Electrolytes For Electrical Devices (e.g., Rectifier, Condenser) Patents (Class 252/62.2)
  • Patent number: 8512900
    Abstract: A nonaqueous electrolytic solution secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolytic solution having an electrolyte salt dissolved in a nonaqueous solvent. The nonaqueous solvent contains 80% by mass or more of a cyclic carbonate which does not have a carbon-carbon multiple bond and which does not contain a halogen and contains a cyclic sulfone compound having any one of structures represented by the following formulae (1) to (4): wherein each of R1 and R2 represents CmH2m where 1?m?4. Also, each of R3 to R10 independently represents CnH2n+1 where 1?n?4.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: August 20, 2013
    Assignee: Sony Corporation
    Inventor: Atsumichi Kawashima
  • Publication number: 20130206234
    Abstract: The object of the present invention is to provide an electrolyte for a photoelectric conversion element capable of obtaining a dye-sensitized solar cell having excellent stability. The electrolyte for a photoelectric conversion element of the present invention is an electrolyte for a photoelectric conversion element that contains an organic salt compound (A) having a tertiary or quaternary cation and an organically modified lamellar double hydroxide (B).
    Type: Application
    Filed: October 12, 2011
    Publication date: August 15, 2013
    Applicant: THE YOKOHAMA RUBBER CO., LTD.
    Inventor: Tsukasa Maruyama
  • Publication number: 20130207019
    Abstract: A method of forming an electrolyte solution involves combining ammonium tetrafluoroborate and spiro-bi-pyrrolidinium bromide in a liquid solvent to form spiro-bi-pyrrolidinium tetrafluoroborate and an ammonium halide. The ammonium halide precipitate is removed from the solvent to form an electrolyte solution. The reactants can be added step-wise to the solvent, and the method can include using a stoichiometric excess of the ammonium tetrafluoroborate to form a substantially halide ion-free electrolyte solution.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Inventors: Kishor Purushottam Gadkaree, Satyanarayana Kodali, Obiefuna Chukwuemeka Okafor, Shivari Rao Polasani
  • Publication number: 20130206235
    Abstract: An object of the present invention is to provide an electrolyte for a photoelectric conversion element that can achieve superior moisture resistance, and a photoelectric conversion element and a dye-sensitized solar cell using the electrolyte. The electrolyte for a photoelectric conversion element of the present invention includes an organic solvent (A) and a lamellar clay mineral (B). The organic solvent (A) has a boiling point of 150° C. or higher, and a relative dielectric constant of 20 or higher.
    Type: Application
    Filed: October 28, 2011
    Publication date: August 15, 2013
    Applicant: THE YOKOHAMA RUBBER CO., LTD.
    Inventor: Tsukasa Maruyama
  • Publication number: 20130202971
    Abstract: Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li3OA, Li(3-x)Mx/2OA, Li(3-x)Nx/3OA, or LiCOXzY(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 8, 2013
    Inventors: Yusheng Zhao, Luc Lous Daemen
  • Patent number: 8501356
    Abstract: An additive typified by tris(trimethylsilyl)phosphate, tris(trimethylsilyl)borate, and tetrakis(trimethylsiloxy)titanium (Chem. 3) are applied to a nonaqueous electrolyte containing a chain carbonate and/or a chain carboxylate as a main solvent (contained at a ratio of 70 volume % or higher). It is preferable that 0?a<30 is satisfied, in which “a” denotes the volume of a cyclic carbonate among carbonates having no carbon-carbon double bond in the entire volume, defined as 100, of the carbonates having no carbon-carbon double bond and chain carboxylates in a nonaqueous solvent contained in the nonaqueous electrolyte (0<a<30 in the case no chain carboxylate is contained).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 6, 2013
    Assignee: GS Yuasa International Ltd.
    Inventors: Kazusa Ohkubo, Koji Sukino, Shigeki Yamate, Suguru Kozono, Yoshihiro Katayama, Toshiyuki Nukuda
  • Publication number: 20130194720
    Abstract: Activated carbons having improved volumetric capacitance and double layer capacitors including these activated carbons are described herein.
    Type: Application
    Filed: December 17, 2012
    Publication date: August 1, 2013
    Applicant: CALGON CARBON CORPORATION
    Inventor: CALGON CARBON CORPORATION
  • Publication number: 20130189589
    Abstract: A solid polymer electrolyte composition is made by hydrolyzing cellulose in a dissolution media to form a first mixture; then combining said first mixture with an antisolvent to form a precipitate; and then (in any order) separating said precipitate from excess antisolvent and excess dissolution media; optionally adjusting or neutralizing the pH of said precipitate; optionally washing said precipitate with water; combining said precipitate with an electrolyte salt and a hydrophilic polymer to form a wet polymer electrolyte composition; and then drying said wet polymer electrolyte composition to produce a solid polymer electrolyte composition. Solid polymer electrolyte compositions produced by the process, along with films formed therefrom and devices containing the same, are also described.
    Type: Application
    Filed: April 18, 2012
    Publication date: July 25, 2013
    Inventors: Raed Hashaikeh, Yarjan Abdul Samad, Ali Asghar, Boor Singh Lalia
  • Patent number: 8492034
    Abstract: A battery using an electrolyte with which favorable ion conductivity is able to be secured at low temperature is provided. A solid electrolyte is provided between a cathode in which a cathode active material layer is formed on a cathode current collector and an anode in which an anode active material layer is formed on an anode current collector. The electrolyte contains carbon cluster such as fullerene and an electrolyte salt such as a lithium salt. Thereby, compared to an electrolyte composed of a polymer compound such as polyethylene oxide and a lithium salt, lowering of ion conductivity is inhibited at low temperature.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: July 23, 2013
    Assignee: Sony Corporation
    Inventors: Kazumasa Takeshi, Hiroyuki Morioka
  • Patent number: 8488300
    Abstract: A supercapacitor includes a first electrode, a second electrode, and a solid-state polymer electrolyte. The first electrode and the second electrode are spaced from each other and immersed in the solid-state polymer electrolyte. The first and second electrode includes a carbon nanotube structure and an electrically conductive polymer layer. The carbon nanotube structure includes a number of carbon nanotubes and a number of micropores defined between adjacent two carbon nanotubes. The electrically conductive polymer layer coats surfaces of the number of carbon nanotubes.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: July 16, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chui-Zhou Meng, Chang-Hong Liu, Shou-Shan Fan
  • Publication number: 20130175899
    Abstract: Paste which is prepared by any solid concentration and is excellent in terms of handleability, applicability, and storage stability; an electrolyte film or electrode film which is an even and highly flexible coating film formed in a desired thickness from the paste through a few repetitions of an application/drying step; and a polymer transducer which can be industrially and economically produced and shows excellent performance. The paste comprises: a solid polyelectrolyte (A) consisting of a block copolymer containing; a polymer block (a-1) which is represented by chemical formula (1) and a polymer block (a-2) which has substantially no ionic group and is rubbery at room temperature; an organic solvent (B) having a boiling point at 150° C. or higher; and non-dissociable particles (C) which are insoluble in the organic solvent (B) and have a major-axis length of 1-100 ?m and an aspect ratio of 5 or less.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 11, 2013
    Applicant: KURARAY CO., LTD.
    Inventors: Toshinori Kato, Katsuei Takahashi, Takashi Yamashita
  • Patent number: 8480917
    Abstract: A solid electrolyte polymer including a cross-linked polyvinylidene fluoride (PVDF)-based polymer, and a polymer actuator including the cross-linked PVDF-based polymer and an electrolytic material.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 9, 2013
    Assignees: Samsung Electronics Co., Ltd., Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jong-oh Kwon, Seung-tae Choi, Young-kwan Lee, Ja-Choon Koo, Su-jin Park
  • Patent number: 8481206
    Abstract: Provided are an electrolytic solution for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery each of which not only has heat resistance enough to resist reflow soldering but also can maintain the discharge capacity of the battery even in a low-temperature environment. The nonaqueous electrolyte secondary battery is provided with an electrolytic solution 50 including a solute and a solvent containing a polyethylene glycol dialkyl ether and an ethylene glycol dialkyl ether, a positive electrode 12, a negative electrode 26, and a separator 30 formed of glass fibers and placed between the positive electrode 12 and the negative electrode 26.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 9, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Takumi Sawayama, Masaaki Naito, Tsuneaki Tamachi, Kensuke Tahara, Shunji Watanabe
  • Publication number: 20130170103
    Abstract: The present invention provides an electrolyte material formulation comprising: (a) a monomer of formula (I) (b) a monomer of formula (II) and (c) a polymerizable compound, wherein A, X, B1, B2, R1 to R3, q and w are defined as those recited in the specification, and the monomer (b) is in an amount of about 1 part by weight to about 800 parts by weight and the polymerizable compound (c) is in an amount of about 1 part by weight to about 10000 parts by weight based on 100 parts by weight of the monomer (a). The present invention further provides an electrolytic material composition obtained by the polymerization of the aforementioned electrolytic material formulation. The electrolytic material composition can be applied to a solid electrolyte capacitor.
    Type: Application
    Filed: December 18, 2012
    Publication date: July 4, 2013
    Applicants: GEMMY ELECTRONIC CO., LTD., ETERNAL CHEMICAL CO., LTD.
    Inventors: ETERNAL CHEMICAL CO., LTD., GEMMY ELECTRONIC CO., LTD.
  • Publication number: 20130170102
    Abstract: An electrolytic material formulation and a polymer polymerized therefrom are provided. The formulation includes: (a) a monomer of formula (I); and (b) a monomer of formula (II), wherein, A, X, B1, B2, R1 to R3, q and w are defined as recited in the specification, and the amount of monomer (b) is about 1 part by weight to about 800 parts by weight per 100 parts by weight of monomer (a). The polymer is useful as an electrolytic material of a solid capacitor.
    Type: Application
    Filed: May 23, 2012
    Publication date: July 4, 2013
    Inventor: Shinn-Horng Chen
  • Patent number: 8475676
    Abstract: Electrolyte for use in an energy storage device such as a capacitor or supercapacitor which comprises a solvent (preferably propionitrile) and an ionic species (preferably methyltriethylammonium tetrafluoroborate). The electrolytes provide a low ESR rise rate, a high voltage and permit operation over a wide range of temperatures, which makes them beneficial for use in a range of energy storage devices such as digital wireless devices, wireless LAN devices, mobile telephones, computers, electrical or hybrid electrical vehicles.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: July 2, 2013
    Assignee: CAP-XX Limited
    Inventors: Phillip Brett Aitchison, Hung Chi Nguyen
  • Publication number: 20130161555
    Abstract: Provided are an additive for an electrolytic composition which can suppress the decrease of a short-circuit current and improve an open circuit voltage as compared to the case when conventional 4-TBpy is used as an additive for an electrolytic composition, and an electrolytic composition using this additive and a dye-sensitized solar cell. The additive for an electrolytic composition for use in a dye-sensitized solar cell contains a pyridine derivative having a pyridine ring into which an alkylsilyl group is introduced, and it is preferable that this pyridine derivative has an alkylsilyl group at the 4-position of the pyridine ring, and it is more preferable that the pyridine derivative is 4-(trimethylsilyl)pyridine.
    Type: Application
    Filed: September 5, 2011
    Publication date: June 27, 2013
    Applicant: ADEKA CORPORATION
    Inventors: Minoru Hanaya, Kenji Kakiage, Masafumi Unno, Toru Yano, Kensaku Akimoto, Koichi Sakamaki
  • Publication number: 20130163145
    Abstract: An electrochemical energy storage system includes a positive electrode, a negative electrode disposed proximally to and not in contact with the positive electrode, and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode are immersed in the non-aqueous electrolyte, and a case is presented in the energy storage system to accommodate the non-aqueous electrolyte, the positive electrode, and the negative electrode. The positive electrode has a porous matrix having a plurality of micrometer sized pores and nanostructured metal oxides, wherein the porous matrix is a 3-dimensional (3D) mesoporous metal or a 3D open-structured carbonaceous material, and the nanostructured metal oxides are coated inside the plurality of pores of the porous matrix. The non-aqueous electrolyte includes organic salts having acylamino group and lithium salts characterized as LiX, wherein Li is lithium and X comprises ClO4?, SCN—, PF6?, B(C2O4)2?, N(SO2CF3)2?, CF3SO3?, or the combination thereof.
    Type: Application
    Filed: May 24, 2012
    Publication date: June 27, 2013
    Inventors: Ming Jay DENG, Jeng Kuei Chang, Jin Ming Chen, Kueih Tzu Lu
  • Patent number: 8472165
    Abstract: The object of the present invention is to provide a condenser that exhibits excellent conductivity of the solid electrolyte layer, and has a low ESR, a high degree of heat resistance, and a high withstand voltage. A condenser of the present invention includes an anode composed of a valve metal, a dielectric layer formed by oxidation of the surface of the anode, and a solid electrolyte layer formed on the surface of the dielectric layer, wherein the solid electrolyte layer contains a ?-conjugated conductive polymer, a polyanion, and an amide compound.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: June 25, 2013
    Assignee: Shin-Etsu Polymer Co., Ltd.
    Inventors: Tailu Ning, Kazuyoshi Yoshida, Yasushi Masahiro, Sou Matsubayashi, Rika Abe, Mitsuaki Negishi
  • Publication number: 20130157172
    Abstract: Provided is an ion-conducting material, comprising, as a composition in terms of mol o, 15 to 80% of P2O5, 0 to 70% of SiO2, and 5 to 35% of R2O, which represents the total content of Li2O, Na2O, K2O, Rb2O, Cs2O, and Ag2O.
    Type: Application
    Filed: September 5, 2011
    Publication date: June 20, 2013
    Inventors: Tetsuo Yazawa, Yusuke Daiko, Takeshi Yamada, Hironori Takase, Hiroki Yamazaki
  • Publication number: 20130146143
    Abstract: An object of the present invention is to provide an electrolyte for a photoelectric conversion element that can achieve superior moisture resistance. The electrolyte for a photoelectric conversion element of the present invention is an electrolyte for a photoelectric conversion element which contains an organic salt compound (A) and a lamellar clay mineral (B), wherein the above-mentioned organic salt compound (A) contains more than 50 mass %, in terms of cationic weight, of an organic salt compound (a1) having a specific cation.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 13, 2013
    Applicant: THE YOKOHAMA RUBBER CO., LTD.
    Inventor: Tsukasa Maruyama
  • Patent number: 8460831
    Abstract: The present invention relates to paste-like masses that can be used in electrochemical elements, comprising a heterogeneous mixture of (A) a matrix containing or comprising at least one organic polymer, precursors thereof, or prepolymers thereof, (B) an electrochemically activatable inorganic or largely inorganic liquid that does not dissolve the matrix or essentially does not dissolve the matrix, and, if required, (C) a powdery solid that is essentially inert relative to the electrochemically activatable liquid.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: June 11, 2013
    Assignee: Leclanche' SA
    Inventors: Peter Birke, Gerold Neumann
  • Patent number: 8460830
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same. The electrolyte includes a lithium salt, trialkylsilyl(meth)acrylate compound represented by the following Chemical Formula 1, a halogenated carbonate compound, and an organic solvent. In the above Chemical Formula 1, R1 is hydrogen or methyl, and R2 to R4 are the same or different and one selected from C1 to C6 alkyl.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 11, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Sung Kim, Na-Rae Park, Su-Hee Han, Jin-Hyunk Lim, Mi-Hyeun Oh
  • Patent number: 8460581
    Abstract: The present invention relates to imidazole derivatives and their use as dopants for doping an organic semiconductor matrix material, organic semiconductor materials and electronic or optoelectronic structural elements.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: June 11, 2013
    Assignee: Novaled AG
    Inventors: Horst Hartmann, Olaf Zeika, Martin Ammann, Rene Dathe
  • Publication number: 20130143779
    Abstract: An ionic compound is represented by formula (1): AM(OY1)(OY2)(OY3)(OY4). A is a group 1 element. M is a group 13 element. Y1 is one selected from an oligoalkylene ether group, an oligoalkylene thioether group, and an oligoalkylene amino group and includes an electron donating group on carbon that is located in one of ?-? positions with respect to oxygen atom adjacent to M. Y2, Y3, and Y4 are the same each other or different from each other or cross-linked to each other. Y2, Y3, and Y4 are each any one of an alkyl group, an alkyl group with a fluorinated terminal, an aryl group, and one selected from the group consisting of an oligoalkylene ether group, an oligoalkylene thioether group, and an oligoalkylene amino group and including an electron donating group on carbon that is located in one of ?-? positions with respect to oxygen atom adjacent to M.
    Type: Application
    Filed: September 21, 2011
    Publication date: June 6, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventor: Shin-ichi Ogata
  • Patent number: 8455142
    Abstract: A non-aqueous electrolyte can suppress decomposition of a solvent, improve the cycle life of a secondary battery, suppress the rise of resistance of a secondary battery and improve the capacity maintenance ratio of a secondary battery.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 4, 2013
    Assignee: NEC Energy Devices, Ltd.
    Inventors: Hitoshi Ishikawa, Yasutaka Kono, Koji Utsugi, Yoko Hashizume, Shinako Kaneko, Hiroshi Kobayashi
  • Patent number: 8455143
    Abstract: A non-aqueous electrolyte solution for a lithium ion secondary battery includes a lithium salt and an organic solvent. The organic solvent includes a carbonate compound, a linear ester compound and a linear ester decomposition inhibitor. This non-aqueous electrolyte solution restrains swelling while improving low temperature charging/discharging characteristics of the secondary battery in comparison to a conventional electrolyte since it contains the linear ester compound and the linear ester decomposition inhibitor. The non-aqueous electrolyte solution may be used in making a lithium ion secondary battery.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 4, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Ho-Chun Lee, Jong-Ho Jeon, Jeong-Ju Cho
  • Patent number: 8455586
    Abstract: A copolymeric gelator includes a minor monomeric unit; and a major acrylonitrile (AN) monomeric unit copolymerized with the minor monomeric unit to provide a copolymer that is soluble in a solvent comprised of 1,2-dimethyl-3-propylimidazolium iodide and 3-methoxypropionitrile. The major acrylonitrile (AN) monomeric units have good ionic conductivity and coordinating sites for lithium ions to be dissolved with a liquid-electrolytic solvent. The minor monomeric units may be selected among vinyl acetate, allyl acetate, styrene, acrylamide and a combination thereof. The gelator and a liquid-electrolytic solvent may be used to produce a gel electrolyte.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: June 4, 2013
    Assignee: National Cheng Kung University
    Inventors: Yuh-Lang Lee, Ching-Lun Chen
  • Patent number: 8451584
    Abstract: A solid state energy storage device has two electrodes, a membrane separator and a solid electrolyte having a substantially solid solvent, a salt and a mediator. The energy storage device stores electric charge by both Faradaic and non-Faradaic systems. The energy storage device may include activated carbon mixed with the electrolyte and sonicated to provide connection between the activated carbon and the mediator. The energy storage device is hot pressed to increase conductivity. The two electrodes may be asymmetric in amount of reduced and oxidized species of mediator.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 28, 2013
    Assignee: University of Miami
    Inventors: Xiangyang Zhou, Juanjuan Zhou, Azzam N. Mansour
  • Patent number: 8440342
    Abstract: Cathode materials for use in thermal batteries are disclosed. The cathode material includes a primary active material and an amount of a bi-metal sulfide such as CuFeS2. Batteries (e.g., thermal batteries) that contain such cathode materials are also disclosed.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 14, 2013
    Assignee: Eaglepicher Technologies, LLC
    Inventors: Geoffrey Swift, Charles Lamb
  • Publication number: 20130115520
    Abstract: The present invention relates to a nonaqueous electrolytic solution which can improve the electrochemical characteristics in a broad temperature range and an electrochemical element produced by using the same. Provided are (1) a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent, which comprises an organic tin compound represented by the specific formula in an amount of 0.001 to 5% by mass of the nonaqueous electrolytic solution and (2) an electrochemical element comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent, wherein the above nonaqueous electrolytic solution is the nonaqueous electrolytic solution of (1) described above.
    Type: Application
    Filed: July 22, 2011
    Publication date: May 9, 2013
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Kei Shimamoto
  • Patent number: 8435679
    Abstract: Provide are fluorinated cyclic and acyclic carbonate solvent compositions such as various fluorine substituted 1,3-dioxolane-2-one compounds and fluorine substituted 1,3-dioxane-2-one compounds, which are useful as electrolyte solvents for lithium ion batteries.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 7, 2013
    Assignee: 3M Innovative Properties Counsel
    Inventors: William M. Lamanna, Michael J. Bulinski, Michael G. Costello, Jeffrey R. Dahn, Richard M. Flynn, Yadong Wang, Jing Li, Lee Moshurchak
  • Publication number: 20130109787
    Abstract: The present invention provides an organic/inorganic compositive dispersant and a method for producing the same. The compositive dispersant comprises a complex of inorganic clay and an organic surfactant. The compositive dispersant is produced by reacting inorganic clay with the organic surfactant in a solvent to generate a complex. The inorganic clay is layered or platelet. The organic surfactant is an anionic surfactant such as alkyl sulfates, or a nonionic surfactant such as octylphenol polyethoxylate and polyoxyethylene alkyl ether. The compositive dispersant may be used to produce electrolytes of a solar cell or to increase the hardness of an epoxy resin.
    Type: Application
    Filed: December 23, 2012
    Publication date: May 2, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventor: NATIONAL TAIWAN UNIVERSITY
  • Patent number: 8431266
    Abstract: The invention relates to a bilayer polymer electrolyte for a lithium battery. The electrolyte comprises the layers N and P, each composed of a solid solution of an Li salt in a polymer material, the Li salt being the same in both layers, the polymer material content being at least 60% by weight, and the lithium salt content being from 5 to 25% by weight. The polymer material of the layer P contains a solvating polymer and a nonsolvating polymer, the weight ratio of the two polymers being such that the solvating polymer forms a continuous network. The polymer material of the layer N is composed of a solvating polymer and optionally a nonsolvating polymer, the weight ratio of the two polymers being such that the solvating polymer forms a continuous network, and the nonsolvating polymer does not form a continuous network.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: April 30, 2013
    Assignee: Batscap
    Inventor: Marc Deschamps
  • Publication number: 20130100585
    Abstract: The present invention provides an electroconductive polymer suspension for providing an electroconductive polymer material with a high electroconductivity and a method for producing the same, and particularly provides a solid electrolytic capacitor with a low ESR and a method for producing the same. It includes a first step of carrying out chemical oxidative polymerization of a monomer providing an electroconductive polymer by using an oxidant in a solvent containing a first dopant including an organic acid or a salt thereof to synthesize an electroconductive polymer; a second step of purifying the electroconductive polymer; a third step of adding a second dopant, mixing an oxidant, subsequently adding a third dopant, and further mixing an oxidant in an aqueous solvent containing the purified electroconductive polymer; and a fourth step of carrying out an ion-exchange treatment to the mixture liquid obtained by the third step to obtain an electroconductive polymer suspension.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 25, 2013
    Applicant: NEC Tokin Corporation
    Inventor: NEC Tokin Corporation
  • Patent number: 8426542
    Abstract: There is provided an oxidant and dopant which can produce a conductive polymer. The conductive polymer can be used in a solid electrolyte capacitor as solid electrolyte. The solid electrolyte capacitor can be provided with improved breakdown voltage and voltage resistance, as well as less generation of the defects due to leak current. There is provided an oxidant and dopant solution for conductive polymer production including an oxidant and dopant for an organic ferric sulfonate, and an alcohol with a carbon number of 1 to 4. The oxidant and dopant solution further includes a compound with a glycidyl group, or its ring-opened compound. Faborably, a polyalcohol is further added. Using the oxidant and dopant solution, a thiophene or its derivative is subject to an oxidation polymerization to prepare a conductive polymer, which can be used as solid electrolyte of a solid electrolyte capacitor.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 23, 2013
    Assignee: Tayca Corporation
    Inventors: Ryosuke Sugihara, Yuhei Tsurumoto
  • Publication number: 20130092866
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 18, 2013
    Inventors: Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Patent number: 8420265
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery that includes a lithium salt, a phosphine compound having at least one trialkylsilyl group and organic solvent, and a rechargeable lithium battery including the electrolyte. The phosphine compound may be tris(trialkylsilyl)phosphine wherein the alkyl groups are the same or different and are each independently selected from C1 to C6 alkyl.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 16, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Mi-Hyeun Oh, Jin-Sung Kim, Na-Rae Park, Su-Hee Han, Jin-Hyunk Lim
  • Patent number: 8415056
    Abstract: There is provided a non-aqueous electrolytic solution assuring good solubility of an electrolyte salt and having enough cell characteristics (charge and discharge cycle characteristic, discharge capacity, and the like), and the non-aqueous electrolytic solution comprises a solvent for dissolving an electrolyte salt comprising (A) at least one fluorine-containing solvent selected from the group consisting of fluorine-containing ethers and fluorine-containing carbonates, (B) a non-fluorine-containing cyclic carbonate and (C) a chain ester represented by the formula (C): R1COOR2, wherein R1 is an alkyl group having 2 to 4 carbon atoms; R2 is an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group having 1 to 4 carbon atoms, and (II) an electrolyte salt.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 9, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Hitomi Nakazawa, Hideo Sakata, Michiru Kagawa, Akiyoshi Yamauchi
  • Publication number: 20130082542
    Abstract: An intermediate layer of polyurethane containing an electrolyte in a high concentration can be produced with good productivity and an actuator element having high generative force is provided. An actuator has a pair of electrode layers and an intermediate layer disposed between the pair of electrode layers and containing an electrolyte and polyurethane, in which the actuator deforms when a voltage is applied between the electrode layers, the content of the electrolyte in the intermediate layer is 60 wt % or more and 300 wt % or lower based on the polyurethane, and the polyurethane is obtained by a reaction of at least a compound represented by General Formula (1) and a compound represented by General Formula (2).
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tetsuo Hino, Jun Yamamoto, Canon Kabushiki Kaisha
  • Patent number: 8410283
    Abstract: An electrolyte additive is selected from N-alkyl benzimidazole derivatives and is applicable to dye-sensitized solar cells. Accordingly, the electrolyte additive can be added to electrolyte at low concentration, and loss of function due to crystallization after long-term use can be prevented; in addition, short circuit photocurrent density and solar energy-to-electricity conversion efficiency of solar cells incorporating the electrolyte additive can be increased.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: April 2, 2013
    Assignee: National Taipei University of Technology
    Inventors: Sheng-Tung Huang, Chung-Kuang Yang
  • Patent number: 8409746
    Abstract: Disclosed is an organic/inorganic composite porous film comprising: (a) inorganic particles; and (b) a binder polymer coating layer formed partially or totally on surfaces of the inorganic particles, wherein the inorganic particles are interconnected among themselves and are fixed by the binder polymer, and interstitial volumes among the inorganic particles form a micropore structure. A method for manufacturing the same film and an electrochemical device including the same film are also disclosed. An electrochemical device comprising the organic/inorganic composite porous film shows improved safety and quality.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: April 2, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Hang Yong, Sang Young Lee, Seok Koo Kim, Soon Ho Ahn, Jung Don Suk
  • Publication number: 20130075647
    Abstract: A method of forming an electrolyte solution involves combining ammonium tetrafluoroborate and a quaternary ammonium halide in a liquid solvent to form a quaternary ammonium tetrafluoroborate and an ammonium halide. The ammonium halide precipitate is removed from the solvent to form an electrolyte solution. The reactants can be added step-wise to the solvent, and the method can include using a stoichiometric excess of the ammonium tetrafluoroborate to form a substantially halide ion-free electrolyte solution.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Inventor: Kishor Purushottam Gadkaree
  • Patent number: 8404390
    Abstract: The present invention provides (1) a sulfone compounds having a propargyl group, (2) a nonaqueous electrolytic solution for lithium secondary batteries, which comprises an electrolyte salt dissolved in a nonaqueous solvent and contains a sulfone compound having a specific structure that has an SO2 group with a propargyl group or a vinyl group bonding thereto, in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution, and which can prevent gas generation and is excellent in battery characteristics such as cycle property and the like, and (3) a lithium secondary battery comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains a sulfone compound having a specific structure, in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: March 26, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Yoshihiro Ushigoe, Manabu Takase, Kazuyuki Kawabe
  • Publication number: 20130068991
    Abstract: The present invention provides an alkali metal salt of fluorosulfonyl imide having favorable heat resistance and a reduced content of specific impurities and a water content, and provides a method for producing an alkali metal salt of fluorosulfonyl imide, which is capable of easily removing a solvent from a reaction solution. An alkali metal salt of fluorosulfonyl imide of the present invention is represented by the following general formula (I) and has a mass loss rate of 2% or less when the alkali metal salt of fluorosulfonyl imide is kept at 100° C. for 8 hours under an air current. A method for producing an alkali metal salt of fluorosulfonyl imide of the present invention comprises a step of concentrating a solution of the alkali metal salt of fluorosulfonyl imide by bubbling a gas into a reaction solution containing the alkali metal salt of fluorosulfonyl imide, and/or concentrating a solution of the alkali metal salt of fluorosulfonyl imide by thin layer distillation.
    Type: Application
    Filed: May 27, 2011
    Publication date: March 21, 2013
    Inventors: Yuichi Sato, Shimpei Sato, Yasunori Okumura
  • Patent number: 8399126
    Abstract: A non-aqueous electrolyte is provided that includes a non-aqueous solvent and an electrolyte salt, wherein the non-aqueous solvent contains a fluorinated ether (1) represented by the following Formula: HCF2CF2CF2CH2—O—CF2CF2H (1). This non-aqueous electrolyte has good wettability to a polyolefin separator, can provide a battery with excellent load characteristics for a long period, does not easily decompose in the battery under high-temperature storage, and causes little gas generation due to decomposition. Furthermore, a non-aqueous electrolyte secondary battery is provided that includes a positive electrode, a negative electrode, a separator, and the above-described non-aqueous electrolyte.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Tooru Matsui, Tetsuo Nanno
  • Patent number: 8399149
    Abstract: A composition showing enhanced proton conductivity comprising at least a polymer with an ionizable group (A) containing a proton and carbon nanostructures functionalized with ionizable group (B) containing a proton is disclosed where A and B are same or different.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: March 19, 2013
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vijayamohanan Pillai, Bhalchandra A. Kakade, R. Kannan
  • Patent number: 8399137
    Abstract: The present invention provides an electrolyte containing novel additive for electrochemical device and the electrochemical device thereof. The additive is a compound represented by below formula (I): wherein R1 and R2 are independently hydrogen, methyl, ethyl, or halogen; n and m are independently 1, 2, or 3. The additive of the present invention can protect the surface of the carbonaceous material on the anode and suppress the occurrence of exfoliation, thereby increasing the lifetime of the electrochemical device. Furthermore, the additive of the present invention also slows down the decay of capacity on the cathode during charging-discharging cycles, and hence maintains a better performance.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 19, 2013
    Assignee: Taiwan Hopax Chems. Mfg. Co., Ltd.
    Inventors: Li-Jane Her, Chih-Wei Huang, Po-Cheng Chen
  • Publication number: 20130063868
    Abstract: A hydrophobic film is formed on the electrode foil surface by adding a straight-chain saturated dicarboxylic acid represented by the general formula: HOOC(CH2)nCOOH (wherein n indicates an integer from 9 to 11) to the electrolytic solution for medium/high-voltage electrolytic capacitor. Addition of a large amount of water to the electrolytic solution is allowed since this hydrophobic film suppresses the hydration reaction between the electrode foil and water. Further, it is possible to retain good lifespan property of the electrolytic capacitor in a medium/high-voltage electrolytic solution by having low specific resistance property and by suppressing the hydration decomposition of the electrode foil, wherein the electrolytic solution is azelaic acid, sebacic acid, 1-methyl-azelaic acid, 1,6-decanedicarboxylic acid, or a salt thereof dissolved in a solvent having ethylene glycol as the main component.
    Type: Application
    Filed: March 25, 2011
    Publication date: March 14, 2013
    Inventors: Junichi Kawakami, Masao Sakakura, Masashi Ozawa
  • Patent number: 8394520
    Abstract: Ternary or quaternary electrolyte material for use in thermal batteries that is substantially free of binders is disclosed. Composites of electrodes and electrolytes that contain the electrolyte material and batteries that contain the electrolyte material are also disclosed.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: March 12, 2013
    Assignee: Eaglepicher Technologies, LLC
    Inventors: Geoffrey Swift, Charles Lamb