Vertical Channel Or Double Diffused Insulated Gate Field Effect Device Provided With Means To Protect Against Excess Voltage (e.g., Gate Protection Diode) Patents (Class 257/328)
  • Patent number: 10074742
    Abstract: A semiconductor device formed on a semiconductor substrate, comprising: an epitaxial layer overlaying the semiconductor substrate; a drain formed on back of the semiconductor substrate; a drain region that extends into the epitaxial layer; an active region; and an island region under the contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer. The active region comprises: a body disposed in the epitaxial layer; a source embedded in the body; a gate trench extending into the epitaxial layer; a gate disposed in the gate trench; an active region contact trench extending through the source and the body; and an active region contact electrode disposed within the active region contact trench.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 11, 2018
    Assignee: Alpha and Omega Semiconductor Limited
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Patent number: 10069016
    Abstract: A semiconductor diode includes a semiconductor body and trench structures extending from a surface of the semiconductor body into the semiconductor body. The semiconductor body includes a doped layer of a first conductivity type and a doped zone of a second conductivity type opposite to the first conductivity type. The doped zone is formed between the doped layer and a first surface of the semiconductor body. The trench structures are arranged between electrically connected portions of the semiconductor body. The trench structures do not include conductive structures that are both electrically insulated from the semiconductor body and electrically connected with another structure outside the trench structures.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: September 4, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Hans-Joachim Schulze, Holger Schulze
  • Patent number: 10043749
    Abstract: Provided is a semiconductor device in which a fuse element, which is cuttable by a laser, can be stably cut. The fuse element includes an upper fuse element, a lower fuse wiring line, and a fuse connecting contact such that, in cutting the fuse element by a laser, the lower fuse wiring line is protected by an inter-layer film, and only the upper fuse element is efficiently melted and evaporated. In addition, the contact for connecting the upper fuse element and the lower fuse wiring line to each other is formed at a center of a laser irradiation region, and hence the connection portion receives the energy of the laser most efficiently.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: August 7, 2018
    Assignee: ABLIC Inc.
    Inventor: Yuichiro Kitajima
  • Patent number: 10027094
    Abstract: A power module for a power converter includes a first busbar with a first surface and a second surface opposite the first surface, a first semiconductor component on the first surface of the first busbar, which semiconductor component has a first surface with a first electrical surface contact connection and is connected, via the first surface contact connection, to the first surface of the first busbar in an electrically conductive and mechanical fashion over an area, and a second semiconductor component on the second surface of the first busbar, which semiconductor component has a first surface with a first electrical surface contact connection and is connected, via the first surface contact connection of the second semiconductor component, to the second surface of the first busbar in an electrically conductive and mechanical fashion over an area.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: July 17, 2018
    Assignee: CONTI TEMIC MICROELECTRONIC GMBH
    Inventors: Hermann Baeumel, Edmund Schirmer
  • Patent number: 10020367
    Abstract: An object of the present invention is to provide a silicon carbide semiconductor device with which the electric field at the time of switching is relaxed and the element withstand voltage can be enhanced. The distance between the outer peripheral end of a second surface electrode and the inner peripheral end of a field insulation film is smaller than the distance between an outer peripheral end of the second surface electrode and an inner peripheral end of the field insulation film in the case where the electric field strength applied to the outer peripheral lower end of the second surface electrode is calculated so as to become equal to the smallest dielectric breakdown strength among the dielectric breakdown strength of the field insulation film and the dielectric breakdown strength of the surface protective film at the time of switching when the value of dV/dt is greater than or equal to 10 kV/?s.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: July 10, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kohei Ebihara, Akihiro Koyama, Hidenori Koketsu, Akemi Nagae, Kotaro Kawahara, Hiroshi Watanabe, Kensuke Taguchi, Shiro Hino
  • Patent number: 10002920
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 19, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10002765
    Abstract: A method for forming FinFETs comprises forming a plurality of first fins and a plurality of second fins over a substrate and embedded in isolation regions, depositing a first photoresist layer over the substrate, removing the first photoresist layer over an n-type region, applying a first ion implantation process to the first isolation regions, wherein dopants with a first polarity type are implanted in the first isolation regions, depositing a second photoresist layer over the substrate, removing the second photoresist layer over a p-type region, applying a second ion implantation process to the second isolation regions, wherein dopants with a second polarity type are implanted in the second isolation regions, applying an annealing process to the isolation regions and recessing the first isolation regions and the second isolation regions through an etching process.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: June 19, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Chi-Kang Liu, Chi-Wen Liu
  • Patent number: 9997624
    Abstract: A semiconductor device includes: an n? type layer disposed on a first surface of an n+ type silicon carbide substrate; a first trench and a second trench formed in the n? type layer and separated from each other; an n+ type region disposed between a side surface of the first trench and the side surface of the second trench and disposed on the n? type layer; a gate insulating layer disposed inside the first trench; a source insulating layer disposed inside the second trench; a gate electrode disposed on the gate insulating layer; an oxide layer disposed on the gate electrode; a source electrode disposed on the oxide layer, the n+ type region, and the source insulating layer; and a drain electrode disposed on a second surface of the n+ type silicon carbide substrate.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: June 12, 2018
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: NackYong Joo, Youngkyun Jung, Junghee Park, JongSeok Lee, Dae Hwan Chun
  • Patent number: 9991377
    Abstract: According to an exemplary implementation, a field-effect transistor (FET) includes first and second gate trenches extending to a drift region of a first conductivity type. The FET also includes a base region of a second conductivity type that is situated between the first and second gate trenches. A ruggedness enhancement region is situated between the first and second gate trenches, where the ruggedness enhancement region is configured to provide an enhanced avalanche current path from a drain region to the base region when the FET is in an avalanche condition. The enhanced avalanche current path is away from the first and second gate trenches. The ruggedness enhancement region can be of the second conductivity type that includes a higher dopant concentration than the base region. Furthermore, the ruggedness enhancement region can be extending below the first and second gate trenches.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 5, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Ashita Mirchandani, Timothy D. Henson, Ling Ma, Niraj Ranjan
  • Patent number: 9991252
    Abstract: A semiconductor device includes a semiconductor body having first and second opposing surfaces, a first isolation layer on the first surface of the semiconductor body, and an electrostatic discharge protection structure. The electrostatic discharge protection structure includes a diode structure on the first isolation layer, a first terminal and a second terminal. The diode structure includes a polysilicon layer having first regions and at least one second region of opposite conductivity type alternatingly arranged along a first lateral direction between the first terminal and the second terminal. The diode structure extends from an electrostatic discharge protection part into an edge termination part along a second lateral direction. A first breakdown voltage associated with the diode structure in the electrostatic discharge protection part is smaller than a second breakdown voltage associated with the diode structure in the edge termination part.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 5, 2018
    Assignee: Infineon Technologies Dresden GmbH
    Inventor: Joachim Weyers
  • Patent number: 9991347
    Abstract: A power semiconductor device includes a semiconductor substrate having a drift region, a gate electrode trench in the semiconductor substrate and a field electrode needle trench in the semiconductor substrate. The gate electrode trench extends into the drift region and includes a gate electrode. The gate electrode is arranged in the gate electrode trench and electrically insulated from the drift region by a gate dielectric layer arranged between the gate electrode and the drift region. The field electrode needle trench is laterally spaced from the gate electrode trench and extends into the drift region. The field electrode needle trench includes a field electrode arranged in the field electrode needle trench and electrically insulated from the drift region by a cavity formed between the field electrode and the drift region.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: June 5, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Robert Haase, Timothy Henson
  • Patent number: 9985142
    Abstract: A semiconductor device including a semiconductor layer, a drain region formed at a surface region of the semiconductor layer, and a source/gate region including a source region and a gate region, which are alternatively arranged so as to be electrically connected to each other. The device further includes a resistive field plate that is disposed on the semiconductor layer between the drain region and the source/gate region and spirally wound in a top view. The field plate including an innermost peripheral portion electrically connected to the drain region and an outermost peripheral portion electrically connected to ground. An outermost peripheral ground conductor film is disposed on the semiconductor layer between the outermost peripheral portion of the field plate and the source/gate region. Additionally, a second ground conductor film is disposed on the semiconductor layer between the outermost peripheral portion of the field plate and the outermost ground conductor film.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: May 29, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Shusaku Fujie, Masaki Hino
  • Patent number: 9978636
    Abstract: Isolated and bulk semiconductor devices formed on a same bulk substrate and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed on a bulk substrate. The first semiconductor body has an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed on an isolation pedestal. The isolation pedestal is disposed on the bulk substrate. The second semiconductor body has an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: May 22, 2018
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Harry Gomez
  • Patent number: 9978881
    Abstract: An integrated circuit device includes a substrate, first and second fin active regions formed on the substrate and extending in a first direction parallel to a top surface of the substrate, a first gate structure disposed on a side surface of the first fin active region, a pair of first impurity regions respectively formed on a top portion and a bottom portion of the first fin active region, a second gate structure disposed on a side surface of the second fin active region, and a pair of second impurity regions respectively formed on a top portion or a bottom portion of the second fin active region, wherein the pair of first impurity regions vertically overlap each other, and the pair of second impurity regions do not vertically overlap each other.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 22, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mirco Cantoro, Yeon-cheol Heo, Maria Toledano Luque
  • Patent number: 9978689
    Abstract: An embodiment of an Ion Sensitive Field Effect Transistor (ISFET) structure includes a substrate, source and drain regions formed within the substrate and spatially separated by a channel region, a gate dielectric and a gate formed over the channel region, multiple conductive structures overlying the surface of the substrate, and one or more protection diode circuits coupled between one or more of the multiple conductive structures and the substrate. The multiple conductive structures include a floating gate structure and a sense plate structure. The floating gate structure is formed over the gate dielectric and includes the gate. The sense plate structure is electrically coupled to the floating gate structure and is configured to sense a concentration of a target ion or molecule in a fluid adjacent to a portion of the sense plate structure.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: May 22, 2018
    Assignee: NXP USA, INC.
    Inventors: Md M. Hoque, Patrice Parris, Weize Chen, Richard De Souza
  • Patent number: 9966429
    Abstract: A semiconductor device such as a Zener diode includes a first semiconductor material of a first conductivity type and a second semiconductor material of a second conductivity type in contact with the first semiconductor material to form a junction therebetween. A first oxide layer is disposed over a portion of the second semiconductor material such that a remaining portion of the second semiconductor material is exposed. A polysilicon layer is disposed on the exposed portion of the second semiconductor material and a portion of the first oxide layer. A first conductive layer is disposed on the polysilicon layer. A second conductive layer is disposed on a surface of the first semiconductor material opposing a surface of the first semiconductor material in contact with the second semiconductor material.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 8, 2018
    Assignee: VISHAY GENERAL SEMICONDUCTOR LLC
    Inventors: Shih-Kuan Chen, Wan-Lan Chiang, Ming-Tai Chiang, Chih-Ping Peng, Yih-Yin Lin
  • Patent number: 9960268
    Abstract: A semiconductor device includes a drift region of a device structure arranged in a semiconductor layer. The drift region includes at least one first drift region portion and at least one second drift region portion. A majority of dopants within the first drift region portion are a first species of dopants having a diffusivity less than a diffusivity of phosphor within the semiconductor layer. Further, a majority of dopants within the second drift region portion are a second species of dopants. Additionally, the semiconductor device includes a trench extending from a surface of the semiconductor layer into the semiconductor layer. A vertical distance of a border between the first drift region portion and the second drift region portion to the surface of the semiconductor layer is larger than 0.5 times a maximal depth of the trench and less than 1.5 times the maximal depth of the trench.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 1, 2018
    Assignee: Infineon Technologies AG
    Inventors: Markus Zundel, Christian Kampen, Jacob Tillmann Ludwig
  • Patent number: 9954109
    Abstract: A vertical transistor includes a gate structure interposed between a proximate spacer doped with a first dopant-type and a distal spacer doped with the first dopant-type. The proximate spacer is formed on an upper surface of a semiconductor substrate. At least one channel region extends vertically from the proximate doping source layer to the distal doping source layer. A proximate S/D extension region is adjacent the proximate spacer and a distal S/D extension region is adjacent the distal spacer. The proximate and distal S/D extension regions include dopants that match the first dopant-type of the proximate and distal doping sources.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ramachandra Divakaruni
  • Patent number: 9953978
    Abstract: A transistor device includes a gate structure positioned above a semiconductor substrate, and spaced-apart sidewall spacers positioned above the substrate and adjacent sidewalls of the gate structure. An internal sidewall surface of each of the spaced-apart sidewall spacers includes an upper sidewall surface portion and a lower sidewall surface portion positioned between the upper sidewall surface portion and a surface of the substrate, wherein a first lateral width between first upper ends of the upper sidewall surface portions is greater than a second lateral width between second upper ends of the lower sidewall surface portions.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: April 24, 2018
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ruilong Xie, Kisik Choi, Su Chen Fan, Shom Ponoth
  • Patent number: 9954099
    Abstract: A transistor structure including a gate, a first dielectric layer, a first contact and a second contact is provided. The gate is disposed on a substrate. The first dielectric layer is disposed on the substrate. The first dielectric layer covers a portion of a top surface of the gate. The first contact is electrically connected to the gate. The second contact is disposed on the first dielectric layer. The second contact is electrically connected with the first contact.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 24, 2018
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Hsun Chung, Shih-Teng Huang, Tien-Shang Kuo
  • Patent number: 9947586
    Abstract: A method of forming semiconductor devices may begin with forming gate structures over fin structures on sidewalls of at least two mandrels. The mandrels are removed to provide gate structures having a first pitch and gate structure spacers having a second pitch. A first conductivity type epitaxial semiconductor material is formed on the exposed portions of the fin structures. Masking is formed in the first pitch space. The first conductivity type epitaxial semiconductor material is removed from a second space pitch. A second conductivity type epitaxial semiconductor material is formed in the second space pitch.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9941266
    Abstract: A semiconductor device according to the present invention includes: a substrate; a plurality of trenches formed in the substrate; and a plurality of functional element forming regions arrayed along each of the trenches, including a channel forming region as a current path, wherein the plurality of functional element forming regions includes a first functional element forming region in which the area of the channel forming region per unit area is relatively small and a second functional element forming region in which the area of the channel forming region per unit area is relatively large, and the first functional element forming region is provided at a region where heat generation should be suppressed.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: April 10, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Hajime Okuda, Motoharu Haga, Kenji Fujii
  • Patent number: 9935093
    Abstract: A semiconductor device includes a voltage generation circuit configured to generate a specific voltage; a first terminal configured to output the specific voltage; a second terminal configured to receive a temperature sensitive voltage; an analog/digital conversion circuit configured to convert the specific voltage and the temperature sensitive voltage to digital values; a storage unit configured to store the specific voltage and the temperature sensitive voltage; and a third terminal configured to transmit the specific voltage and the temperature sensitive voltage to an external semiconductor device.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: April 3, 2018
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Kazushige Iwamoto
  • Patent number: 9929698
    Abstract: An apparatus is described. The apparatus includes an input device. The apparatus also includes a positive supply voltage pad. The apparatus further includes an input signal pad. The apparatus also includes a ground pad. The apparatus further includes charged-device model protection circuitry that protects the input device from electrostatic discharge. The charged-device model protection circuitry includes at least one of de-Q circuitry and a cascode device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 27, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Prasad Srinivasa Siva Gudem, Himanshu Khatri, Devavrata V Godbole, Eugene Robert Worley
  • Patent number: 9929137
    Abstract: Disclosed is a method for manufacturing an ESD protection device. The method comprises: forming a first buried layer on the semiconductor substrate; forming a first epitaxial layer on the semiconductor substrate; forming a first doped region in the first epitaxial layer and forming a second doped region surrounding the first doped region in the first epitaxial layer, wherein the semiconductor substrate and the first doped region are both of a first doping type, the buried layer and the first epitaxial layer are both of a second doping type, the first doping type is opposite to the second doping type, the first doped region and the second doped region are formed using a same first mask. The method uses the same mask to form an emitter region of the open-base bipolar transistor, and to form a barrier doped region at the periphery of the emitter region, so that the manufacture cost is reduced and the parasitic capacitance of the ESD protection device is decreased.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 27, 2018
    Assignee: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) LTD.
    Inventors: Dengping Yin, Shijun Wang, Fei Yao
  • Patent number: 9915961
    Abstract: A semiconductor device drive method achieves a balance between a lifetime and a detection sensitivity which are required for a temperature detection diode formed via an insulating film on a substrate on which an active element is formed. The semiconductor device drive method includes energizing the temperature detection diode with a constant current, the constant current having a current density value between an upper limit defined based on the lifetime of the temperature detection diode, and a lower defined based on a variation allowable voltage of an output voltage of the temperature detection diode with respect to a standard deviation.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: March 13, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Toshiyuki Matsui, Hitoshi Abe, Noriaki Yao
  • Patent number: 9917184
    Abstract: Embodiments include a method and structure to that provide a clamping structure in an integrated semiconductor device. In accordance with an embodiment, the method includes forming trenches in a semiconductor material and forming a shield electrode in a portion of at least one of the trenches. A clamping structure is formed adjacent to a trench. The clamping structure has an electrode that may be electrically connected to a source region of the integrated semiconductor device. In accordance with another embodiment, an impedance element is formed in a trench.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: March 13, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Prasad Venkatraman, Balaji Padmanabhan
  • Patent number: 9911810
    Abstract: Process for manufacturing a semiconductor power device, wherein a trench is formed in a semiconductor body having a first conductivity type; the trench is annealed for shaping purpose; and the trench is filled with semiconductor material via epitaxial growth so as to obtain a first column having a second conductivity type. The epitaxial growth is performed by supplying a gas containing silicon and a gas containing dopant ions of the second conductivity type in presence of a halogenide gas and occurs with uniform distribution of the dopant ions. The flow of the gas containing dopant ions is varied according to a linear ramp during the epitaxial growth; in particular, in the case of selective growth of the semiconductor material in the presence of a hard mask, the flow decreases; in the case of non-selective growth, in the absence of hard mask, the flow increases.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: March 6, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Simona Lorenti, Cateno Marco Camalleri, Mario Giuseppe Saggio, Ferruccio Frisina
  • Patent number: 9911804
    Abstract: A fin field effect transistor device with air gaps, including a source/drain layer on a substrate, one or more vertical fin(s) in contact with source/drain layer, a gate metal fill that forms a portion of a gate structure on each of the one or more vertical fin(s), and a bottom void space between the source/drain layer and the gate metal fill.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Hari V. Mallela, Robert R. Robison, Reinaldo A. Vega, Rajasekhar Venigalla
  • Patent number: 9911844
    Abstract: The semiconductor device includes: a semiconductor layer in which a trench is formed having a side surface and a bottom surface; a second conductivity-type layer formed on the semiconductor layer on the side surface and the bottom surface of the trench; a first conductivity-type layer formed on the semiconductor layer so as to contact the second conductivity-type layer; a first electrode electrically connected to the first conductivity-type layer; a second electrode embedded in the trench and electrically connected to the second conductivity-type layer; and a barrier-forming layer which is arranged between the second electrode and the side surface of the trench and which, between said barrier-forming layer and the second conductivity-type layer, forms a potential barrier higher than the potential barrier between the second conductivity-type layer and the second electrode.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: March 6, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Yuki Nakano, Ryota Nakamura, Hiroyuki Sakairi
  • Patent number: 9911829
    Abstract: A FinFET includes a substrate, a fin structure on the substrate, a source in the fin structure, a drain in the fin structure, a channel in the fin structure between the source and the drain, a gate dielectric layer over the channel, and a gate over the gate dielectric layer. At least one of the source and the drain includes a bottom SiGe layer.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Pei-Ren Jeng, Tze-Liang Lee
  • Patent number: 9905671
    Abstract: A method of making a semiconductor device includes patterning a fin in a substrate; forming a gate between source/drain regions over the substrate, the gate having a dielectric spacer along a sidewall; removing a portion of the dielectric spacer and filling with a metal oxide to form a spacer having a first spacer portion and a second spacer portion; forming a source/drain contact over at least one of the source/drain regions; recessing the source/drain contact and forming a via contact over the source/drain contact; and forming a gate contact over the gate, the gate contact having a first gate contact portion contacting the gate and a second gate contact portion positioned over the first gate contact portion; wherein the first spacer portion isolates the first gate contact portion from the source/drain contact, and the second spacer portion isolates the second gate contact portion from the source/drain contact.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: February 27, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC.
    Inventors: Kangguo Cheng, Ruilong Xie, Tenko Yamashita
  • Patent number: 9899512
    Abstract: Embodiments of a silicon carbide (SiC) device are provided herein. In some embodiments, a silicon carbide (SiC) device may include a gate electrode disposed above a SiC semiconductor layer, wherein the SiC semiconductor layer comprises: a drift region having a first conductivity type; a well region disposed adjacent to the drift region, wherein the well region has a second conductivity type; and a source region having the first conductivity type disposed adjacent to the well region, wherein the source region comprises a source contact region and a pinch region, wherein the pinch region is disposed only partially below the gate electrode, wherein a sheet doping density in the pinch region is less than 2.5×1014 cm?2, and wherein the pinch region is configured to deplete at a current density greater than a nominal current density of the SiC device to increase the resistance of the source region.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: February 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Almern Losee, Ljubisa Dragoljub Stevanovic, Gregory Thomas Dunne, Alexander Viktorovich Bolotnikov
  • Patent number: 9899380
    Abstract: A method of forming a semiconductor device includes providing a semiconductor substrate. The semiconductor substrate includes fins formed thereon and a patterned hard mask layer formed on a top surface of the fins. The method further includes: forming an isolation material layer covering the semiconductor substrate, the fins, and the patterned hard mask layer; performing planarization of the isolation material layer, stopping at the patterned hard mask layer; and performing oxygen ion implantation to form an oxygen injection region within the fins and the isolation material layer; back-etching the isolation material layer, stopping above the oxygen injection region, to form a remaining portion of the isolation material layer exposing a portion of the fins; and performing thermal annealing to cause a thermal oxidation of a portion of the fins through oxygen ions in the oxygen injection region, thereby forming an oxide layer within the plurality of fins.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: February 20, 2018
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Xinyun Xie, Ming Zhou
  • Patent number: 9893178
    Abstract: A semiconductor device includes a transistor formed in a semiconductor substrate having a main surface. The transistor includes a source region of a first conductivity type, a drain region of the first conductivity type, a channel region of a second conductivity type, a gate trench adjacent to a first sidewall of the channel region, a gate conductive material disposed in the gate trench, the gate conductive material being connected to a gate terminal, and a channel separation trench adjacent to a second sidewall of the channel region. The second sidewall faces the first sidewall via the channel region. The channel separation trench is filled with an insulating separation trench filling consisting of an insulating material in direct contact with the channel region. The source region and the drain region are disposed along a first direction. The first direction is parallel to the main surface.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: February 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser, Franz Hirler
  • Patent number: 9887260
    Abstract: A first parallel pn layer in which first n-type regions and first p-type regions are disposed in a plan view layout of stripes in an element active portion. A second parallel pn layer has a plan view layout of stripes oriented in the same direction as that of the stripes of the first parallel pn layer in a breakdown voltage structure portion. Corner portions of the first parallel pn layer has a plan view shape where stepped regions formed by shortening the length of the first n-type and p-type regions in steps are disposed in a stepwise arrangement. The stepped regions continue with a second parallel pn layer via an intermediate region lower in average impurity concentration than the first parallel pn layer.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 6, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yasushi Niimura, Toshiaki Sakata, Shunji Takenoiri
  • Patent number: 9887266
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorus. The novel red Phosphorus doped substrate enables a desirable low drain-source resistance.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: February 6, 2018
    Assignee: Vishay-Siliconix
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
  • Patent number: 9887259
    Abstract: A semiconductor device—e.g., a super junction power MOSFET—includes a number of columns of one type of dopant formed in a region of another type of dopant. Generally speaking, the columns are modulated in some manner. For example, the widths (e.g., diameters) of some columns are greater than the widths of other columns.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: February 6, 2018
    Assignee: Vishay-Siliconix
    Inventors: Deva Pattanayak, Olof Tornblad
  • Patent number: 9881916
    Abstract: To improve a tradeoff between ON voltage and ON/OFF loss while maintaining short-circuit tolerance, provided is a semiconductor device including an IGBT element; a super junction transistor element connected in parallel with the IGBT element; and a limiting section that limits a voltage applied to a gate terminal of the IGBT element more than a voltage applied to a gate terminal of the super junction transistor element.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 30, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Tatsuya Naito, Masahito Otsuki
  • Patent number: 9881812
    Abstract: The power module includes: a first metallic circuit pattern, a semiconductor device disposed on the first metallic circuit pattern; a leadframe electrically connected to the semiconductor device; and a stress buffering layer disposed on an upper surface of the semiconductor device, and capable of buffering a CTE difference between the semiconductor device and the leadframe. The leadframe is connected to the semiconductor device via the stress buffering layer, a CTE of the stress buffering layer is equal to or less than a CTE of the leadframe, and a cross-sectional shape of the stress buffering layer is L-shape. There is provided: the power module capable of realizing miniaturization and large current capacity, and reducing cost thereof by using leadframe structure, and capable of reducing a variation in welding and improving a yield without damaging a semiconductor device; and a fabrication method for such a power module.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: January 30, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Katsuhiko Yoshihara, Masao Saito
  • Patent number: 9882055
    Abstract: A manufacturing method of a TFT substrate structure is provided, in which a graphene layer is formed on a semiconductor layer and after the formation of a second metal layer, the second metal layer is used as a shielding mask to conduct injection of fluoride ions into the graphene layer to form a modified area in a portion of the graphene layer that is located on and corresponds to a channel zone of the semiconductor layer. The modified area of the graphene layer shows a property of electrical insulation and a property of blocking moisture/oxygen so as to provide protection to the channel zone. Portions of the graphene layer that are located under source and drain electrodes are not doped with ions and preserve the excellent electrical conduction property of graphene to provide electrical connection between the source and drain electrodes and the semiconductor layer.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 30, 2018
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Yue Wu
  • Patent number: 9876107
    Abstract: A semiconductor device includes a semiconductor substrate and a semiconductor element arranged on a predetermined surface side of the semiconductor substrate. The semiconductor element includes: a first region portion at which a first conductivity type semiconductor region is arranged on the surface side of the semiconductor substrate; a second region portion at a position separated from the first region portion; and a gate electrode arranged between the first region portion and the second region portion through an insulating film. In the first region portion, a first conductivity type semiconductor region is arranged. In the second region portion, a first conductivity type semiconductor region and a second conductivity type semiconductor region are alternately arranged.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: January 23, 2018
    Assignee: DENSO CORPORATION
    Inventor: Shinichiro Yanagi
  • Patent number: 9876104
    Abstract: A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: January 23, 2018
    Assignee: Monolith Semiconductor Inc.
    Inventors: Kevin Matocha, Kiran Chatty, Sujit Banerjee
  • Patent number: 9865678
    Abstract: A semiconductor device includes a semiconductor substrate and epitaxial layer of a first conductivity type with the epitaxial layer on a top surface of the substrate. A body region of a second conductivity type opposite the first conductivity type is disposed near a top surface of the epitaxial layer. A first conductivity type source region is inside the body region and a drain is at a bottom surface of the substrate. An inslated gate overlaps the source and body regions. First and second trenches in the epitaxial layer are lined with insulation material and filled with electrically conductive material. Second conductivity type buried regions are positioned below the trenches. Second conductivity type charge linking paths along one or more walls of the first trench electrically connect a first buried region to the body region. A second buried region is separated from the body region by portions of the expitaxial layer.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 9, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 9865722
    Abstract: A semiconductor device includes a GaN FET with an overvoltage clamping component electrically coupled to a drain node of the GaN FET and coupled in series to a voltage dropping component. The voltage dropping component is electrically coupled to a terminal which provides an off-state bias for the GaN FET. The overvoltage clamping component conducts insignificant current when a voltage at the drain node of the GaN FET is less than the breakdown voltage of the GaN FET and conducts significant current when the voltage rises above a safe voltage limit. The voltage dropping component is configured to provide a voltage drop which increases as current from the overvoltage clamping component increases. The semiconductor device is configured to turn on the GaN FET when the voltage drop across the voltage dropping component reaches a threshold value.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer Pendharkar, Naveen Tipirneni
  • Patent number: 9865706
    Abstract: Embodiments described herein generally relate to methods and structures for forming precise fins comprising Group III-V elements on a silicon substrate. A buffer layer is deposited in a trench formed in the dielectric material on a substrate. An isolation layer is then deposited over the buffer layer. A portion of the isolation layer is removed allowing for a precisely sized Group III-V channel layer to be deposited on the isolation layer.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: January 9, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Bao, Chun Yan
  • Patent number: 9865676
    Abstract: A power semiconductor device includes a substrate, a main body, and an electrode unit. The main body includes an active portion disposed on the substrate, an edge termination portion, and an insulating layer disposed on the edge termination portion. The edge termination portion includes first-type semiconductor region, a second-type semiconductor region and a top surface. The first-type semiconductor region is adjacent to the active portion and has a first-type doping concentration decreased from the top surface toward the substrate. The electrode unit includes a first electrode disposed on the insulating layer, and a second electrode disposed on the substrate.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: January 9, 2018
    Assignee: MACROBLOCK, INC.
    Inventors: Chih-Fang Huang, Kung-Yen Lee, Chia-Hui Cheng, Sheng-Zhong Wang
  • Patent number: 9859408
    Abstract: A power semiconductor transistor includes a semiconductor body coupled to a load terminal, a drift region, a first trench extending into the semiconductor body and including a control electrode electrically insulated from the semiconductor body by an insulator, a source region arranged laterally adjacent to a sidewall of the first trench and electrically connected to the load terminal, a channel region arranged laterally adjacent to the same trench sidewall as the source region, a second trench extending into the semiconductor body, and a guidance zone electrically connected to the load terminal and extending deeper into the semiconductor body than the first trench. The guidance zone is adjacent the opposite sidewall of the first trench as the source region and adjacent one sidewall of the second trench. In a section arranged deeper than the bottom of the first trench, the guidance zone extends laterally towards the channel region.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 9859378
    Abstract: A method of producing a semiconductor device includes providing a semiconductor body having a front side 10-1 and a back side, wherein the semiconductor body includes a drift region having dopants of a first conductivity type and a body region having dopants of a second conductivity type complementary to the first conductivity type, a transition between the drift region and the body region forming a pn-junction. The method further comprises: creating a contact groove in the semiconductor body, the contact groove extending into the body region along a vertical direction pointing from the front side to the back side; and filling the contact groove at least partially by epitaxially growing a semiconductor material within the contact groove, wherein the semiconductor material has dopants of the second conductivity type.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Wagner, Johannes Baumgartl, Volodymyr Komarnitskyy
  • Patent number: 9853168
    Abstract: A diode is provided which includes at least one diode element which has a plurality of N-type regions and a plurality of P-type regions, the N-type regions and the P-type regions being alternately arranged in series to form PN junctions, and an insulated substrate which has electric insulation. The N-type regions and the P-type regions are formed on the insulated substrate.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 26, 2017
    Assignee: DENSO CORPORATION
    Inventor: Takeshi Fukazawa