Polysilicon Resistor Patents (Class 257/380)
  • Patent number: 7659607
    Abstract: A storage apparatus 10 is disclosed, that comprises a wiring substrate 11 having a first surface and a second surface, a flat type external connection terminal 12a disposed on the first surface of the wiring substrate 11, a semiconductor device 14 disposed on the second surface of the wiring substrate 11 and having a connection terminal 14a connected to the flat type external connection terminal 12a, a molding resin 15 for coating the semiconductor device 14 on the second surface of the wiring substrate 11, a card type supporting frame 10a having a concave portion or a hole portion fitting the wiring substrate 11, the semiconductor device 14, and the molding resin 15 in such a manner that the flat type external connection terminal 12a is exposed to the first surface of the wiring substrate 11, and adhesive resin a adhering integrally the flat type external connection terminal 12a, the wiring substrate 11, the semiconductor device 14, the molding resin 15, and the card type supporting frame 10a.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: February 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Iwasaki
  • Publication number: 20100019328
    Abstract: A semiconductor process and apparatus fabricate a metal gate electrode (30) and an integrated semiconductor resistor (32) by forming a metal-based layer (26) and semiconductor layer (28) over a gate dielectric layer (24) and then selectively implanting the resistor semiconductor layer (28) in a resistor area (97) to create a conductive upper region (46) and a conduction barrier (47), thereby confining current flow in the resistor semiconductor layer (36) to only the top region (46) in the finally formed device.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Inventors: Da Zhang, Chendong Zhu, Xiangdong Chen, Melanie Sherony
  • Publication number: 20090242960
    Abstract: A semiconductor memory device includes a semiconductor substrate, a memory cell provided on the semiconductor substrate and having a stacked gate structure formed by sequentially stacking a tunnel insulation film, a charge storage layer, a block insulation film, and a control gate electrode, a first transistor having a first gate electrode provided on the semiconductor substrate via a gate insulation film, and a resistor element provided on the semiconductor substrate and formed of polysilicon. The control gate electrode is entirely formed of a silicide layer. An upper portion of the first gate electrode partially includes a silicide layer.
    Type: Application
    Filed: March 19, 2009
    Publication date: October 1, 2009
    Inventor: Makoto SAKUMA
  • Patent number: 7595535
    Abstract: A resistor for a semiconductor device is provided. The resistor can include a first polysilicon layer formed on a semiconductor substrate; an insulating layer formed on regions of the first polysilicon layer; a second polysilicon layer formed on the insulating layer; and a contact electrically connected to the first polysilicon layer and the second polysilicon layer. The portions of the first polysilicon layer that do not have the insulating layer formed thereupon have a higher impurity ion concentration than that of the regions on which the insulating layer is formed.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: September 29, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Woong Je Sung
  • Publication number: 20090236669
    Abstract: A method for fabricating metal gate transistors and a polysilicon resistor is disclosed. First, a substrate having a transistor region and a resistor region is provided. A polysilicon layer is then formed on the substrate to cover the transistor region and the resistor region of the substrate. Next, a portion of the polysilicon layer disposed in the resistor is removed, and the remaining polysilicon layer is patterned to create a step height between the surface of the polysilicon layer disposed in the transistor region and the surface of the polysilicon layer disposed in the resistor region.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Yi-Wen Chen, Li-Wei Cheng, Che-Hua Hsu, Chih-Hao Yu, Cheng-Hsien Chou, Chien-Ming Lai, Tian-Fu Chiang, Chien-Ting Lin, Guang-Hwa Ma
  • Patent number: 7586162
    Abstract: A high value resistive device in an integrated circuit is disclosed, including a pair of substantially similar resistor segments each having an elongated semiconductor channel of e.g. silicon, lightly doped as would be appropriate for a low-threshold depletion mode FET. Disposed above the channel is an insulator layer, which is preferably much thicker than a typical gate insulator thickness. A shielding conductor is disposed generally overlaying the channel, connected to and extending from one end of the channel nearly to the other end of the channel. With the overlaying conductor connected to a first end of each segment, the plurality of segments are coupled in series, having first ends coupled together or second ends coupled together. A plurality or multiplicity of such segment pairs may be coupled in series to reduce nonlinearities at increased voltage levels.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 8, 2009
    Assignee: Peregrine Semiconductor Corporation
    Inventor: Dylan J. Kelly
  • Patent number: 7566607
    Abstract: A semiconductor device includes a semiconductor substrate, a polysilicon pattern formed on the semiconductor substrate via an insulation film, an interlayer insulation film formed on the semiconductor substrate so as to cover the polysilicon pattern, and a metal interconnection layer pattern formed on the interlayer insulation film, wherein the metal interconnection layer pattern carrying silicon nitride films respectively on a top surface, a bottom surface and sidewall surfaces thereof.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: July 28, 2009
    Assignee: Ricoh Company, Ltd.
    Inventor: Masanori Dainin
  • Patent number: 7538397
    Abstract: A semiconductor device includes a resistor element covered by a silicon oxide film. In the semiconductor device, with respective gate electrodes of MIS transistors and impurity doped layers, i.e., non-silicide regions exposed, thermal treatment for activating an impurity and silicidization are performed. Thus, auto-doping of an impurity is suppressed, so that variations in a resistance value of a resistor are suppressed. Also, the gate electrodes of the MIS transistors and the like are exposed when thermal treatment for activating an impurity, and therefore breakdown of respective gate insulation films of the MIS transistors hardly occurs.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: May 26, 2009
    Assignee: Panasonic Corporation
    Inventor: Naoki Kotani
  • Patent number: 7531877
    Abstract: A semiconductor device has a silicon-on-insulator (SOI) substrate comprised of a silicon substrate, a buried insulating film disposed on the silicon substrate, and a single-crystal silicon device forming layer disposed on the buried insulating film. A bleeder resistor circuit comprises resistors each formed of the single-crystal silicon device forming layer. A MOS transistor has a thin gate oxide film disposed on the single-crystal silicon device forming layer and a gate electrode disposed on the thin gate oxide film. Electrodes are disposed over the respective resistors for fixing a resistance of the resistors, the electrodes being made of the same material as that of the gate electrode of the MOS transistor. Impurity diffusion regions are disposed under the respective resistors and in the silicon substrate for fixing the resistance of the resistors.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: May 12, 2009
    Assignee: Seiko Instruments Inc.
    Inventor: Hiroaki Takasu
  • Patent number: 7521761
    Abstract: A layout structure for a CMOS circuit comprises a transistor layer forming P-type transistors 11 and 21 and N-type transistors 12 and 22, and a resistor layer which includes a resistor 13 formed to have a predetermined length and to make plural appropriate portions or the entire of the resistor along a direction of the length satisfy a mask rule necessary for providing VIAs, the resistor being connected to appropriate connecting portions of the P-type transistors and the N-type transistors through the VIAs by metal wires 31 formed of a metal layer, and the resistor having a predetermined circuit resistance which can be set based on the positions of the appropriate connecting portions.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: April 21, 2009
    Assignee: Fujitsu Limited
    Inventor: Yoshihiko Satsukawa
  • Patent number: 7489027
    Abstract: A storage apparatus 10 is disclosed, that comprises a wiring substrate 11 having a first surface and a second surface, a flat type external connection terminal 12a disposed on the first surface of the wiring substrate 11, a semiconductor device 14 disposed on the second surface of the wiring substrate 11 and having a connection terminal 14a connected to the flat type external connection terminal 12a, a molding resin 15 for coating the semiconductor device 14 on the second surface of the wiring substrate 11, a card type supporting frame 10a having a concave portion or a hole portion fitting the wiring substrate 11, the semiconductor device 14, and the molding resin 15 in such a manner that the flat type external connection terminal 12a is exposed to the first surface of the wiring substrate 11, and adhesive resin a adhering integrally the flat type external connection terminal 12a, the wiring substrate 11, the semiconductor device 14, the molding resin 15, and the card type supporting frame 10a.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: February 10, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Iwasaki
  • Patent number: 7485933
    Abstract: A semiconductor device has a first insulating film formed on a semiconductor substrate and resistors disposed on the first insulating film. Each of the resistors is formed of a polycrystalline silicon film having a low concentration impurity region and high concentration impurity regions disposed on opposite sides of the low concentration impurity region. The low concentration impurity regions of the plurality of resistors have different lengths from one another. A second insulating film is disposed on the resistors. Contact holes are formed on the second insulating film and are disposed on the high concentration impurity regions. First metal wirings are connected to the respective contact holes and connect the resistors in series. A second metal wiring is connected to one of the resistors located at one end of the resistors connected in series. The second metal wiring covers the low concentration impurity region of all of the resistors.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 3, 2009
    Assignee: Seiko Instruments Inc.
    Inventor: Hirofumi Harada
  • Publication number: 20090001477
    Abstract: Embodiments of the invention generally relate to semiconductor devices and more specifically to forming partially silicided and fully silicided structures. Fabricating the partially silicided and fully silicided structures may involve creating one or more gate stacks. A polysilicon layer of a first gate stack may be exposed and a first metal layer may be deposited thereon to create a partially silicided structure. Thereafter, a polysilicon layer of a second gate stack may be exposed and a second metal layer may be deposited thereon to form a fully silicided structure. In some embodiments, the polysilicon layers of one or more gate stacks may not be exposed, and resistors may be formed with the unsilicided polysilicon layers.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Patent number: 7452765
    Abstract: SEU-hardening series resistances loads are formed within the gate structures of cross-coupled inverters of a latch. For some embodiments, the gate contact for the input of each cross-coupled inverter has a sufficiently high resistance to provide the SEU-hardening series resistance. For other embodiments, a conductive trace layer coupled to the input of each cross-coupled inverter includes a high-resistivity portion that provides the SEU-hardening series resistance.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 18, 2008
    Assignee: XILINX, Inc.
    Inventors: Martin L. Voogel, Austin H. Lesea, Joseph J. Fabula, Carl H. Carmichael, Shahin Toutounchi, Michael J. Hart, Steven P. Young, Kevin T. Look, Jan L. de Jong
  • Patent number: 7439147
    Abstract: A resistor for a semiconductor device is provided. The resistor can include a first polysilicon layer formed on a semiconductor substrate; an insulating layer formed on regions of the first polysilicon layer; a second polysilicon layer formed on the insulating layer; and a contact electrically connected to the first polysilicon layer and the second polysilicon layer. The portions of the first polysilicon layer that do not have the insulating layer formed thereupon have a higher impurity ion concentration than that of the regions on which the insulating layer is formed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 21, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Woong Je Sung
  • Patent number: 7411284
    Abstract: A storage apparatus 10 is disclosed, that comprises a wiring substrate 11 having a first surface and a second surface, a flat type external connection terminal 12a disposed on the first surface of the wiring substrate 11, a semiconductor device 14 disposed on the second surface of the wiring substrate 11 and having a connection terminal 14a connected to the flat type external connection terminal 12a, a molding resin 15 for coating the semiconductor device 14 on the second surface of the wiring substrate 11, a card type supporting frame 10a having a concave portion or a hole portion fitting the wiring substrate 11, the semiconductor device 14, and the molding resin 15 in such a manner that the flat type external connection terminal 12a is exposed to the first surface of the wiring substrate 11, and adhesive resin a adhering integrally the flat type external connection terminal 12a, the wiring substrate 11, the semiconductor device 14, the molding resin 15, and the card type supporting frame 10a.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: August 12, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Iwasaki
  • Patent number: 7405470
    Abstract: A storage apparatus 10 is disclosed, that comprises a wiring substrate 11 having a first surface and a second surface, a flat type external connection terminal 12a disposed on the first surface of the wiring substrate 11, a semiconductor device 14 disposed on the second surface of the wiring substrate 11 and having a connection terminal 14a connected to the flat type external connection terminal 12a, a molding resin 15 for coating the semiconductor device 14 on the second surface of the wiring substrate 11, a card type supporting frame 10a having a concave portion or a hole portion fitting the wiring substrate 11, the semiconductor device 14, and the molding resin 15 in such a manner that the flat type external connection terminal 12a is exposed to the first surface of the wiring substrate 11, and adhesive resin a adhering integrally the flat type external connection terminal 12a, the wiring substrate 11, the semiconductor device 14, the molding resin 15, and the card type supporting frame 10a.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: July 29, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Iwasaki
  • Patent number: 7365397
    Abstract: The semiconductor device comprises a resistance element 26 formed of polysilicon film formed on a silicon substrate 10, which includes a resistor part 26a having a resistance value set at a prescribed value, contact parts 26b formed on both sides of the resistor part 26a and connected to a line for applying a fixed potential, and a heat radiation part 26c connected to the contact part 26b, whereby the semiconductor device can include the resistance element having a small parasitic capacitance and good heat radiation.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 29, 2008
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Nomura
  • Patent number: 7361960
    Abstract: A first insulator film and a first polysilicon film are formed on first and second element regions of a semiconductor substrate. The first insulator film and first polysilicon film are removed from the second element region. A second insulator film is formed on the second element region from which the first insulator film and first polysilicon film are removed, and a second polysilicon film is formed on the second insulator film. The first polysilicon film is processed, forming a first gate electrode at the first element region. The second polysilicon film is processed, forming a second gate electrode at the second element region. A silicon nitride film is removed from an element-isolation region. A metal film is formed on the region from which the silicon nitride film has been removed, and connects the first and second gate electrodes.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: April 22, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshitaka Tsunashima, Kiyotaka Miyano, Yukihiro Ushiku
  • Publication number: 20080068047
    Abstract: A disclosed method of producing a semiconductor device includes the steps of (A) forming a gate electrode and a trimming fuse on a semiconductor substrate; (B) forming a side wall insulating film covering the gate electrode and the trimming fuse; (C) forming a conductive film on the side wall insulating film and patterning the conductive film to form an etching stop layer and a resistance element; (D) forming a side wall on the sides of the gate electrode; (E) repeating, one or more times, sub-steps of forming an interlayer insulating film and of forming an upper wiring layer, and then forming a passivation film; (F) removing the passivation film and the interlayer insulating film in the trimming opening forming area until the etching stop layer is exposed; and (G) forming the trimming opening by removing the etching stop layer in the trimming opening forming area.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 20, 2008
    Inventor: Yasunori Hashimoto
  • Patent number: 7342285
    Abstract: A method of fabricating a semiconductor device is disclosed. First, a substrate is provided. The substrate includes at least a transistor area having a gate structure thereon, a capacitor area having a first electrode thereon and a resistor area having a second electrode thereon. The capacitor area and the resistor area both have an isolation structure therein. Then, first spacers and source/drain regions on both sides of the gate are sequentially formed. After that, a dielectric layer and a first conductive material layer are sequentially formed on the substrate. Next, the first conductive material layer is patterned to form a third electrode in the capacitor area and a conductive layer in the resistor area. Then, second spacers are formed. Afterwards, the exposed dielectric layer is removed. Finally, a self-aligned silicide process is performed to form a metal salicide layer to cover the surface of the device.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: March 11, 2008
    Assignee: United Microeletronics Corp.
    Inventor: Ching-Hung Kao
  • Patent number: 7323751
    Abstract: A thin film resistor and at least one metal interconnect are formed in an integrated circuit. A first dielectric layer is formed over a metal interconnect layer. A thin film resistor is formed on the first dielectric layer and a second dielectric layer formed over the thin film resistor. Thin film resistor vias and the at least one trench are formed concurrently in the second dielectric layer. A trench via is then formed in the at least one trench. The trench via, the at least one trench and the thin film resistor vias are filled with a contact material layer to form thin film resistor contacts and at least one conductive line coupled to the metal interconnect layer.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: January 29, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric Williams Beach, Rajneesh Jaiswal
  • Patent number: 7319254
    Abstract: A semiconductor device having resistors in a peripheral area and fabrication method thereof are provided. A mold layer is formed on a semiconductor substrate. The mold layer is patterned to form first molding holes and a second molding hole in the mold layer. A storage node layer is formed on the mold layer as well as in the first and second molding holes. The storage node layer is patterned to form storage nodes in the first molding holes and a portion of a resistor in the second hole.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: January 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Hwa Kwak, Byung-Seo Kim
  • Patent number: 7317239
    Abstract: A method of manufacturing a resistor is provided. At first, a semiconductor layer including at least a high resistance region and a low resistance region is formed on a substrate. Following that, a first ion implantation process is performed to the entire surface of the semiconductor layer, and a second ion implantation process is performed to the portions of the semiconductor layer within a predetermined region, so that the semiconductor layer has a higher doping concentration within the predetermined region than in the other regions. Therein, the predetermined region overlaps the low resistance region, the junction between the low resistance region and the high resistance region, and the portions of the high resistance region adjacent to the junction between the low resistance region and the high resistance region.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: January 8, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Hsiung Chen, Yue-Shiun Lee
  • Patent number: 7271454
    Abstract: A contact connected to a word line is formed on a gate electrode of an access transistor of an SRAM cell. The contact passes through an element isolation insulating film to reach an SOI layer. A body region of a driver transistor and that of the access transistor are electrically connected with each other through the SOI layer located under the element isolation insulating film. Therefore, the access transistor is in a DTMOS structure having the gate electrode connected with the body region through the contact, which in turn is also electrically connected to the body region of the driver transistor. Thus, operations can be stabilized while suppressing increase of an area for forming the SRAM cell.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: September 18, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Takashi Ipposhi, Shigeto Maegawa, Koji Nii
  • Patent number: 7247511
    Abstract: A memory cell comprises a chalcogenide random access memory (CRAM) cell and a CMOS circuit. The CMOS circuit accesses the CRAM cell. The CRAM cell has a cross-sectional area that is determined by a thin film process (e.g., a chalcogenide deposition thin film process) and by an iso-etching process. If desired, the chalcogenide structure may be implemented in series with a semiconductor device such as a diode or a selecting transistor. The diode drives a current through the chalcogenide structure. The selecting transistor drives a current through the chalcogenide structure when enabled by a voltage at a gate terminal of the selecting transistor. The selecting transistor has a gate terminal, a source terminal, and a drain terminal; the gate terminal may be operatively coupled to a word line of a memory array, the source terminal may be operatively coupled to a drive line of the memory array, and the drain terminal may be operatively coupled to a bit line of the memory array.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: July 24, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsiang-Lan Lung, Yi-Chou Chen
  • Patent number: 7244995
    Abstract: A memory circuit and method to reduce array noise due to wordline coupling is disclosed. The circuit includes a plurality of memory cells arranged in rows (702, 704, and 706) and columns (750, 752). Each row has a first part (1102) and a second part (1108). A first conductor (750) is coupled to a respective column of memory cells in each first part. A second conductor (752) is coupled to a respective column in each second part. A third conductor is coupled to a control terminal of each memory cell in the first part (1102) of a first row and the second part (1108) of a second row.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: July 17, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Sudhir K. Madan
  • Patent number: 7217981
    Abstract: Tunable TCR resistors incorporated into integrated circuits and a method fabricating the tunable TCR resistors. The tunable TCR resistors including two or more resistors of two or more different materials having opposite polarity and different magnitude TCRs, the same polarity and different magnitude TCRs or having opposite polarity and about the same TCRs.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Richard J. Rassel, Robert M Rassel
  • Patent number: 7208814
    Abstract: A resistive device includes a resistive region of a semiconductor material that includes a first region and a second region, wherein the first region has a higher dopant concentration than the second region, and wherein a resistance-determining width of a current path through the first region is determined by a portion of a doping boundary between the first region and the second region.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: April 24, 2007
    Assignee: Infineon Technologies AG
    Inventor: Stefan Pompl
  • Patent number: 7195966
    Abstract: Methods of fabricating semiconductor devices are provided. Transistors are provided on a semiconductor substrate. A first interlayer insulating layer is provided on the transistors. A second interlayer insulating layer is provided on the first interlayer insulating layer. The second interlayer insulating layer defines a trench such that at least a portion of an upper surface of the first interlayer insulating layer is exposed. A resistor pattern is provided in the trench such that the at least a portion of the resistor pattern contacts the exposed portion of the first interlayer insulating layer. Related methods are also provided.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: March 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Taek Park, Jung-Dal Choi, Jung-Young Lee, Hyun-Suk Kim
  • Patent number: 7183626
    Abstract: A semiconductor device which includes a passivation structure formed with a conductive strip of resistive material that crosses itself once around the active region of the device to form a first closed loop, a continuous strip that loops around the first closed loop without crossing itself which crosses itself a second time to form a second closed loop.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: February 27, 2007
    Assignee: International Rectifier Corporation
    Inventor: Niraj Ranjan
  • Patent number: 7105912
    Abstract: A resistor structure includes a substrate, a semiconductor layer positioned on the substrate, a salicide block positioned on portions of the surface of the semiconductor layer, and at least a salicide layer positioned on the portions of the surface of the semiconductor layer adjacent to the salicide block. The semiconductor layer has a predetermined region overlapping the salicide layer, the junction between the salicide layer and the salicide block, and the portions of the salicide block adjacent to the junction between the salicide layer and the salicide block. The semiconductor layer has a higher doping concentration within the predetermined region than in the other regions.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: September 12, 2006
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Hsiung Chen, Yue-Shiun Lee
  • Patent number: 7084478
    Abstract: A semiconductor device with a load resistor is manufactured such that a contact is formed at both ends of the load resistor, and at least one contact is formed between the contacts, in order to prevent impurities from being generated within each contact while the contacts are being generated by etching an insulation layer phenomena of electric charge build up from occurring when an etching process fabricates an insulation layer to generate the contact in a long load resistor located under the insulation layer and insulated electrically and physically.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: August 1, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won Shik Lee, Joon-Mo Kwon, Tae Kyung Kim, Jin-Kee Choi, Dong-Gun Park, Hyeong-Chan Ko, Hong-Joon Moon
  • Patent number: 7064398
    Abstract: In a full CMOS SRAM having a lateral type cell (memory cell having three partitioned wells arranged side by side in a word line extending direction and longer in the word line direction than in the bit line direction) including first and second driver MOS transistors, first and second load MOS transistors and first and second access MOS transistors, two capacitors are arranged spaced apart from each other on embedded interconnections to be storage nodes, with lower and upper cell plates cross-coupled to each other.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 20, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Takahiro Yokoyama
  • Patent number: 7064414
    Abstract: A structure and associated method for annealing a trapped charge from a semiconductor device. The semiconductor structure comprises a substrate and a first heating element. The substrate comprises a bulk layer, an insulator layer and a device layer. The first heating element is formed within the bulk layer. A first side of the first heating element is adjacent to a first portion of the insulator layer. The first heating element is adapted to be selectively activated to generate thermal energy to heat the first portion of the insulator layer and anneal a trapped electrical charge from the first portion of the insulator layer.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: June 20, 2006
    Assignee: International Business Machines Corporation
    Inventors: John M Aitken, Ethan H. Cannon, Philip J. Oldiges, Alvin W. Strong
  • Patent number: 7019392
    Abstract: A storage apparatus 10 is disclosed, that comprises a wiring substrate 11 having a first surface and a second surface, a flat type external connection terminal 12a disposed on the first surface of the wiring substrate 11, a semiconductor device 14 disposed on the second surface of the wiring substrate 11 and having a connection terminal 14a connected to the flat type external connection terminal 12a, a molding resin 15 for coating the semiconductor device 14 on the second surface of the wiring substrate 11, a card type supporting frame 10a having a concave portion or a hole portion fitting the wiring substrate 11, the semiconductor device 14, and the molding resin 15 in such a manner that the flat type external connection terminal 12a is exposed to the first surface of the wiring substrate 11, and adhesive resin a adhering integrally the flat type external connection terminal 12a, the wiring substrate 11, the semiconductor device 14, the molding resin 15, and the card type supporting frame 10a.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: March 28, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Iwasaki
  • Patent number: 7005712
    Abstract: A semiconductor device of the present invention includes a semiconductor layer 10, an insulation gate type heavy insulated transistor 200 and an insulation gate type light insulated transistor 300 having different drain-source breakdown voltages and formed on the semiconductor layer 10, and a resistive impurity layer 24 formed on the semiconductor layer 10.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: February 28, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Tetsumasa Sato
  • Patent number: 6992916
    Abstract: A high resistor SRAM memory cell to reduce soft error rate includes a first inverter having an output as a first memory node, and a second inverter having an output as a second memory node. The second memory node is coupled to an input of the first inverter through a first resistor. The first memory node is coupled to an input of the second inverter through a second resistor. A pair of access transistors are respectively coupled to a pair of bit lines, a split word line and one of the memory nodes. The resistors are prepared by coating a layer of silicide material on a selective portion of the gate structure of the transistors included in the first inverter, and connecting a portion of the gate structure that is substantially void of the silicide material to the drain of the transistors included in the second inverter.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: January 31, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 6943414
    Abstract: According to one exemplary embodiment, an integrated circuit chip comprises a first interconnect metal layer. The integrated circuit chip further comprises a first intermediate dielectric layer situated over the first interconnect metal layer. The integrated circuit chip further comprises a metal resistor situated over the first intermetallic dielectric layer and below a second intermetallic dielectric layer. The integrated circuit chip further comprises a second interconnect metal layer over the second intermetallic dielectric layer. The integrated circuit chip further comprises a first intermediate via connected to first terminal of the metal resistor, where the first intermediate via is further connected to a first metal segment patterned in the second interconnect metal layer.
    Type: Grant
    Filed: February 9, 2002
    Date of Patent: September 13, 2005
    Assignee: Newport Fab, LLC
    Inventors: Arjun Kar Roy, David Howard, Q.Z. Liu
  • Patent number: 6940133
    Abstract: An integrated circuit trim structure includes a dopant source, a target trim element formed in proximity to the dopant source, and a conductive heating element. The heater element is formed in proximity to the dopant source and includes first and second terminals and a trapezoid shaped region formed between the first and second terminals. As predefined current pulse is applied to the first terminal to promote current flow between the first and second terminals, a local heat source is created at a predefined location within the trapezoid shaped region and in proximity to the dopant source such that dopant flows from the dopant source into the target trim element to change the conductive characteristics of the target trim element.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: September 6, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Philipp Lindorfer, Vladislav Vashchenko, Robert Drury
  • Patent number: 6936904
    Abstract: A light-receiving element having a light-receiving portion is formed on a chip surface. A digital circuit element, an analog circuit element and a circuit adjusting element are provided for cooperatively processing a detection signal produced from the light-receiving element. And, a light-shielding film is provided for selectively setting a light-receiving region on the chip surface.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: August 30, 2005
    Assignee: Denso Corporation
    Inventors: Inao Toyoda, Masaki Takashima, Yasutoshi Suzuki
  • Patent number: 6924560
    Abstract: A method and system is disclosed for an SRAM device cell having at least one device of a first semiconductor type and at lease one device of a second semiconductor type. The cell has a first device of the first type constructed as a part of a first FinFET having one or more devices of the first type, a first device of the second type whose poly region is an extension of a poly region of the first device of the first type with no contact needed to connect therebetween, wherein the two devices are constructed using a silicon-on-insulator (SOI) technology so that they are separated by an insulator region therebetween so as to minimize the distance between the two devices.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: August 2, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ping-Wei Wang, Chang-Ta Yang
  • Patent number: 6921962
    Abstract: A thin film resistor (60) is contained between two metal interconnect layers (40, 100) of an integrated circuit. Contact may be made to the resistor (60) through vias (95) from the metal layer (100) above the resistor (60) to both the thin film resistor (60) and the underlying metal layer (40) simultaneously. The resistor (60) may include portions of a hard mask (70) under the vias (95) to protect the resistor material (60) during the via (95) etch. This design provides increased flexibility in fabricating the resistor (60) since processes, materials, and chemicals do not have to satisfy the conditions of both the resistor (60) and the rest of the integrated circuit (especially the interconnect layer 40) simultaneously.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 26, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Fred D. Bailey, Stuart M. Jacobsen
  • Patent number: 6894365
    Abstract: A resistance element of a semiconductor device includes a first resistance pattern and a second resistance pattern formed adjacent to the first resistance pattern at a lower level, wherein the second resistance pattern is defined by the first resistance pattern in a self-aligned relationship and connected to the first resistance pattern in series.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: May 17, 2005
    Assignee: Ricoh Company, Ltd.
    Inventor: Yoshinori Ueda
  • Patent number: 6885070
    Abstract: In a semiconductor memory device including memory cells and a peripheral circuit unit, a memory cell has a first gate structure formed on a semiconductor substrate; a first impurity region of a first conductive type formed in the substrate on a first side of the gate structure; and a second impurity region formed in the substrate on a second side of the gate structure, the second impurity region including: a third impurity region of the first conductive type, a fourth impurity region of the first conductive type between the third impurity region and the second side of the gate structure, and a halo ion region of a second conductive type formed adjacent to the fourth impurity region.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 26, 2005
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Sang-Bai Yi, Jae-Min Yu, Sung-Chul Lee
  • Patent number: 6873028
    Abstract: A chip resistor comprising a substrate having opposite parallel symmetrical first and second surfaces, a central longitudinal plane of symmetry, separate and spaced first and second resistive layers on the first and second surfaces. The resistive layers are electrically connected in parallel to each other and the first and second surfaces of the substrate are symmetrically located with respect to and equidistant from a central longitudinal plane. Thus, when electrical current passes through the resistive layers, a temperature distribution within the substrate will be substantially symmetrical about the central longitudinal plane of the substrate for eliminating thermal bending thereof. The splitting of the surge current between two resistive layers results in the lower temperature in each resistive layer when compared with the temperature in the single resistive layer of the prior art chip resistor loaded by the same current.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: March 29, 2005
    Assignee: Vishay Intertechnology, Inc.
    Inventor: Michael Belman
  • Patent number: 6873016
    Abstract: A semiconductor device including a resistor and a method of forming the same. In the semiconductor device, a conductive pattern, which connects source regions, and a resistor are formed of the same material, which can be polysilicon. In the method, the conductive pattern and the resistor are simultaneously formed. Thus, it is possible to obtain a constant sheet resistance without an additional photo mask.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: March 29, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Taek Park, Hong-Soo Kim
  • Patent number: 6870231
    Abstract: SRAM cells and devices are provided. The SRAM cells may share connections with neighboring cells, including ground, power supply voltage and/or bit line connections. SRAM cells and devices are also provided that include first and second active regions disposed at a semiconductor substrate. Parallel first and second gate electrodes cross over the first and second active regions. One end of the first active region adjacent to the first gate electrode is electrically connected to the second active region adjacent to the first gate electrode through a first node line parallel to the first gate electrode, and the other end of the first active region adjacent to the second gate electrode is electrically connected to the second active region adjacent to the second gate electrode through a second node line parallel to the second gate electrode.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 22, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Bong Kim, Soon-Moon Jung, Jae-Kyun Park
  • Patent number: 6844610
    Abstract: Methods are provided for forming an integrated circuit device including a resistor pattern having a desired resistance value. A low resistive layer is formed on an integrated circuit substrate. An insulating layer is formed on the low resistive layer opposite the integrated circuit substrate. A high resistive layer, which may have a specific resistance of at least about a hundred ??•cm, is formed on the insulating layer opposite the low resistive layer. The low resistive layer, the insulating layer and the high resistive layer define the resistor pattern in a region of the integrated circuit substrate. Integrated circuit devices including resistor patterns as provided by the methods are also provided and methods for forming metal contacts to the resistor pattern are also provided.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: January 18, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Young-Wook Park
  • Patent number: 6815839
    Abstract: The semiconductor memory device includes two PMOS transistors that make the SRAM memory cell. The gate insulating films of these PMOS transistors are formed using a material that has a high permittivity. As a result, the capacitance of memory nodes is increased, and the probability of soft errors is lowered.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: November 9, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Koji Nii, Motoshige Igarashi