Plural Additional Contacted Control Electrodes Patents (Class 257/319)
  • Patent number: 8575683
    Abstract: A method of fabricating a semiconductor device includes the following steps. At first, a semiconductor substrate is provided. A gate stack layer is formed on the semiconductor substrate, and the gate stack layer further includes a cap layer disposed thereon. Furthermore, two first spacers surrounding sidewalls of the gate stack layer is further formed. Subsequently, the cap layer is removed, and two second spacers are formed on a part of the gate stack layer. Afterwards, a part of the first spacers and the gate stack layer not overlapped with the two second spacers are removed to form two gate stack structures.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: November 5, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Ping-Chia Shih
  • Patent number: 8564057
    Abstract: Lateral power devices where immobile electrostatic charge is emplaced in dielectric material adjoining the drift region. A shield gate is interposed between the gate electrode and the drain, to reduce the Miller charge. In some embodiments the gate electrode is a trench gate, and in such cases the shield electrode too is preferably vertically extended.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 22, 2013
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng
  • Patent number: 8564045
    Abstract: Memory arrays and methods of their formation are disclosed. One such memory array has memory-cell strings are formed adjacent to separated substantially vertical, adjacent semiconductor structures, where the separated semiconductor structures couple the memory cells of the respective strings in series. For some embodiments, two dielectric pillars may be formed from a dielectric formed in a single opening, where each of the dielectric pillars has a pair of memory-cell strings adjacent thereto and where at least one memory cell of one of the strings on one of the pillars and at least one memory cell of one of the strings on the other pillar are commonly coupled to an access line.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 22, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Zengtao Liu
  • Publication number: 20130264629
    Abstract: A nonvolatile memory device includes a substrate; a channel layer projecting from a surface of the substrate, in a direction perpendicular to the surface; a tunnel dielectric layer surrounding the channel layer; a plurality of interlayer dielectric layers and a plurality of control gate electrodes alternately formed along the channel layer; floating gate electrodes interposed between the tunnel dielectric layer and the plurality of control gate electrodes, the floating gate electrodes comprising a metal-semiconductor compound; and a charge blocking layer interposed between each of the plurality of control gate electrodes and each of the plurality of floating gate electrodes.
    Type: Application
    Filed: September 6, 2012
    Publication date: October 10, 2013
    Inventors: Sung-Jin Whang, Dong-Sun Sheen, Seung-Ho Pyi, Min-Soo Kim
  • Patent number: 8546869
    Abstract: Methods of forming nonvolatile memory devices according to embodiments of the invention include techniques to form highly integrated vertical stacks of nonvolatile memory cells. These vertical stacks of memory cells can utilize dummy memory cells to compensate for process artifacts that would otherwise yield relatively poor functioning memory cell strings when relatively large numbers of memory cells are stacked vertically on a semiconductor substrate using a plurality of vertical sub-strings electrically connected in series.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changhyun Lee, Sunil Shim, Jaehoon Jang, Sunghoi Hur, Hansoo Kim, Kihyun Kim
  • Publication number: 20130248971
    Abstract: Method of manufacturing a semiconductor device includes forming, in a first region, a first trench through a second gate electrode film and an interelectrode insulating film, and a second trench partially extending into a sacrificial film in an isolation trench, filling the second trench with a first insulating film; forming a third gate electrode film above the second gate electrode film and into the first trench such that the third gate electrode film contacts the first gate electrode film; etching the third and the second gate electrode film, the interelectrode insulating film, and the first gate electrode film to form select gate electrodes in the first region and a group of memory-cell gate electrodes in the second region; removing the sacrificial film; and forming a second insulating film over the element regions and the isolation trench to define an unfilled gap in the isolation trench below the memory-cell gate electrodes.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shoichi MIYAZAKI, Koichi MATSUNO
  • Publication number: 20130248970
    Abstract: A method of manufacturing a nonvolatile semiconductor storage device includes filling an element isolation trench with a sacrificial film; etching a laminate of films to form a plurality of first and second gate electrodes such that the first gate electrodes are disposed in a first region, and the second gate electrodes are disposed in a second region adjacent to the first region; removing the sacrificial film; forming a resist having an opening in the first region; forming a barrier insulating film so as to at least cover an edge of the opening; etching back the barrier insulating film and thereafter removing the resist film; forming an insulating film to form an unfilled gap in the element isolation trench located below the second gate electrode, the second region, and the third region.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoki KAI, Satoshi Nagashima
  • Publication number: 20130234226
    Abstract: A flash memory cell structure is provided. A semiconductor structure includes a semiconductor substrate, a floating gate overlying the semiconductor substrate, a word-line adjacent to the floating gate, an erase gate adjacent to a side of the floating gate opposite the word-line, a first sidewall disposed between the floating gate and the word-line, and a second sidewall disposed between the floating gate and the erase gate. The first sidewall has a first characteristic and the second sidewall has a second characteristic. The first characteristic is different from the second characteristic.
    Type: Application
    Filed: April 1, 2013
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 8530952
    Abstract: Memory cells and methods for programming and erasing a memory cell by utilizing a buried select line are described. A voltage potential may be generated between a source-drain region and the buried select line region of the memory cell to store charge in a storage region between the source-drain and buried select line regions. The generated voltage potential causes electrons to either tunnel towards the buried storage region to store electrical charge or away from the buried storage region to discharge electrical charge.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Badih El-Kareh
  • Patent number: 8530350
    Abstract: Methods for forming semiconductor structures are disclosed, including a method that involves forming sets of conductive material and insulating material, forming a first mask over the sets, forming a first number of contact regions, forming a second mask over a first region of the sets, and removing material from of the sets in a second, exposed region laterally adjacent the first region to form a second number of contact regions. Another method includes forming first and second contact regions on portions of sets of conductive materials and insulating materials, each of the second contact regions more proximal to an underlying substrate than each of the first contact regions. Apparatuses such as memory devices including laterally adjacent first and second regions each including contact regions of a different portion of a plurality of conductive materials and related methods of forming such devices are also disclosed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Eric H. Freeman, Michael A. Smith
  • Publication number: 20130223149
    Abstract: A nonvolatile semiconductor memory device includes: forming a stacked body by alternately stacking a plurality of interlayer insulating films and a plurality of control gate electrodes; forming a through-hole extending in a stacking direction in the stacked body; etching a portion of the interlayer insulating film facing the through-hole via the through-hole to remove the portion; forming a removed portion; forming a first insulating film on inner faces of the through-hole and the portion in which the interlayer insulating films are removed; forming a floating gate electrode in the portion in which the interlayer insulating films are removed; forming a second insulating film so as to cover a portion of the floating gate electrode facing the through-hole; and burying a semiconductor pillar in the through-hole.
    Type: Application
    Filed: April 17, 2013
    Publication date: August 29, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: KABUSHIKI KAISHA TOSHIBA
  • Patent number: 8519469
    Abstract: Methods of forming memory and memory devices are disclosed, such as a memory device having a memory cell with a floating gate formed from a first conductor, a control gate formed from a second conductor, and a dielectric interposed between the floating gate and the control gate. For example, a select gate may be coupled in series with the memory cell and has a first control gate portion formed from the first conductor and a second control gate portion formed from a third conductor. A contact may be formed from the third conductor and coupled in series with the select gate. Other methods and devices are also disclosed.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Andrew Bicksler
  • Patent number: 8513728
    Abstract: An array of non-volatile memory cells with spaced apart first regions extending in a row direction and second regions extending in a column direction, with a channel region defined between each second region and its associated first region. A plurality of spaced apart word line gates each extending in the row direction and positioned over a first portion of a channel region. A plurality of spaced apart floating gates are positioned over second portions of the channel regions. A plurality of spaced apart coupling gates each extending in the row direction and over the floating gates. A plurality of spaced apart metal strapping lines each extending in the row direction and overlying a coupling gate. A plurality of spaced apart erase gates each extending in the row direction and positioned over a first region and adjacent to a floating gate and coupling gate.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: August 20, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Parviz Ghazavi, Hieu Van Tran, Shiuh-Luen Wang, Nhan Do, Henry A. Om'mani
  • Patent number: 8507972
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a stacked structural unit, a semiconductor pillar, a memory layer, an inner insulating film, an outer insulating film and a cap insulating film. The unit includes a plurality of electrode films stacked alternately in a first direction with a plurality of inter-electrode insulating films. The pillar pierces the stacked structural unit in the first direction. The memory layer is provided between the electrode films and the semiconductor pillar. The inner insulating film is provided between the memory layer and the semiconductor pillar. The outer insulating film is provided between the memory layer and the electrode films. The cap insulating film is provided between the outer insulating film and the electrode films, and the cap insulating film has a higher relative dielectric constant than the outer insulating film.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 13, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigeto Oota, Yoshimasa Mikajiri, Masaru Kito, Ryouhei Kirisawa
  • Patent number: 8488388
    Abstract: A non-volatile memory cell includes first and second regions and a channel region therebetween, a word line gate over a first portion of the channel region, a floating gate over another portion of the channel region and adjacent to the word line gate, a coupling gate over the floating gate, and an erase gate adjacent to the floating gate on an opposite side to the word line gate and over the second region. Programming the memory cell includes applying a first positive voltage to the word line gate, applying a voltage differential between the first and second regions, applying a second positive voltage to the coupling gate (where the voltages and the voltage differential are applied substantially at the same time), and applying a third positive voltage to the erase gate after a period of delay from the application of the first and second positive voltages and the voltage differential.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: July 16, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Viktor Markov, Jong-Won Yoo, Hung Quoc Nguyen, Alexander Kotov
  • Patent number: 8471327
    Abstract: A nonvolatile semiconductor memory transistor includes an island-shaped semiconductor having a source region, a channel region, and a drain region formed in this order from the silicon substrate side, a floating gate arranged so as to surround the outer periphery of the channel region with a tunnel insulating film interposed between the floating gate and the channel region, a control gate arranged so as to surround the outer periphery of the floating gate with an inter-polysilicon insulating film interposed between the control gate and the floating gate, and a control gate line electrically connected to the control gate and extending in a predetermined direction. The inter-polysilicon insulating film is arranged so as to be interposed between the floating gate and the lower and inner side surfaces of the control gate and between the floating gate and the lower surface of the control gate line.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: June 25, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8472251
    Abstract: A single polycrystalline silicon floating gate nonvolatile memory cell has a MOS capacitor and a storage MOS transistor fabricated with dimensions that allow fabrication using current low voltage logic integrated circuit process. The MOS capacitor has a first plate connected to a gate of the storage MOS transistor to form a floating gate node. The physical size of the MOS capacitor is relatively large (approximately 10 time greater) when compared to a physical size of the storage MOS transistor to establish a large coupling ratio (greater than 80%) between the second plate of the MOS capacitor and the floating gate node. When a voltage is applied to the second plate of the MOS capacitor and a voltage applied to the source region or drain region of the MOS transistor establishes a voltage field within the gate oxide of the MOS transistor such that Fowler-Nordheim edge tunnel is initiated.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: June 25, 2013
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter Wung Lee, Fu-Chang Hsu
  • Patent number: 8461640
    Abstract: A non-volatile memory cell has a substrate layer with a fin shaped semiconductor member of a first conductivity type on the substrate layer. The fin shaped member has a first region of a second conductivity type and a second region of the second conductivity type, spaced apart from the first region with a channel region extending between the first region and the second region. The fin shaped member has a top surface and two side surfaces between the first region and the second region. A word line is adjacent to the first region and is capacitively coupled to the top surface and the two side surfaces of a first portion of the channel region. A floating gate is adjacent to the word line and is insulated from the top surface and is capacitively coupled to the two side surfaces of a second portion of the channel region. A coupling gate is capacitively coupled to the floating gate. An erase gate is insulated from the second region and is adjacent to the floating gate and coupling gate.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: June 11, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Yaw Wen Hu, Prateep Tuntasood
  • Patent number: 8455939
    Abstract: A NAND device including a source, a drain and a channel located between the source and drain. The NAND device also includes a plurality of floating gates located over the channel and a plurality of electrically conducting fins. Each of the plurality of electrically conducting fins is located over one of the plurality of floating gates. The plurality of electrically conducting fins include a material other than polysilicon. The NAND device also includes a plurality of control gates. Each of the plurality of control gates is located adjacent to each of the plurality of floating gates and each of the plurality of electrically conducting fins.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 4, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Johann Alsmeier, Vinod Purayath, James Kai, George Matamis
  • Patent number: 8450791
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: May 28, 2013
    Assignee: SanDisk Technologies Inc.
    Inventor: Johann Alsmeier
  • Patent number: 8436411
    Abstract: A non-volatile memory including a substrate, two first conductive layers, a second conductive layer, a first dielectric layer, a second dielectric layer and two heavily doped regions is provided. The substrate has at least two isolation structures therein and an active region between the isolation structures. The first conductive layers are respectively disposed on the isolation structures. The second conductive layer is disposed on the substrate and covering a portion of the active region and a portion of each first conductive layer. The first dielectric layer is disposed between each first conductive layer and the second conductive layer. The second dielectric layer is disposed between the second conductive layer in the active region and the substrate. The heavily doped regions are disposed in the substrate beside the second conductive layer in the active region.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: May 7, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Sung-Bin Lin, Yuan-Hsiang Chang, Yu-Huang Yeh, Che-Lieh Lin
  • Publication number: 20130105881
    Abstract: A non-volatile memory fabrication process includes the formation of a complete memory cell layer stack before isolation region formation. The memory cell layer stack includes an additional place holding control gate layer. After forming the layer stack columns, the additional control gate layer will be incorporated between an overlying control gate layer and underlying intermediate dielectric layer. The additional control gate layer is self-aligned to isolation regions between columns while the overlying control gate layer is etched into lines for contact to the additional control gate layer. In one embodiment, the placeholder control gate layer facilitates a contact point to the overlying control gate layer such that contact between the control gate layers and the charge storage layer is not required for select gate formation.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 2, 2013
    Inventors: James K. Kai, Vinod R. Purayath, George Matamis, Nima Mokhlesi, Cuong Trinh
  • Patent number: 8421143
    Abstract: Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michiharu Matsui, Seiichi Mori, Riichiro Shirota, Yuji Takeuchi, Takeshi Kamigaichi
  • Publication number: 20130087844
    Abstract: A semiconductor device includes: a semiconductor substrate; an element isolation insulator; an insulating block; an interlayer insulating film; and a contact. A plurality of active areas extending in one direction and protruding upward are formed at an upper surface of the substrate. The insulating block is disposed directly on the element isolation insulator. The contact is formed in the interlayer insulating film. A lower end of the contact is connected to an upper surface of the active area. A part of a lower surface of the contact located directly on the insulating block is positioned higher than a part of a lower surface of the contact located directly on the active area.
    Type: Application
    Filed: February 27, 2012
    Publication date: April 11, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Takayuki TOBA
  • Patent number: 8410538
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a memory film, and a SiGe film. The stacked body includes a plurality of conductive layers and a plurality of insulating layers alternately stacked above the substrate. The memory film includes a charge storage film. The memory film is provided on a sidewall of a memory hole punched through the stacked body. The SiGe film is provided inside the memory film in the memory hole.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Megumi Ishiduki, Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Hideaki Aochi
  • Patent number: 8411506
    Abstract: A non-volatile memory and a manufacturing method thereof and a method for operating a memory cell are provided. The non-volatile memory includes a substrate, first and second doped regions, a charged-trapping structure, first and second gates and an inter-gate insulation layer. The first and second doped regions are disposed in the substrate and extend along a first direction. The first and second doped regions are arranged alternately. The charged-trapping structure is disposed on the substrate. The first and second gates are disposed on the charged-trapping structure. Each first gate is located above one of the first doped regions. The second gates extend along a second direction and are located above the second doped regions. The inter-gate insulation layer is disposed between the first gates and the second gates. Adjacent first and second doped regions and the first gate, the second gate and the charged-trapping structure therebetween define a memory cell.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 2, 2013
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Guan-Wei Wu, I-Chen Yang, Yao-Wen Chang, Tao-Cheng Lu
  • Patent number: 8405139
    Abstract: Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michiharu Matsui, Seiichi Mori, Riichiro Shirota, Yuji Takeuchi, Takeshi Kamigaichi
  • Publication number: 20130069137
    Abstract: An array of memory cells has a conductive pillar and a plurality of first and second memory cells coupled in series by the conductive pillar. Each first memory cell has a respective portion of a first charge trap adjacent to the conductive pillar and a respective first control gate adjacent to the respective portion of the first charge trap. Each second memory cell has a respective portion of a second charge trap adjacent to the conductive pillar and a respective second control gate adjacent to the respective portion of the second charge trap. Each first control gate is electrically isolated from each second control gate. A single select transistor may selectively couple the plurality of first memory cells and the plurality of second memory cells to one of a source line and a data line.
    Type: Application
    Filed: November 14, 2012
    Publication date: March 21, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Micron Technology, Inc.
  • Patent number: 8377793
    Abstract: A method of manufacturing a non-volatile memory device, including providing at least one control gate layer on a substrate. A passage may be created between the at least one control gate layer and the substrate. In the passage at least one filling layer may be provided. A floating gate structure including the filling layer may be formed, as well as a control gate structure including the at least one control gate layer, the control gate structure being in a stacked configuration with the floating gate structure.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: February 19, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Marius Orlowski
  • Patent number: 8373222
    Abstract: In a nonvolatile semiconductor memory device, a stacked body is provided on a silicon substrate by alternately stacking pluralities of isolation dielectric films and electrode films, a through-hole is formed in the stacked body to extend in the stacking direction, a memory film is formed by stacking a block layer, a charge layer and a tunnel layer in this order at an inner face of the through-hole, and thereby a silicon pillar is buried in the through-hole. At this time, the electrode film is protruded further than the isolation dielectric film toward the silicon pillar at the inner face of the through-hole, and an end face of the isolation dielectric film has a curved shape displacing toward the silicon pillar side as the electrode film is approached.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: February 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Yoshio Ozawa
  • Patent number: 8373220
    Abstract: A NAND type flash memory for increasing data read/write reliability includes a semiconductor substrate unit, a base unit, and a plurality of data storage units. The semiconductor substrate unit includes a semiconductor substrate. The base unit includes a first dielectric layer formed on the semiconductor substrate. The data storage units are formed on the first dielectric layer. Each data storage unit includes two floating gates formed on the first dielectric layer, two inter-gate dielectric layers respectively formed on the two floating gates, two control gates respectively formed on the two inter-gate dielectric layers, a second dielectric layer formed on the first dielectric layer, between the two floating gates, between the two inter-gate dielectric layers, and between the two control gates, and a third dielectric layer formed on the first dielectric layer and surrounding and connecting with the two floating gates, the two inter-gate dielectric layers, and the two control gates.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: February 12, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Publication number: 20130032872
    Abstract: A non-volatile memory including a substrate of a first conductivity type with first and second spaced apart regions formed therein of a second conductivity type with a channel region therebetween. A polysilicon metal gate word line is positioned over a first portion of the channel region and spaced apart therefrom by a high K dielectric layer. The metal portion of the word line is immediately adjacent to the high K dielectric layer. A polysilicon floating gate is immediately adjacent to and spaced apart from the word line, and positioned over and insulated from another portion of the channel region. A polysilicon coupling gate is positioned over and insulated from the floating gate. A polysilicon erase gate is positioned on another side of and insulated from the floating gate, positioned over and insulated from the second region, and immediately adjacent to but spaced apart from another side of the coupling gate.
    Type: Application
    Filed: July 26, 2012
    Publication date: February 7, 2013
    Inventors: Alexander Kotov, Chien-Sheng Su
  • Publication number: 20130026556
    Abstract: A NAND type flash memory for increasing data read/write reliability includes a semiconductor substrate unit, a base unit, and a plurality of data storage units. The semiconductor substrate unit includes a semiconductor substrate. The base unit includes a first dielectric layer formed on the semiconductor substrate. The data storage units are formed on the first dielectric layer. Each data storage unit includes two floating gates formed on the first dielectric layer, two inter-gate dielectric layers respectively formed on the two floating gates, two control gates respectively formed on the two inter-gate dielectric layers, a second dielectric layer formed on the first dielectric layer, between the two floating gates, between the two inter-gate dielectric layers, and between the two control gates, and a third dielectric layer formed on the first dielectric layer and surrounding and connecting with the two floating gates, the two inter-gate dielectric layers, and the two control gates.
    Type: Application
    Filed: September 2, 2011
    Publication date: January 31, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG HAN LEE, CHUNG-LIN HUANG, RON FU CHU
  • Publication number: 20130001671
    Abstract: Methods of forming memory and memory devices are disclosed, such as a memory device having a memory cell with a floating gate formed from a first conductor, a control gate formed from a second conductor, and a dielectric interposed between the floating gate and the control gate. For example, a select gate may be coupled in series with the memory cell and has a first control gate portion formed from the first conductor and a second control gate portion formed from a third conductor. A contact may be formed from the third conductor and coupled in series with the select gate. Other methods and devices are also disclosed.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Inventor: Andrew BICKSLER
  • Patent number: 8338880
    Abstract: A flash memory and a manufacturing method and an operating method thereof are provided. The flash memory includes a substrate, a charge-trapping structure, a first gate, a second gate, a third gate, a first doped region and a second doped region. The substrate has a protrusion portion. The charge-trapping structure is disposed over the substrate. The first gate and the second gate are disposed respectively over the charge-trapping structure at two sides of the protrusion portion. The top surfaces of the first gate and the second gate are lower than the top surface of the charge-trapping structure located on the top of the protrusion portion. The third gate is disposed over the charge-trapping structure located on the top of the protrusion portion. The first doped region and the second doped region are disposed respectively in the substrate at two sides of the protrusion portion.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: December 25, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Guan-Wei Wu, I-Chen Yang, Yao-Wen Chang, Tao-Cheng Lu
  • Publication number: 20120299082
    Abstract: A non-volatile memory device includes a semiconductor substrate having a peripheral circuit region and a cell region, wherein the cell region of the semiconductor substrate is lower in height than the peripheral circuit region of the semiconductor substrate, a control gate structure disposed over the cell region of the semiconductor substrate and comprising a plurality of inter-layer dielectric layers that are alternately stacked with a plurality of control gate electrodes, a first insulation layer covering the cell region of the semiconductor substrate where the control gate structure is formed, a selection gate electrode disposed over the first insulation layer, and a peripheral circuit device disposed over the peripheral circuit region of the semiconductor substrate.
    Type: Application
    Filed: September 15, 2011
    Publication date: November 29, 2012
    Inventor: Byung-Soo PARK
  • Patent number: 8319270
    Abstract: A non-volatile memory of a semiconductor device has a tunnel insulation film provided on the active area; a floating gate electrode provided on the tunnel insulation film; a control gate electrode provided over the floating gate electrode; and an inter-electrode insulation film provided between the floating gate electrode and the control gate electrode, wherein, in a section of the non-volatile memory cell in a channel width direction, a dimension of a top face of the active area in the channel width direction is equal to or less than a dimension of a top face of the tunnel insulation film in the channel width direction, and the dimension of the top face of the tunnel insulation film in the channel width direction is less than a dimension of a bottom face of the floating gate electrode in the channel width direction.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mutsuo Morikado, Kiyomi Naruke, Hiroaki Tsunoda, Tohru Maruyama, Fumitaka Arai
  • Patent number: 8304826
    Abstract: A nonvolatile semiconductor memory device includes a plurality of floating gate electrodes respectively formed above a semiconductor substrate with first insulating films disposed therebetween, and a control gate electrode formed above the plurality of floating gate electrodes with a second insulating film disposed therebetween. In each of the plurality of floating gate electrodes is formed to have a width of an upper portion thereof in a channel width direction which is smaller than a width of a lower portion thereof in the channel width direction and one of contact surfaces thereof on at least opposed sides which contact the second insulating film is formed to have one surface, and the second insulating film has a maximum film thickness in a vertical direction, the maximum film thickness being set smaller than a distance from a lowest surface to a highest surface of the second insulating film in the vertical direction.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8304309
    Abstract: Methods of forming memory and memory devices are disclosed, such as a memory device having a memory cell with a floating gate formed from a first conductor, a control gate formed from a second conductor, and a dielectric interposed between the floating gate and the control gate. For example, a select gate may be coupled in series with the memory cell and has a first control gate portion formed from the first conductor and a second control gate portion formed from a third conductor. A contact may be formed from the third conductor and coupled in series with the select gate. Other methods and devices are also disclosed.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 6, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Andrew Bicksler
  • Patent number: 8299520
    Abstract: According to some embodiments, a semiconductor device includes first and second auxiliary gate electrodes and a semiconductor layer crossing the first and second auxiliary gate electrodes. A primary gate electrode is provided on the semiconductor layer so that the semiconductor layer is between the primary gate electrode and the first and second auxiliary gate electrodes. Moreover, the first and second auxiliary gate electrodes are configured to induce respective first and second field effect type source/drain regions in the semiconductor layer. Related methods are also discussed.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 30, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Suk-pil Kim, Yoon-dong Park, Jae-young Choi, June-mo Koo, Byung-hee Hong
  • Publication number: 20120267699
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes sheet-like memory strings arranged in a matrix shape substantially perpendicularly to a substrate. A control gate electrode film includes a common connecting section that extends in a first direction and an electrode forming section that is provided for each of memory cells above or below a floating gate electrode film via an inter-electrode dielectric film to project from the common connecting section in a second direction. The floating gate electrode film extends in the second direction and is formed on a first principal plane of a sheet-like semiconductor film via a tunnel dielectric film.
    Type: Application
    Filed: January 18, 2012
    Publication date: October 25, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Masahiro Kiyotoshi
  • Patent number: 8294197
    Abstract: A flash memory cell includes a substrate, a blocking layer over the substrate, a floating gate over the blocking layer, a retention layer over the floating gate, a control gate over the retention layer, a tunneling layer over the control gate, a top gate over the tunneling layer, and a voltage source electrically coupled between the top gate and the control gate. Various charge tunneling mechanisms may be used for charges to tunnel through the retention layer.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 23, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Tsong Wang, Tong-Chern Ong
  • Publication number: 20120256247
    Abstract: Monolithic three dimensional NAND strings and methods of making. The method includes both front side and back side processing. Using the combination of front side and back side processing, a NAND string can be formed that includes an air gap between the floating gates in the NAND string. The NAND string may be formed with a single vertical channel. Alternatively, the NAND string may have a U shape with two vertical channels connected with a horizontal channel.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: SanDisk Corporation
    Inventor: Johann Alsmeier
  • Patent number: 8278701
    Abstract: In the trap type memory chip the withstanding voltage is raised up, and then the electric current for reading out is increased. There are formed on the p-type semiconductor substrate 1 a first gate lamination structure which comprises a first insulating film 11 including a trap layer, and a first conductive body 9, and a second gate lamination structure which comprises a second insulating film 12 free of a trap layer and including an insulating film layer 13 doped with metal for controlling the work function at least on the upper layer, and a second conductive body 10. A source drain region 2 and a source drain region 3 are formed such that the first gate lamination structure and the second gate lamination structure are interleaved therebetween. The effective work function of the second gate lamination structure is higher than that of the first gate lamination structure.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 2, 2012
    Assignee: NEC Corporation
    Inventor: Masayuki Terai
  • Publication number: 20120241840
    Abstract: A nonvolatile memory device includes a substrate having active regions that are defined by an isolation layer and that have first sidewalls extending upward from the isolation layer, floating gates adjoining the first sidewalls of the active regions with a tunnel dielectric layer interposed between the active regions and the floating gates and extending upward from the substrate, an intergate dielectric layer disposed over the floating gates, and control gates disposed over the intergate dielectric layer.
    Type: Application
    Filed: February 23, 2012
    Publication date: September 27, 2012
    Inventors: Nam-Jae Lee, Seiichi Aritome
  • Patent number: 8274108
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked body including a plurality of insulating films alternately stacked with a plurality of electrode films, the electrode films being divided to form a plurality of control gate electrodes aligned in a first direction; a plurality of semiconductor pillars aligned in a stacking direction of the stacked body, the semiconductor pillars being arranged in a matrix configuration along the first direction and a second direction intersecting the first direction to pierce the control gate electrodes; and a connection member connecting a lower end portion of one of the semiconductor pillars to a lower end portion of one other of the semiconductor pillars, an upper end portion of the one of the semiconductor pillars being connected to a source line, an upper end portion of the one other of the semiconductor pillars being connected to a bit line.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Yoshiaki Fukuzumi, Hideaki Aochi
  • Patent number: 8274073
    Abstract: The present memory device includes first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the passive layer and the second electrode. In undertaking an operation on the memory device, ions moves into within and from within the active layer, and the active layer is oriented so that the atoms of the active layer provide minimum obstruction to the movement of the ions into, within and from the active layer.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: September 25, 2012
    Assignee: Spansion LLC
    Inventors: Juri Krieger, Stuart Spitzer
  • Patent number: 8258569
    Abstract: A plurality of NAND cells are arranged in a cell array. In each of the NAND cells, a pair of selection gate transistors is connected in series to a plurality of memory cell transistors. An inter-gate connection trench is formed in an insulating film between layers of stacked gates of the selection gate transistors. The stacked gates are electrically connected to each other. At an end part of the cell array in the row direction, an STI area is formed, and dummy NAND cells are formed at an end part in the row direction. A dummy selection gate transistor is connected in series to a plurality of dummy memory cell transistors. No inter-gate connection trench is present in an insulating film between layers of stacked gates of the dummy selection gate transistor, and the stacked gates of the dummy selection gate transistor are not electrically connected to each other.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: September 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masanori Hatakeyama, Osamu Ikeda
  • Publication number: 20120217567
    Abstract: This semiconductor memory device comprises a semiconductor substrate, a plurality of tunnel insulator films formed on the substrate along a first direction and a second direction orthogonal to the first direction, a plurality of charge accumulation layers formed on the tunnel insulator films, respectively, a plurality of element isolation regions formed on the substrate, the element isolation regions including a plurality of trenches formed along the first direction between the tunnel insulator films, a plurality of element isolation films filled in the trenches, a plurality of inter-poly insulator films formed over the element isolation regions and on the upper and side surfaces of the charge accumulation layers along the second direction in a stripe shape, a plurality of air gaps formed between the element isolation films filled in the trenches and the inter-poly insulator films and a plurality of control gate electrodes formed on the inter-poly insulator films.
    Type: Application
    Filed: March 6, 2012
    Publication date: August 30, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Atsuhiro Sato, Fumitaka Arai
  • Patent number: 8253187
    Abstract: A non-volatile semiconductor storage device 10 has a plurality of memory strings 100 with a plurality of electrically rewritable memory transistors MTr1-MTr4 connected in series. The memory string 100 includes a columnar semiconductor CLmn extending in a direction perpendicular to a substrate, a plurality of charge accumulation layers formed around the columnar semiconductor CLmn via insulating films, and selection gate lines on the drain side SGD contacting the columnar semiconductor to configure transistors. The selection gate lines on the drain side SGD have lower selection gate lines on the drain side SGDd, each of which is arranged with an interval with a certain pitch, and upper selection gate lines on the drain side SGDu located on a higher layer than the lower selection gate lines on the drain side SGDd, each of which is arranged on gaps between the lower selection gate lines on the drain side SGDd.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kido, Hideaki Aochi, Mitsuru Sato, Yasuyuki Matsuoka