium of the radioactive decay of one or more target parent isotopes in the material. A sample of the material is treated to diffuse target decay isotopes within the sample such that the measured alpha particle emission directly corresponds to the concentration or number of target decay isotope atoms within the entirety of the sample, enabling the concentration of target decay isotopes in the sample to be determined. The concentration of target parent isotopes in the material may then be determined from the concentration of target decay isotopes and time elapsed from the secular equilibrium disruption process, and may be used to determine a maximum alpha particle emission that the metallic material will exhibit.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 31, 2015
    Assignee: Honeywell International Inc.
    Inventor: Brett M. Clark
  • Patent number: 8981311
    Abstract: A scintillator element (114) comprising uncured scintillator material (112) is formed and optically cured to generate a cured scintillator element (122, 122?). The uncured scintillator material suitably combines at least a scintillator material powder and an uncured polymeric host. In a reel to reel process, a flexible array of optical detectors is transferred from a source reel (100) to a take-up reel (106) and the uncured scintillator material (112) is disposed on the flexible array and optically cured during said transfer. Such detector layers (31, 32, 33, 34, 35) are stackable to define a multi-layer computed tomography (CT) detector array (20). Detector element channels (50, 50?, 50?) include a preamplifier (52) and switching circuitry (54, 54?, 54?) having a first mode connecting the preamplifier with at least first detector array layers (31, 32) and a second mode connecting the preamplifier with at least second detector array layers (33, 34, 35).
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: March 17, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Simha Levene, Naor Wainer, Amiaz Altman, Rafael Goshen, Cornelis Reinder Ronda
  • Patent number: 8981310
    Abstract: A radiation detection device 80 according to an embodiment is a radiation detection device for a foreign substance inspection using a subtraction method, and includes a first radiation detector 32 that detects radiation in a first energy range transmitted through a specimen S and generates a first image, a second radiation detector 42 that detects radiation in a second energy range higher than the radiation in the first energy range and generates a second image, a first image processing section 34 that applies image processing to the first image, and a second image processing section 44 that applies image processing to the second image, wherein a first pixel width in an image detection direction of each pixel of the first radiation detector 32 is smaller than a second pixel width in the image detection direction of each pixel of the second radiation detector 42, and the first image processing section 34 and the second image processing section 44 carry out pixel change processing to make the number of pixels o
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: March 17, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Toshiyasu Suyama
  • Patent number: 8975592
    Abstract: An ion detector 1A for detecting positive ions is provided with a chamber 2 having an ion entrance 3 which allows positive ions to enter, a conversion dynode 9 which is disposed in the chamber 2 and to which a negative potential is applied, and an avalanche photodiode 30 that is disposed in the chamber 2 and has an electron incident surface 30a which is opposed to the conversion dynode 9 and also into which secondary electrons emitted from the conversion dynode 9 are made incident. The electron incident surface 30a is located closer to the conversion dynode 9 than a positioning part 14 which supports the avalanche photodiode 30 in the grounded chamber 2.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hiroshi Kobayashi, Motohiro Suyama, Masahiro Kotani, Takayuki Ohmura
  • Patent number: 8975591
    Abstract: A solid-state imaging device according to an embodiment includes a plurality of signal output units. Each of the plurality of signal output units includes an input terminal electrode group including terminal electrodes for inputting a reset signal, a hold signal, a horizontal start signal, and a horizontal clock signal and an output terminal electrode for providing an output signal. The solid-state imaging device further includes common lines that are provided across the plurality of signal output units. A terminal electrode for the reset signal and a terminal electrode for the hold signal are connected to the corresponding common lines through the corresponding switches.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 10, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuki Fujita, Ryuji Kyushima, Harumichi Mori
  • Patent number: 8970755
    Abstract: The present invention may suppress feedthrough components in video imaging. Namely, TFT driving waveforms are plurally overlapped, and an integration period of capacitors C of amplification circuits is set so as to encompass a generation period of a feedthrough component (OFF), a generation period of a feedthrough component (ON), and a period in which charges (a signal component) are read out from storage capacitors of pixels by ON states of the TFTs. A number of driving waveforms to be overlapped is determined in accordance with a frame rate, the integration period and a reset period, or the like.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: March 3, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Naoyuki Nishino, Naoto Iwakiri, Kouichi Kitano, Yasunori Ohta, Haruyasu Nakatsugawa
  • Publication number: 20150053863
    Abstract: A device for detecting neutrons with gamma discrimination and/or gamma radiation includes a first semiconductor layer, a second semiconductor layer, an electron separator layer between the first semiconductor device and the second semiconductor device, and a gadolinium-containing layer between the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 26, 2015
    Inventor: Lei Cao
  • Patent number: 8963097
    Abstract: A method includes obtaining a plurality of the two dimensional arrays of gadolinium oxysulfide. An array has wider width non-silver based spacers (304) that extend between rows or columns of dixels and narrower width non-silver based spacers (306) that extend between the other of the rows or columns of dixels. The method further includes applying a silver coating (312) to at least one of a top or bottom surface of the arrays. The method further includes forming a stack by stacking the silver coated arrays, one on top of another (FIG. 3B), with substantially equal layers of adhesive between adjacent arrays. The method further includes slicing the stack through the wider non-silver based spacers to form two dimensional arrays of scintillator dixels (314) having silver based spacers (312) along at least one direction of the array.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Simha Levene
  • Patent number: 8962370
    Abstract: A radiation detector includes a sensor substrate and a scintillator layer. The sensor substrate is configured to be capable of performing photoelectric conversion. The scintillator layer includes a first area and a second area, the first area including an activator, the second area including the activator with a concentration lower than the concentration of the activator in the first area, the scintillator layer being provided on the sensor substrate so that the first area and the second area are arranged in a thickness direction of the scintillator layer and the first area is arranged from an end portion on a side of the sensor substrate in the scintillator layer in the thickness direction.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: February 24, 2015
    Assignee: Sony Corporation
    Inventors: Mitsuhiro Kawanishi, Ikumi Kusayama, Takahiro Igarashi
  • Patent number: 8952335
    Abstract: Bias lines are provided for respective columns of pixels, and of a plurality of bias lines, bias lines provided at an interval of 10 mm are connected to a bias power source through a current detector. The remaining bias lines are connected directly to the bias power source without passing through the current detector. In each pixel, if electric charge is generated by a radiation detection element in accordance with the dose of irradiated radiation, a current flows in the bias line in accordance with the generated electric charge. The current detector detects the current flowing in the bias line, and a control unit detects, as the timing of starting irradiation of a radiation, when the detected current (current value) is equal to or greater than a threshold value, and starts radiographing of a radiological image.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 10, 2015
    Assignee: Fujifilm Corporation
    Inventor: Keiichiro Sato
  • Publication number: 20150034819
    Abstract: An ion detector for a Time of Flight mass spectrometer is disclosed comprising a single Microchannel Plate which is arranged to receive ions and output electrons. The electrons are directed onto an array of photodiodes which directly detects the electrons. The output from each photodiode is connected to a separate Time to Digital Converter provided on an ASIC.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: John Brian Hoyes, Anthony James Gilbert, Motohiro Suyama
  • Publication number: 20150034833
    Abstract: A method is provided for controlling a light-sensitive device, for example, a digital X-ray detector including an array of light-sensitive points. The light-sensitive device includes a column conductor, line conductors, and light-sensitive points. Each light-sensitive point is connected between the column conductor and one of the line conductors, and includes a light-sensitive element converting a photon flux into electrical charges, and a transistor transferring the electrical charges to the column conductor based on control of a signal received by the corresponding line conductor. The method depends on the presence of a capacitor for cross-coupling between the drain and source of each transistor in the off state. The capacitor provides a potential variation to the column conductor upon receiving photons. The method comprises comparing the potential variation with a threshold, and reading the light-sensitive points in the event that the result of the comparison is positive.
    Type: Application
    Filed: July 9, 2012
    Publication date: February 5, 2015
    Applicant: TRIXELL
    Inventors: David Blanchon, David Couder, Benoît Candiard
  • Patent number: 8948338
    Abstract: An x-ray imaging system for imaging a subject includes an x-ray source configured to project an x-ray radiation toward a portion of the subject and a panel detector positioned opposite the x-ray source relative to the subject and configured to receive x-ray radiation passing through the subject. The panel detector includes a scintillation layer converting x-ray radiation to light rays of a selected spectrum and a plurality of microelectromechanical scanners. Each microelectromechanical scanner includes a photodetector mounted on a corresponding movable platform and configured to detect light in the selected light spectrum. The panel detector includes a scanning control module configured to move each platform in a selected scan pattern.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Louis J. Barbato, Patrick A. Helm, Jigney Shah
  • Patent number: 8941074
    Abstract: A radiation imaging apparatus, comprising a sensor panel including a sensor array on which a plurality of sensors arranged in an array form and a scintillator layer provided on the sensor array, and a unit configured to perform signal processing based on a signal from the sensor array, wherein the sensor array includes a peripheral region and a central region located inside the peripheral region, the scintillator layer is disposed over the peripheral region and the central region so as to have uniform luminance efficiency with respect to the sensor array, and the unit performs the signal processing by using only signals from sensors disposed in the central region, of signals from the plurality of sensors, output from the sensor panel.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: January 27, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masato Inoue, Shinichi Takeda, Satoru Sawada, Takamasa Ishii, Taiki Takei, Kota Nishibe
  • Patent number: 8941073
    Abstract: A radiological image detection apparatus includes a scintillator, a pixel array, a first support and a case. The scintillator is formed of phosphor which emits fluorescence when exposed to radiation. The pixel array is provided in close contact with the scintillator and detects the fluorescence emitted from the scintillator. The first support supports at least one of the scintillator and the pixel array. The case includes a plurality of members having a first member provided with a ceiling plate part through which light penetrates. The case houses the scintillator, the pixel array and the support in a lightproof inner space formed by combining the plurality of members. The scintillator and the pixel array are disposed between the first support and the ceiling plate part. The first support absorbs light of a wavelength region corresponding to a part of a wavelength region which is sensed by the pixel array.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 27, 2015
    Assignee: Fujifilm Corporation
    Inventors: Toshiyuki Nabeta, Haruyasu Nakatsugawa
  • Patent number: 8941070
    Abstract: An imaging system is provided. In one embodiment, an imaging system includes a radiation source and a digital detector. The imaging system may also include first and second structures, each configured to receive the digital detector. Further, the imaging system may include system control circuitry configured to control exposure of the digital detector by the radiation source and to acquire image data from the digital detector. Additionally, the digital detector may be configured to communicate its location to the system control circuitry based on receipt of the digital detector by the first or second receiving structures. Additional systems, methods, and devices are also disclosed.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Scott W. Petrick, Alan D. Blomeyer, James Z. Liu, Emad Abu Tabanjeh
  • Patent number: 8937286
    Abstract: The present invention provides a solid scintillator comprising a rare earth oxide sintered body, wherein: an afterglow time, which is the time required for a light output from the solid scintillator to degrease from a maximum value to 1/e of the maximum value, is 200 ns or shorter. The rare earth oxide sintered body preferably has a composition represented by a general formula (1): LnaXbOc:Ce??(1), wherein Ln is one or more elements selected from Y, Gd and Lu; X is one or more elements selected from Si, Al and B; and a, b and c satisfy 1?a?5, 0.9?b?6, and 2.5??c?13, respectively.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 20, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Kazumitsu Morimoto, Yoshitaka Adachi, Akihisa Saito, Eiji Oyaizu, Masaki Toyoshima
  • Patent number: 8916830
    Abstract: An X-ray detector panel comprises: a substrate; a transistor including a gate electrode disposed on the substrate, a gate insulating layer disposed on the gate electrode, an active layer disposed on the gate insulating layer, and a source electrode and a drain electrode disposed on the active layer and separated from each other; a photodiode including a first electrode connected to the drain electrode of the transistor, a photoconductive layer disposed on the first electrode, and a second electrode disposed on the photoconductive layer; an interlayer insulating layer including a first interlayer insulating layer covering the transistor and the photodiode, the first interlayer insulating layer being formed of an insulating material having a band gap energy of about 8 eV to about 10 eV; a data line disposed on the interlayer insulating layer and contacting the source electrode of the transistor via the interlayer insulating layer; a bias line disposed on the interlayer insulating layer and contacting the second
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: James Lim, Kwan-Wook Jung, Dong-Hyuk Kim, Jea-Eun Ryu
  • Patent number: 8912499
    Abstract: According to one embodiment, a radioactive ray detecting apparatus includes: a scintillator that produces visible light from a radioactive ray; a light detecting portion including a light receiving element that generates an electrical signal on a basis of intensity of visible light; a first board; a first electrical connection unit that electrically connects the light detecting portion and a first surface of the first board to each other; a second board disposed to face the first board; a second electrical connection that electrically connects a first surface of the second board and a second surface of the first board being opposite from the first surface of the first board to each other; and a data acquisition device that processes an electrical signal transmitted from the light detecting portion through the first electrical connection unit, the first board, the second electrical connection unit, and the second board.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 16, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Satoru Asagiri, Takayuki Yamazaki, Michito Nakayama
  • Patent number: 8907292
    Abstract: A tungstate-based scintillating material and a method for using a tungstate-based scintillating material is provided. In addition, a radiation detector and an imaging device incorporating a tungstate-based scintillating material are provided.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 9, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Juestel, Cornelis Reinder Ronda
  • Patent number: 8908829
    Abstract: Provided is an X-ray imaging apparatus and an X-ray imaging method that offer an alternative for a refraction contrast method. A first scintillator and a second scintillator are used, the first scintillator generating first fluorescent light when X-rays separated by the separating element are incident thereon, and a second scintillator generating second fluorescent light when X-rays separated by the separating element are incident thereon. The second scintillator has a fluorescence emission intensity gradient such that an amount of emitted fluorescent light changes in accordance with a change in a position at which the X-rays are incident.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: December 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masatoshi Watanabe, Taihei Mukaide, Kazuhiro Takada, Kazunori Fukuda
  • Patent number: 8908954
    Abstract: There is provided a method and corresponding device for noise generated by absorption of x-ray photons in an image sensor having a number of pixels. The method is based on identifying (S1) so-called hot pixels affected by absorption of x-rays, and calculating (S2), for each hot pixel, directional gradients in a number of different directions in a pixel neighborhood of the hot pixel. The method further involves selecting (S3), for each hot pixel, at least one direction among those directions having lowest gradient, and determining (S4), for each hot pixel, a replacement value based on neighborhood pixel values in the selected direction(s). For each hot pixel, the value of the hot pixel is then replaced (S5) with the determined replacement value. In this way, noise generated by the absorption of x-ray photons in the image sensor may be reduced, while substantially maintaining the resolution (sharpness) in the image.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: December 9, 2014
    Assignee: Scint-X AB
    Inventor: Olof Svenonius
  • Patent number: 8895937
    Abstract: The present disclosure provides a convertor for X-ray radiography and its manufacturing method and an X-ray detector, wherein the surface of the scintillator facing the X-ray is covered with photonic crystals of a two-dimensional or three-dimensional spatial structure capable of reflecting the visible light facing the photonic crystals generated by the scintillator to increase the intensity of the output light of the scintillator by more than 100%, thus enhancing the image brightness and improving the image resolution, in addition to reducing to a certain extent the interference between pixels due to the ability of the photonic crystals to control the direction of the light being reflected, for example, by controlling the reflecting direction so as to be vertical to the surface of the scintillator, and the manufacturing method and material for the photonic crystals are low in cost without toxicity, enabling it to be used more widely.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dian Song Cao, Lei Cao, Guang Wei Du, Li Rong Ren, Xiao Dong Xu
  • Patent number: 8884236
    Abstract: An apparatus and methods for detecting radiation. A plurality of substantially parallel active collimation vanes are sensitive to the incident radiation for generating at least a first detection signal, and a rear detector detects incident radiation that passes between the substantially parallel active collimation vanes and generates a second detection signal. A processor receives and processes both the first and second detection signals. The active collimator vanes may be enclosed within a light-tight enclosure, and a first photodetector may be provided for detecting scintillation arising at the active collimation vanes, while a second photodetector may be provided for detecting scintillation arising at the rear detector.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 11, 2014
    Assignee: American Science and Engineering, Inc.
    Inventor: Peter J. Rothschild
  • Patent number: 8884240
    Abstract: An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2×2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: November 11, 2014
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Kanai S. Shah, James Christian, Christopher Stapels, Purushottam Dokhale, Mickel McClish
  • Patent number: 8884232
    Abstract: A scintillator receives radiation and produces light. The scintillator is composed of columnar crystals arranged upright. Conical end portions of the columnar crystals are embedded in a resin layer formed on a light detection section. The resin layer, made from a thermosetting resin material, is heated and cured with the end portions embedded therein. Because a refractive index of the resin layer is lower than that of the columnar crystals, average refractive indices of respective layers between the columnar crystals and the light detection section change continuously. The resin layer prevents the end portions from damage and improves efficiency of incidence on the light detection section.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: November 11, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Yasuhisa Kaneko, Haruyasu Nakatsugawa
  • Patent number: 8884239
    Abstract: A detector arrangement providing imaging information at the edge of the scintillator is provided. The detector arrangement provides complete information and improved spatial resolution. SiPMs can be used in place of PMTs in order to provide the geometrical coverage of the scintillator and improved spatial resolution. With such detector arrangements, the spatial resolution can be under 2 mm. Furthermore, the overall thickness of the detector can be substantially reduced and depth of interaction resolution is also improved.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: November 11, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Herfried Wieczorek, Andreas Goedicke, Thomas Frach
  • Patent number: 8877093
    Abstract: A polycrystalline ceramic scintillator body includes a ceramic scintillating material comprising an oxide of gadolinium (Gd) and a second rare earth element (Re). The ceramic scintillating material has a composition, expressed in terms of molar percentage of oxide constituents, that includes greater than fifty-five percent (55%) Gd2O3 and a minority percentage Of Re2O3. The ceramic scintillating material includes an activator.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: November 4, 2014
    Assignees: Saint-Gobain Ceramics & Plastics, Inc., Centre National de la Recherche Scientifique
    Inventors: Brian C. LaCourse, Anne B. Hardy, Hélène Loetitia Rétot, Qiwei Chen, Xiaofeng Peng, Bruno Viana, Morteza Zandi
  • Patent number: 8872119
    Abstract: A scintillation device includes a free-standing ceramic scintillator body that includes a polycrystalline ceramic scintillating material comprising a rare earth element, wherein the polycrystalline ceramic scintillating material is characterized substantially by a cation-deficient perovskite structure. A method of producing a free-standing ceramic scintillator body includes preparing a precursor solution including a rare earth element precursor, a hafnium precursor and an activator (Ac) precursor, obtaining a precipitate from the solution, and calcining the precipitate to obtain a polycrystalline ceramic scintillating material including a rare earth hafnate doped with the activator and having a cation-deficient perovskite structure.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: October 28, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Anne B. Hardy, Qiwei Chen, Xiaofeng Peng, Nathalie Petigny, Bruno Viana, Andrée Kahn-Harari
  • Patent number: 8872120
    Abstract: An imaging device capable of obtaining image data with a small amount of X-ray irradiation is provided. The imaging device obtains an image using X-rays and includes a scintillator and a plurality of pixel circuits arranged in a matrix and overlapping with the scintillator. The use of a transistor with an extremely small off-state current in the pixel circuits enables leakage of electrical charges from a charge accumulation portion to be reduced as much as possible, and an accumulation operation to be performed substantially at the same time in all of the pixel circuits. The accumulation operation is synchronized with X-ray irradiation, so that the amount of X-ray irradiation can be reduced.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki Kurokawa, Takayuki Ikeda
  • Patent number: 8872117
    Abstract: The invention relates to a device (1) for FTIR absorption spectroscopy, having an ATR sensor (5) and at least one ultrasonic transmitter (10) for generating an ultrasonic field in the manner of a standing wave. The ATR sensor (5) and the ultrasonic transmitter (10) are connected to a mounting (4) which is provided for attachment in a wall (2) or cover of a reactor (3) and which is set up to hold the ATR sensor (5) and the ultrasonic transmitter (10) so that they freely project into the interior of the reactor (3) in the mounted state.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: October 28, 2014
    Assignee: Technische Universitaet Wien
    Inventors: Bernhard Lendl, Stefan Radel, Markus Brandstetter
  • Patent number: 8866091
    Abstract: Disclosed is an apparatus and method of acquiring images created by penetration of a radioactive ray. The apparatus includes a scintillator to generate a light signal in response to an irradiated radioactive ray, and to change an advancing direction of the generate light signal, a light receiving unit to receive the light signal whose advancing direction is changed, and a signal processing unit to convert the received light signal into an electrical signal, and acquire an image corresponding to the penetrated irradiated radioactive ray based on the converted electrical signal.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung Su Kim, Young Hun Sung, Jong Ha Lee, Dong-Goo Kang
  • Patent number: 8866095
    Abstract: Provided is a radiographic imaging apparatus capable of obtaining more suitable radiological images by reducing the influence of noise generated at a current detecting section which detects current carried by applying radiation.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 21, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Kumiko Oguma
  • Patent number: 8866096
    Abstract: A radiographic image photographing system and its control device surely correlates radiographing order information with radiographic image data and facilitates radiographing work. A control section of a tag reader reads out inherent information stored in a tag in a radiation image detecting device. A control section of a radiographing operation apparatus receives the inherent information of the radiation image detecting device from the tag and stores it in a storing section. In response to an input from an input operation section, the control section correlates each piece of radiographing order information with a cassette ID of the radiation image detecting device and stores this correlation information in the storing section.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: October 21, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Yoshihiko Eguchi
  • Patent number: 8866099
    Abstract: A projection radiographic imaging apparatus includes an imaging array with imaging pixels formed over an insulating substrate. A scintillator converts radiographic radiation to photoelectric radiation proximate to the imaging array. A dielectric layer disposed between the scintillator and the imaging array has a dielectric constant less than 3.0. A continuous or patterned anti-static layer disposed between the imaging array and the scintillator is connected to one or more conductive traces in the imaging array.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 21, 2014
    Assignee: Carestream Health, Inc.
    Inventors: Timothy J. Tredwell, Gregory N. Heiler
  • Patent number: 8866098
    Abstract: An object is to prevent occurrence of an insensitive zone to radiation in parallel arrangement of multiple units.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: October 21, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kenzo Hayatsu, Mitsutoshi Sugiya, Keisuke Nagura, Shigeru Suzuki
  • Patent number: 8866092
    Abstract: A radiation detection system can include a scintillator that is capable of emitting scintillating light in response to capturing different types of targeted radiation, a photosensor optically coupled to the scintillator, and a control module electrically coupled to the photosensor. The control module can be configured to analyze state information of the radiation detection system, and select a first technique to determine which type of targeted radiation is captured by the scintillator, wherein the first technique is a particular technique of a plurality of techniques to determine which type of targeted radiation was captured by the scintillator, and the selection is based at least in part on the analysis. In an embodiment, the radiation detection system can be used to change from one technique to another in real time or near real time to allow the radiation detection system to respond to changing conditions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: October 21, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Artan Duraj, Peter R. Menge
  • Patent number: 8868154
    Abstract: A front end for an imaging system. The front end comprises at least one magnetically-insensitive high-energy photon detector and an interface for converting an output of the at least one high-energy photon detector to an optical signal and transmitting the optical signal. A receiver is optically coupled to the interface to receive the optical signal and convert the optical signal into a voltage signal.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: October 21, 2014
    Assignee: The Board of Trustees of The Leland Stanford Junior University
    Inventors: Craig S. Levin, Peter D. Olcott