Elemental Carbon Containing Patents (Class 252/502)
  • Patent number: 9384868
    Abstract: There is provided a water-based conductive ink for inkjet recording, the water-based conductive ink enabling formation of highly conductive circuit wiring even by low-temperature firing. A water-based conductive ink for inkjet recording contains metal nanoparticles (X), a polyhydric alcohol (A), and water (B), wherein a polyhydric alcohol represented by the following general formula is used as the polyhydric alcohol (A) (where R represents a hydrogen atom or any one lower alkyl group selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group).
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: July 5, 2016
    Assignee: DIC CORPORATION
    Inventors: Mayoka Tachi, Sunao Yoshihara, Ryuu Koike, Yoshinori Katayama
  • Patent number: 9373849
    Abstract: A carbon catalyst which has high catalytic activity and can achieve high catalyst performance is provided. The carbon catalyst comprises nitrogen. The energy peak area ratio of the first nitrogen atom whose electron in the 1s orbital has a binding energy of 398.5±1.0 eV to the second nitrogen atom whose electron in the 1s orbital has a binding energy of 401±1.0 eV (i.e., the value of (the first nitrogen atom)/(the second nitrogen atom)) of the nitrogen introduced into the catalyst is 1.2 or less.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 21, 2016
    Assignees: National University Corporation Gunma University, Nisshinbo Holdings, Inc.
    Inventors: Seizo Miyata, Masaharu Oshima, Jun-ichi Ozaki, Kazuo Saito, Shogo Moriya, Kyosuke Iida, Takeaki Kishimoto
  • Patent number: 9352968
    Abstract: Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: May 31, 2016
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Harold H. Kung, Xin Zhao, Cary M. Hayner, Mayfair C. Kung
  • Patent number: 9343741
    Abstract: An electrode material of the invention includes an agglomerate formed by agglomerating carbonaceous coated electrode active material particles obtained by forming a carbonaceous coat on surfaces of electrode active material particles at a coating rate of 80% or more, and the carbonaceous coated electrode active material particles include first carbonaceous coated electrode active material particles on which a carbonaceous coat having a film thickness in a range of 0.1 nm to 3.0 nm and an average film thickness in a range of 1.0 nm to 2.0 nm is formed and second carbonaceous coated electrode active material particles on which a carbonaceous coat having a film thickness in a range of 1.0 nm to 10.0 nm and an average film thickness in a range of more than 2.0 nm to 7.0 nm is formed.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: May 17, 2016
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Takao Kitagawa, Tetsuya Nakabeppu
  • Patent number: 9337491
    Abstract: An electrode for a lithium battery, which electrode includes an electrode active material which can charge and discharge lithium ions (A), a carbonaceous conductive additive (B) and a binder (C). The carbonaceous conductive additive contains carbon fiber, the carbon fiber including a mixture of two kinds of carbon fibers having different diameter distributions on a number basis; and the fiber diameter distribution of the carbon fiber in the electrode has one or more maximum values at 5-40 nm and at 50-300 nm, respectively. Also disclosed is a lithium battery using the electrode. The electrode enables production of a lithium battery having a reduced discharge capacity decline.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: May 10, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Yamamoto, Yuusuke Yamada, Takeshi Nakamura
  • Patent number: 9318273
    Abstract: A method for producing activated carbon includes heating a coconut shell carbon precursor at a carbonization temperature effective to form a carbon material, and reacting the carbon material with CO2 at an activation temperature effective to form the activated carbon. The resulting activated carbon can be incorporated into a carbon-based electrode of an EDLC. Such EDLC can exhibit a potential window and thus an attendant operating voltage of greater than 3V.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: April 19, 2016
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Atul Kumar
  • Patent number: 9314777
    Abstract: A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 19, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joshua Kuntz, Christine A. Orme
  • Patent number: 9299526
    Abstract: A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters. This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube “forest” (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 29, 2016
    Assignees: UChicago Argonne, LLC, The Curators of the University of Missouri
    Inventors: Anirudha V. Sumant, Ralu Divan, Chrystian M. Posada, Carlos H. Castano, Edwin J. Grant, Hyoung K. Lee
  • Patent number: 9249342
    Abstract: The subject matter of the present application is a curable adhesive composition having PTC characteristics after curing, containing (i) a reactive binder system, based on an epoxy-resin-component and a curing agent-component, (ii) particles of a carbon modification in a range of 0.01 wt % to 15.0 wt %, based on the total weight of the curable adhesive composition, and (iii) copper powder in a range of 0.5 wt % to 5.0 wt %, based on the total weight of the curable adhesive composition, wherein the reactive binder system comprises>70 wt % of all organic polymers of the adhesive composition.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: February 2, 2016
    Assignee: Henkel AG & Co. KGaA
    Inventors: Giorgio Zaffaroni, Daniela Sicari, Eugen Bilcai
  • Patent number: 9225003
    Abstract: To provide a method for forming a storage battery electrode including an active material layer with high density in which the proportion of conductive additive is low and the proportion of the active material is high. To provide a storage battery having a higher capacity per unit volume of an electrode with the use of a storage battery electrode formed by the formation method. A method for forming a storage battery electrode includes the steps of forming a mixture including an active material, graphene oxide, and a binder; providing a mixture over a current collector; and immersing the mixture provided over the current collector in a polar solvent containing a reducer, so that the graphene oxide is reduced.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 29, 2015
    Assignee: Semiconductor Energy Laboratory Co., LTD.
    Inventor: Mikio Yukawa
  • Patent number: 9209464
    Abstract: A current collector and an electric double layer capacitor including a current collector. The current collector has a conductive layer with an electrode-facing surface and an opposing second surface, each surface having an area, and a textured coating formed over and in contact with at least a majority of the electrode-facing surface.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: December 8, 2015
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Felipe Miguel Joos, James Robert Lim, Kamjula Pattabhirami Reddy, John Earl Tosch
  • Patent number: 9136064
    Abstract: A method for producing activated carbon includes heating a phenolic novolac resin carbon precursor at a carbonization temperature effective to form a carbon material, and reacting the carbon material with CO2 at an activation temperature effective to form the activated carbon. The resulting activated carbon can be incorporated into a carbon-based electrode of an EDLC. Such EDLC can exhibit a potential window and thus an attendant operating voltage of greater than 3V.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: September 15, 2015
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Andrew Fleitz Husted, Xiaorong Liu
  • Patent number: 9099762
    Abstract: A composite phase change material and the method for forming the material is disclosed herein. Thereof, especially a composite phase change material for lithium battery cooling, comprising polyethylene glycol, silica vehicle and composite flame retardant comprising graphite and polymer, wherein the weight ratio of the graphite and polymer is approximately 1:2. The composite phase change material according to the invention has a good stability and a thermal conductivity, a small corrosivity, a high phase transition enthalpy of 150-350 J/g, and a morphological stability during phase change. Moreover, addition of high thermal conductivity material and composite flame retardant ensures good thermal conductivity and excellent flame retardant effect of the phase change material.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: August 4, 2015
    Assignee: Chervon (HK) Limited
    Inventors: Dezhong Yang, Hao Du, Jianjun Shuang
  • Patent number: 9076570
    Abstract: The present invention relates to a polymer-free nano-composite structure containing nanostructured carbon and nanoparticles. Also disclosed are methods of making the polymer-free nano-composite structures. The present invention also relates to a lithium ion battery, a capacitor, a supercapacitor, a battery/capacitor, or a fuel cell containing the polymer-free nano-composite structures of the present invention.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 7, 2015
    Assignee: Rochester Institute of Technology
    Inventors: Ryne P. Raffaelle, Brian J. Landi, Cory D. Cress
  • Patent number: 9076594
    Abstract: Capacitors and methods of making the same are disclosed herein. In one embodiment, a capacitor comprises a structure having first and second oppositely facing surfaces and a plurality of pores each extending in a first direction from the first surface towards the second surface, and each having pore having insulating material extending along a wall of the pore; a first conductive portion comprising an electrically conductive material extending within at least some of the pores; and a second conductive portion comprising a region of the structure consisting essentially of aluminum surrounding individual pores of the plurality of pores, the second conductive portion electrically isolated from the first conductive portion by the insulating material extending along the walls of the pores.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 7, 2015
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Cyprian Emeka Uzoh
  • Patent number: 9039935
    Abstract: The present invention provides a photoelectric conversion material comprising a fullerene derivative represented by the formula C60(R1)5(R2), wherein each R1 independently represents an organic group having a substituent; and R2 represents a hydrogen atom or a substituted or unsubstituted C1-C30 hydrocarbon group. Further, the present invention also provides a photoelectric conversion device having a self-assembled monomolecular film of the photoelectric conversion material, and a solar cell having the photoelectric conversion device.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 26, 2015
    Assignee: Japan Science and Technology Agency
    Inventors: Eiichi Nakamura, Yutaka Matsuo, Katsuhiko Kanaizuka
  • Patent number: 9039938
    Abstract: Coatings are provided containing functionalized graphene sheets and at least one binder. In one embodiment, the coatings are electrically conductive.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: May 26, 2015
    Assignees: The Trustees of Princeton University, VORBECK MATERIALS CORPORATION
    Inventors: John M. Crain, John S. Lettow, Ilhan A. Aksay, Robert K. Prud'Homme, Sibel Korkut
  • Publication number: 20150140333
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like. A method of producing nanofibers is disclosed including providing a plurality of microparticles or nanoparticles such as carbon black particles having a catalyst material deposited thereon, and synthesizing a plurality of nanofibers from the catalyst material on the microparticles or nanoparticles. Compositions including carbon black particles having nanowires deposited thereon are further disclosed.
    Type: Application
    Filed: October 3, 2014
    Publication date: May 21, 2015
    Inventor: Chunming NIU
  • Publication number: 20150140342
    Abstract: Compositions comprising boron chain embedded carbon nanotubes, methods of making, and methods of using are provided. Electroluminescent compositions comprising the same are also provided.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 21, 2015
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Arockiadoss Thevasahayam
  • Patent number: 9034217
    Abstract: The present invention provides a voltage nonlinear resistor containing zinc oxide as a major component, wherein the degree of orientation f(100) of the (100) plane of zinc oxide is 0.40 or more and is represented by the following equation: f(100)=I(100)/(I(100)+I(002)+I(101)), where I(hkl) represents the peak intensity (integral) of a (hkl) plane.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: May 19, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Yamazaki, Toru Hayase, Kenji Morimoto, Shinji Kawasaki
  • Patent number: 9028790
    Abstract: Provided is an aggregate of carbon nanotubes wherein a mixture of 10 mg of aggregate of carbon nanotubes, 30 mg of sodium polystyrene sulfonate and 10 mL of water is subjected to ultrasonic homogenizer treatment, subsequently subjected to centrifugal treatment at 20000 G, then 9 mL of supernatant is sampled, and the content of aggregate of carbon nanotubes in the supernatant is 0.6 mg/mL or more. The aggregate of carbon nanotubes of the present invention can provide a dispersion of an aggregate of carbon nanotubes having a high concentration through very good dispersibility.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: May 12, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Kenichi Sato, Masahito Yoshikawa, Shuko Ikeuchi
  • Publication number: 20150125687
    Abstract: A method for producing a temperature-resistant, electrically conductive coating on a substrate is provided. The method includes at least the steps of providing a binding agent, the binding agent having an inorganically crosslinked, SiO2-containing binding-agent matrix; producing a dispersion of an electrically conductive pigment in the binding agent by mechanical convection, wherein the fraction of electrically conductive pigment amounts to 10 to 40 wt. %, and carbon is used as the electrically conductive pigment; partial, structured printing of the coating material obtained by dispersion onto the substrate; and drying the obtained coating at temperatures in the range of 20 to 250° C. Also provided are preparations for producing an electrically conductive coating on a substrate as well as substrates provided with electrically conductive coatings.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventor: Annelie Gabriel
  • Patent number: 9023251
    Abstract: The present disclosure provides a method for making carbon nanotube slurry. The method includes the following steps. First, a carbon nanotube array is provided on a substrate, the carbon nanotube array comprises a number of carbon nanotubes. Second, the carbon nanotube array is trimmed by a laser to obtain a trimmed carbon nanotube array comprising a plurality of trimmed carbon nanotubes having uniform lengths. Third, the trimmed carbon nanotube array is removed from the substrate to obtain the trimmed carbon nanotubes. Fourth, the trimmed carbon nanotubes are mixed with an inorganic binder and an organic carrier to obtain the carbon nanotube slurry.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: May 5, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Qi Cai, Duan-Liang Zhou, Peng Liu, Shou-Shan Fan
  • Patent number: 9023250
    Abstract: The invention provides a method for decoration of silver onto carbon materials, comprising the following steps: functionalizing a first carbon material and a second material; mixing the functionalized first and second carbon materials into a first mixed solution through an alcohol solution; and mixing a silver solution and the first mixed solution into a second mixed solution.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: May 5, 2015
    Assignee: National Tsing Hua University
    Inventors: Yu-An Li, Nyan-Hwa Tai
  • Patent number: 9017579
    Abstract: Organic gels of resorcinol-formaldehyde type, carbon-based materials of adjusted porosity derived therefrom by pyrolysis. Such materials may be used, in particular, for the production of electrodes.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 28, 2015
    Assignee: Hutchinson
    Inventors: Philippe Sonntag, David Ayme-Perrot, Jean-Michel Simon, Serge Walter
  • Publication number: 20150102266
    Abstract: A boron doped synthetic diamond material which has the following characteristics: a solvent window meeting one or both of the following criteria as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode in a solution containing only deionised water and 0.1 M KNO3 as a supporting electrolyte at pH 6: the solvent window extends over a potential range of at least 4.1 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 38 mA cm?2; and the solvent window extends over a potential range of at least 3.3 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 0.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 16, 2015
    Inventors: Eleni Bitziou, Laura Anne Hutton, Julie Victoria MacPherson, Mark Edward Newton, Patrick Robert Unwin, Nicola Louise Palmer, Timothy Peter Mollart, Joseph Michael Dodson
  • Patent number: 9005481
    Abstract: The invention relates to a method for manufacturing a composite positive electrode active material being a composite of a positive electrode active material and carbon nanotubes. The manufacturing method includes preparing an aqueous solution of a starting material of a positive electrode active material containing a starting material of the positive electrode active material, and an aqueous solution of solubilized carbon nanotubes containing the carbon nanotubes and a solubilizing material that is composed of a water-soluble polymer whose solubilization retention rate of carbon nanotubes does not decrease with rising temperature; and synthesizing a positive electrode active material-carbon nanotube composite by mixing the aqueous solution of a starting material of a positive electrode active material and the aqueous solution of solubilized carbon nanotubes, and performing hydrothermal synthesis.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Yoshida, Hiroki Kubo, Masahiro Iwasaki
  • Publication number: 20150099186
    Abstract: Provided herein are silicon nanocomposite nanofibers and processes for preparing the same. In specific examples, provided herein are nanocomposite nanofibers comprising continuous silicon matrices and nanocomposite nanofibers comprising non-aggregated silicon domains.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 9, 2015
    Applicant: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Nathaniel S. Hansen, Daehwan Cho, Kyoung Woo Kim, Yong Seok Kim
  • Publication number: 20150099214
    Abstract: Certain exemplary embodiments can provide a graphene hybrid composite (GHC). The GHC can be formed between specific nano carbon materials and graphene generated via pyrolysis of solid carbon sources. A Raman spectrum of the GHC can show a major 2D band at approximately 2650 cm?1, a minor D and G band at approximately 1350 cm?1 and approximately 1575 cm?1, and an intensity ratio of 2D band over D band and G band greater than 1.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: DHKGRAPHENOLOGIES LLC
    Inventors: Nguyen C. Khe, Hieu Dinh, Dien Dinh
  • Publication number: 20150099180
    Abstract: Surface-modified carbon hybrid particles may be characterized by a high surface area and a high mesopore content. Surface-modified carbon hybrid particles may be in agglomerated form. Surface-modified carbon hybrid particles may be used, for example, as conductive additives. Dispersions of such compounds in a liquid medium in the presence of a surfactant may be used, for example, as conductive coatings. Polymer compounds filled with the surface-modified carbon hybrid particles may be formed. Surface-modified carbon hybrid particles may be used, for example, as carbon supports.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 9, 2015
    Inventors: Dario Cericola, Giovanni Juri, Simone Zurcher, Michael E. Spahr
  • Patent number: 8999200
    Abstract: A polymeric composite comprises a polymeric resin; an electrically conductive filler; and a polycyclic aromatic compound, in an amount effect to increase the electrical conductivity of the polymeric composition relative to the same composition without the polycyclic aromatic compound. The addition of the polycyclic aromatic compound in addition to a conductive filler imparts improved electrical and mechanical properties to the compositions.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: April 7, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Sumanda Bandyopadhyay, Darren Clark, Soumyadeb Ghosh
  • Patent number: 8999202
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 7, 2015
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Publication number: 20150093648
    Abstract: A composite including: silicon (Si); a silicon oxide of the formula SiOx, wherein 0<x<2; and a graphene disposed on the silicon oxide.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Inhyuk SON, Hyunjae SONG, Inyong SONG, Jaeman CHOI, Seungsik HWANG, Junhwan KU, Jonghwan PARK, Yeonji CHUNG
  • Publication number: 20150093642
    Abstract: Anode active materials, anodes, and batteries are provided. In one embodiment, an anode active material includes particles consisting essentially of a material selected from the group consisting of silicon and an alloy of silicon. An average degree of circularity of the particles is 90% or less.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Inventors: Kenichi Kawase, Tomoo Takada, Kensuke Yamamoto
  • Patent number: 8992799
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: March 31, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8992681
    Abstract: Disclosed is a system or method for efficiently manufacturing construction materials using carbon nanomaterials. In one or more embodiments, the method comprises creating a blend of carbon nanomaterials, wherein the blend of the carbon nanomaterials includes at least one of a carbon nanofiber, a carbon nanotube, a graphite nanoparticle and an amorphous carbon. The method also includes dispersing the carbon nanomaterials and adding a plasticizer and a sand to the dispersed mixture within 3 minutes. The method also includes adding at least one of water and a cement binding agent to the dispersed mixture after the plasticizer and the sand have been added.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: March 31, 2015
    Assignee: King Abdulaziz City for Science and Technology
    Inventors: Mohammed A. Binhussain, Turki Saud Mohammed Al-Saud, Siarhei Zhdanok, Andrei Krauklis, Petr Samtsou, Eduard Batsianouski
  • Patent number: 8992801
    Abstract: The present invention relates to a novel electroactive material which comprises a graphitic carbon phase C and a (semi)metal phase and/or a (semimetal) oxide phase (MOx phase) and also to the use of the electroactive material in anodes for lithium ion cells. The invention further relates to a process for producing such materials. The electroactive material comprises: a) a carbon phase C; b) at least one MOx phase, where M is a metal or semimetal, x is from 0 to <k/2, where k is the maximum valence of the metal or semimetal. In the electroactive material of the invention, the carbon phase C and the MOx phase form essentially co-continuous phase domains, with the average distance between two neighboring domains of identical phases being not more than 10 nm, in particular not more than 5 nm and especially not more than 2 nm.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: March 31, 2015
    Assignee: BASF SE
    Inventors: Hannah Maria König, Kirill Bramnik, Arno Lange, Phillip Hanefeld
  • Patent number: 8986577
    Abstract: Disclosed is a silicon-carbon composite for a negative active material of a lithium secondary battery, including carbon nanofibers and silicon particles, wherein the silicon particles are coated with amorphous silica. In the silicon-carbon composite of the invention, silicon is provided in the form of a composite with carbon fibers and the surface of silicon particles is coated with amorphous silica, thereby reducing volume expansion upon lithium ion insertion and exhibiting superior ionic conductivity and electrical conductivity to thus maintain high capacity, and also, amorphous silica-coated silicon is positioned inside the carbon fibers having a one-dimensional structure, thus ensuring a large specific surface area and a stable composite structure.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 24, 2015
    Assignee: Dongguk University Industry-Academic Cooperation Foundation
    Inventors: Yong-Mook Kang, Young-Min Lee, Kyeong-Se Song
  • Patent number: 8986576
    Abstract: A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: March 24, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory O'Bryan, Jack L. Skinner, Andrew Vance, Elaine Lai Yang, Thomas Zifer
  • Patent number: 8986836
    Abstract: Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Ohio University
    Inventors: Anima B. Bose, Junbing Yang
  • Publication number: 20150075326
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Patent number: 8980977
    Abstract: The present invention relates to pigment granules which are distinguished by the fact that they are based on a support material, where the support material is coated with one or more flake-form effect pigments by means of an adhesion promoter. The pigment granules according to the invention are preferably used for the pigmentation of application media, in particular paints, plasters, lacquers, powder coatings and plastics, and in particular as scatter and effect granules, for example for the decoration of wallcoverings.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 17, 2015
    Assignee: Merck Patent GmbH
    Inventors: Thomas Rathschlag, Carsten Griessmann
  • Patent number: 8980137
    Abstract: A composite for providing electromagnetic shielding including a plurality of nanotubes; and a plurality of elongate metallic nanostructures.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Patent number: 8980136
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 17, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Publication number: 20150072145
    Abstract: Porous silica-carbon composites are obtained by mixing fine particulate carbon dispersed in water by a surfactant, alkali metal silicate aqueous solution, and mineral acid so as to produce co-dispersion in which silica hydrosol, produced by reaction of the alkali metal silicate and the mineral acid, and the fine particulate carbon are uniformly dispersed, and gelling silica hydrosol, contained in the co-dispersion, and making the co-dispersion into porous bodies. The porous silica-carbon composites are prepared so as to have specific surface area from 20 to 1000 m2/g, pore volume from 0.3 to 2.0 ml/g, and average pore diameter from 2 to 100 nm.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 12, 2015
    Inventors: Mitsuhiro Kamimura, Kazunori Nobuhara
  • Publication number: 20150069305
    Abstract: A doped, passivated graphene nanomesh includes a graphene nanomesh, a plurality of nanoholes formed in a graphene sheet, and a plurality of carbon atoms which are formed adjacent to the plurality of nanoholes; a passivating element bonded to the plurality of carbon atoms; and a dopant bonded to the passivating element, the dopant comprising one of an electron-donating element for making the graphene nanomesh an n-doped graphene nanomesh, and an electron-accepting element for making the graphene nanomesh a p-doped graphene nanomesh.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Ahmed Abou-Kandil, Ahmed Maarouf, Glenn John Martyna, Hisham Mohamed, Dennis M. Newns
  • Patent number: 8974706
    Abstract: Provided is a composition comprising a polymeric material, a filler material dispersed in the polymeric material, the filler material comprising inorganic particles and a discontinuous arrangement of conductive material wherein at least a portion of the conductive material is in durable electrical contact with the inorganic particles, and conductive material dispersed in the polymeric material.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: March 10, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Nanayakkara L. D. Somasiri, Jimmie R. Baran, Jr., Andrew C. Lottes, Ge Jiang, Badri Veeraraghavan, Paul V. Huynh, Dipankar Ghosh
  • Publication number: 20150060736
    Abstract: Certain exemplary embodiments can provide a system comprising a hybrid composite. The hybrid composite can comprise tubular carbon and graphene produced via pyrolysis of a milled solid carbon source under an unoxidizing environment. When analyzed via X-ray diffraction, the hybrid composite can generate peaks at two theta values of approximately 26.5 degrees, approximately 42.5 degrees, and/or approximately 54.5 degrees.
    Type: Application
    Filed: September 29, 2012
    Publication date: March 5, 2015
    Inventors: Nguyen C. Khe, Hieu Dinh
  • Publication number: 20150060721
    Abstract: (Problem) In conventional method for producing artificial graphite, in order to obtain a product having excellent crystallinity, it was necessary to mold a filler and a binder and then repeat impregnation, carbonization and graphitization, and since carbonization and graphitization proceeded by a solid phase reaction, a period of time of as long as 2 to 3 months was required for the production and cost was high and further, a large size structure in the shape of column and cylinder could not be produced. In addition, nanocarbon materials such as carbon nanotube, carbon nanofiber and carbon nanohorn could not be produced.
    Type: Application
    Filed: November 4, 2014
    Publication date: March 5, 2015
    Applicant: INCUBATION ALLIANCE, INC.
    Inventors: Kazuo MURAMATSU, Masahiro TOYODA
  • Patent number: 8968604
    Abstract: Disclosed is a single-walled carbon nanotube dispersion liquid containing a single-walled carbon nanotube, a fullerene and a solvent.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 3, 2015
    Assignee: Kuraray Co., Ltd.
    Inventor: Takahiro Kitano