Selected Groups Of Complete Field Effect Devices Having Different Threshold Voltages (e.g., Different Channel Dopant Concentrations) Patents (Class 257/391)
  • Patent number: 8653601
    Abstract: This invention provides a current control semiconductor element in which dependence of a sense ratio on a temperature distribution is eliminated and the accuracy of current detection using a sense MOSFET can be improved, and to provide a control device using the current control semiconductor element. The current control semiconductor element 1 includes a main MOSFET 7 that drives a current and a sense MOSFET 8 that is connected to the main MOSFET in parallel and detects a current shunted from a current of the main MOSFET. The main MOSFET is formed using a multi-finger MOSFET that has a plurality of channels and is arranged in a row. When a distance between the center of the multi-finger MOSFET 7 and a channel located farthest from the center of the multi-finger MOSFET 7 is indicated by L, a channel that is located closest to a position distant by a distance of (L/(?3)) from the center of the multi-finger MOSFET is used as a channel for the sense MOSFET 8.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: February 18, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Teppei Hirotsu, Nobuyasu Kanekawa, Itaru Tanabe
  • Patent number: 8643100
    Abstract: A FET includes a gate dielectric structure associated with a single gate electrode, the gate dielectric structure having at least two regions, each of those regions having a different effective oxide thickness, the FET further having a channel region with at least two portions each having a different doping profile. A semiconductor manufacturing process produces a FET including a gate dielectric structure associated with a single gate electrode, the gate dielectric structure having at least two regions, each of those regions having a different effective oxide thickness, the FET further having a channel region with at least two portions each having a different doping profile.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 4, 2014
    Assignee: Broadcom Corporation
    Inventor: Akira Ito
  • Patent number: 8643116
    Abstract: A semiconductor device includes a first MISFET and a second MISFET which are formed over a semiconductor substrate and have the same conductive type. The first MISFET has a first gate insulating film arranged over the semiconductor substrate, a first gate electrode arranged over the first gate insulating film, and a first source region and a first drain region. The second MISFET has a second gate insulating film arranged over the semiconductor substrate, a second gate electrode arranged over the second gate insulating film, and a second source region and a second drain region. The first and the second gate electrode are electrically coupled, the first and the second source region are electrically coupled, and the first and the second drain region are electrically coupled. Accordingly, the first and the second MISFET are coupled in parallel. In addition, threshold voltages are different between the first and the second MISFET.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: February 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Noriaki Maeda
  • Patent number: 8629489
    Abstract: A nonvolatile memory device includes a string selection transistor, a plurality of memory cell transistors, and a ground selection transistor electrically connected in series to the string selection transistor and to the pluralities of memory cell transistors. First impurity layers are formed at boundaries of the channels and the source/drain regions of the memory cell transistors. The first impurity layers are doped with opposite conductivity type impurities relative to the source/drain regions of the memory cell transistors. Second impurity layers are formed at boundaries between a channel and a drain region of the string selection transistor and between a channel and a source region of the ground selection transistor. The second impurity layers are doped with the same conductivity type impurities as the first impurity layers and have a higher impurity concentration than the first impurity layers.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: January 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi
  • Patent number: 8598005
    Abstract: A method and manufacture for memory device fabrication is provided. Spacer formation and junction formation is performed on both: a memory cell region in a core section of a memory device in fabrication, and a high-voltage device region in a periphery section of the memory device in fabrication. The spacer formation and junction formation on both the memory cell region and the high-voltage device region includes performing a rapid thermal anneal. After performing the spacer formation and junction formation on both the memory cell region and the high-voltage device region, spacer formation and junction formation is performed on a low-voltage device region in the periphery section.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: December 3, 2013
    Assignee: Spansion LLC
    Inventors: Simon Siu-Sing Chan, Hidehiko Shiraiwa, Chuan Lin, Lei Xue, Kenichi Ohtsuka, Angela Tai Hui
  • Patent number: 8592898
    Abstract: A method of forming an apparatus includes forming a plurality of deep trenches and a plurality of shallow trenches in a first region of a substrate. At least one of the shallow trenches is positioned between two deep trenches. The shallow trenches and the deep trenches are parallel to each other. A layer of conductive material is deposited over the first region and a second region of the substrate. The layer of conductive material is etched to define lines separated by gaps over the first region of the substrate, and active device elements over the second region of the substrate. The second region of the substrate is masked and the lines are removed from the first region of the substrate. Elongate trenches are etched where the lines were removed while the second region of the substrate is masked.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: November 26, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8580632
    Abstract: To provide a semiconductor device and a method of manufacturing the same capable of suppressing, when a plurality of MIS transistors having different absolute values of threshold voltage is used, the reduction of the drive current of a MIS transistor having a greater absolute value of threshold voltage. The threshold voltage of a second nMIS transistor is greater than the threshold voltage of a first nMIS transistor and the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a second nMIS high-k film included in the second nMIS transistor is lower than the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a first nMIS high-k film included in the first nMIS transistor.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuhiro Onishi, Kazuhiro Tsukamoto
  • Patent number: 8546881
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 1, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8513739
    Abstract: Disclosed are embodiments of an integrated circuit structure that incorporates at least two field effect transistors (FETs) that have the same conductivity type and essentially identical semiconductor bodies (i.e., the same semiconductor material and, thereby the same conduction and valence band energies, the same source, drain, and channel dopant profiles, the same channel widths and lengths, etc.). However, due to different gate structures with different effective work functions, at least one of which is between the conduction and valence band energies of the semiconductor bodies, these FETs have selectively different threshold voltages, which are independent of process variables. Furthermore, through the use of different high-k dielectric materials and/or metal gate conductor materials, the embodiments allow threshold voltage differences of less than 700 mV to be achieved so that the integrated circuit structure can function at power supply voltages below 1.0V.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8507958
    Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein at least one of the source region and the drain region comprises at least one dislocation; an epitaxial semiconductor layer containing silicon located on the source region and the drain region; and a metal silicide layer on the epitaxial semiconductor layer.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 13, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
  • Patent number: 8492875
    Abstract: A nonvolatile memory apparatus includes a first electrode, a second electrode, a variable resistance layer, a resistance value of the variable resistance layer reversibly varying between a plurality of resistance states based on an electric signal applied between the electrodes. The variable resistance layer includes at least a tantalum oxide, and is configured to satisfy 0 <x<2.5 when the tantalum oxide is represented by TaOx; and wherein when a resistance value between the electrodes is in the low-resistance state is RL, a resistance value between the electrodes is in the high-resistance state is RH, and a resistance value of a portion other than the variable resistance layer in a current path connecting a first terminal to a second terminal via the first electrode, the variable resistance layer and the second electrode, is R0, R0 satisfies RL <R0.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: July 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Koichi Osano, Satoru Fujii, Shunsaku Muraoka
  • Patent number: 8476708
    Abstract: According to one embodiment, a semiconductor memory device includes a semiconductor substrate, memory cell array portion, single-crystal semiconductor layer, and circuit portion. The memory cell array portion is formed on the semiconductor substrate, and includes memory cells. The semiconductor layer is formed on the memory cell array portion, and connected to the semiconductor substrate by being formed in a hole extending through the memory cell array portion. The circuit portion is formed on the semiconductor layer. The Ge concentration in the lower portion of the semiconductor layer is higher than that in the upper portion of the semiconductor layer.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi, Masaru Kito, Kiyotaka Miyano, Shinji Mori, Ichiro Mizushima
  • Patent number: 8471320
    Abstract: A memory array layout includes an active region array having a plurality of active regions, wherein the active regions are arranged alternatively along a second direction and parts of the side of the adjacent active regions are overlapped along a second direction; a plurality of first doped region, wherein each first doped region is disposed in a middle region; a plurality of second doped region, wherein each second doped region is disposed in a distal end region respectively; a plurality of recessed gate structures; a plurality of word lines electrically connected to each recessed gate structure respectively; a plurality of digit lines electrically connected to the first doped region respectively; and a plurality of capacitors electrically connected to each second doped region respectively.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 25, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8466519
    Abstract: A mask-defined read-only memory array is formed on a substrate, and includes a first ROM bit and a second ROM bit of opposite polarities. The first ROM bit has a first MOS transistor and a first block layer formed over a first region of the substrate. A second source/drain region of the first MOS transistor and a first diffusion region are formed in a first region of the substrate on opposite sides of the first block layer. The second ROM bit includes a second MOS transistor.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: June 18, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Hsiang Hsu, Ching-Sung Yang, Shih-Jye Shen
  • Patent number: 8450809
    Abstract: Provided is a semiconductor device for applying common source lines with individual bias voltages. The device includes a substrate, cell transistors arrayed in a cell matrix shape on the substrate and configured to have gate insulating patterns, gate electrodes, common source regions, drain regions and channel regions. Word lines are configured to electrically interconnect the gate electrodes with each other. Common source lines are shared between only a pair of the neighboring word lines and are configured to electrically interconnect the common source regions with each other. Drain metal contacts and source metal contacts are arranged in a straight line on the drain regions. Bit lines are electrically connected to the drain metal contacts. And impurity regions are configured to control the threshold voltage of the channel regions.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: May 28, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jin Yang, Yong-Tae Kim
  • Patent number: 8421161
    Abstract: A semiconductor device has a semiconductor substrate in which first and second wells are formed. The substrate and wells are of the same conductivity type, but the second well has a higher impurity concentration than the first well. High-voltage MOS transistors are formed in the first well, and a low-voltage MOS transistor is formed in the second well. The high-voltage MOS transistors include a first transistor having a gate oxide layer with a first thickness and a second transistor having a gate oxide layer with a second thickness less than the first thickness. The low-voltage MOS transistor has a third gate oxide layer with a third thickness less than the first thickness. The second high-voltage MOS transistor provides efficient current conduction.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: April 16, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Kazushige Iwamoto
  • Patent number: 8384160
    Abstract: To provide a semiconductor device and a method of manufacturing the same capable of suppressing, when a plurality of MIS transistors having different absolute values of threshold voltage is used, the reduction of the drive current of a MIS transistor having a greater absolute value of threshold voltage. The threshold voltage of a second nMIS transistor is greater than the threshold voltage of a first nMIS transistor and the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a second nMIS high-k film included in the second nMIS transistor is lower than the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a first nMIS high-k film included in the first nMIS transistor.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuhiro Onishi, Kazuhiro Tsukamoto
  • Patent number: 8304300
    Abstract: An object is to provide a display device which operates stably with use of a transistor having stable electric characteristics. In manufacture of a display device using transistors in which an oxide semiconductor layer is used for a channel formation region, a gate electrode is further provided over at least a transistor which is applied to a driver circuit. In manufacture of a transistor in which an oxide semiconductor layer is used for a channel formation region, the oxide semiconductor layer is subjected to heat treatment so as to be dehydrated or dehydrogenated; thus, impurities such as moisture existing in an interface between the oxide semiconductor layer and the gate insulating layer provided below and in contact with the oxide semiconductor layer and an interface between the oxide semiconductor layer and a protective insulating layer provided on and in contact with the oxide semiconductor layer can be reduced.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichiro Sakata, Toshinari Sasaki, Miyuki Hosoba
  • Patent number: 8283231
    Abstract: A method and circuit in which the drive strength of a FinFET transistor can be selectively modified, and in particular can be selectively reduced, by omitting the LDD extension formation in the source and/or in the drain of the FinFET. One application of this approach is to enable differentiation of the drive strengths of transistors in an integrated circuit by applying the technique to some, but not all, of the transistors in the integrated circuit. In particular in a SRAM cell formed from FinFET transistors the application of the technique to the pass-gate transistors, which leads to a reduction of the drive strength of the pass-gate transistors relative to the drive strength of the pull-up and pull-down transistors, results in improved SRAM cell performance.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: October 9, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Thomas Merelle, Gerben Doornbos, Robert James Pascoe Lander
  • Patent number: 8237220
    Abstract: In a high speed vertical channel transistor, a pillar structure is formed over a substrate, a gate electrode surrounds an outer wall of a lower portion of the pillar structure; and a word line extends in a direction to partially contact an outer wall of the gate electrode. The word line shifts toward a side of the pillar structure resulting in increased transistor speed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Min-Gyu Sung, Heung-Jae Cho, Yong-Soo Kim, Kwan-Yong Lim, Se-Aug Jang
  • Patent number: 8212322
    Abstract: Techniques for combining transistors having different threshold voltage requirements from one another are provided. In one aspect, a semiconductor device comprises a substrate having a first and a second nFET region, and a first and a second pFET region; a logic nFET on the substrate over the first nFET region; a logic pFET on the substrate over the first pFET region; a SRAM nFET on the substrate over the second nFET region; and a SRAM pFET on the substrate over the second pFET region, each comprising a gate stack having a metal layer over a high-K layer. The logic nFET gate stack further comprises a capping layer separating the metal layer from the high-K layer, wherein the capping layer is further configured to shift a threshold voltage of the logic nFET relative to a threshold voltage of one or more of the logic pFET, SRAM nFET and SRAM pFET.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Arvind Kumar, Vijay Narayanan, Vamsi K. Paruchuri, Jeffrey Sleight
  • Patent number: 8178932
    Abstract: A semiconductor device includes a first transistor having a threshold voltage (Vth) adjusted to a first Vth by a first dopant having a first peak of concentration at a first depth; and a second transistor having the same channel-type as that of the first transistor and having a Vth adjusted to a second Vth by a second dopant having a second peak of concentration at a second depth equal to the first depth and higher concentration than the first dopant; wherein the first dopant and the second dopant are dopants comprising the same constituent element.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: May 15, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yoshihiro Takao
  • Patent number: 8125015
    Abstract: Nonvolatile memory devices and methods of making the same are described. A nonvolatile memory device includes a string selection transistor, a plurality of memory cell transistors, and a ground selection transistor electrically connected in series to the string selection transistor and to the pluralities of memory cell transistors. Each of the transistors includes a channel region and source/drain regions. First impurity layers are formed at boundaries of the channels and the source/drain regions of the memory cell transistors. The first impurity layers are doped with opposite conductivity type impurities relative to the source/drain regions of the memory cell transistors. Second impurity layers are formed at boundaries between a channel and a drain region of the string selection transistor and between a channel and a source region of the ground selection transistor.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: February 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi
  • Publication number: 20120043620
    Abstract: A method for fabricating a field effect transistor device includes forming a first conducting channel and a second conducting channel, forming a first gate stack on the first conducting channel to partially define a first device, forming second gate stack on the second conducting channel to partially define a second device, implanting ions to form a source region and a drain region connected to the first conducting channel and the second conducting channel, forming a masking layer over second device, a portion of the source region and a portion of the drain region, performing a first annealing process operative to change a threshold voltage of the first device, removing a portion of the masking layer to expose the second device, and performing a second annealing process operative to change the threshold voltage of the first device and a threshold voltage of the second device.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Applicant: International Business Machines Corporation
    Inventors: Dechao Guo, Keith Kwong Hon Wong
  • Patent number: 8114739
    Abstract: Methods are provided for fabricating a transistor. An exemplary method involves depositing an oxide layer overlying a layer of semiconductor material, forming an oxygen-diffusion barrier layer overlying the oxide layer, forming a layer of high-k dielectric material overlying the oxygen-diffusion barrier layer, forming a layer of conductive material overlying the layer of high-k dielectric material, selectively removing portions of the layer of conductive material, the layer of high-k dielectric material, the oxygen-diffusion barrier layer, and the oxide layer to form a gate stack, and forming source and drain regions about the gate stack. When the conductive material is an oxygen-gettering conductive material, the oxygen-diffusion barrier layer prevents diffusion of oxygen from the deposited oxide layer to the oxygen-gettering conductive material.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: February 14, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Murshed M. Chowdhury, James K. Schaeffer
  • Patent number: 8110878
    Abstract: There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: February 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Naozumi Morino, Atsushi Hiraiwa, Kazutoshi Oku, Toshiaki Ito, Motoshige Igarashi, Takayuki Sasaki, Masao Sugiyama, Hiroshi Yanagita, Shinichi Watarai
  • Patent number: 8106463
    Abstract: A ROM memory cell has significantly less total area than previously known ROM memory cells. Instead of using only one layer in the manufacturing process to program the memory cells, at least two layers are used to program the memory cells. This flexibility allows the memory cell to be reduced in area, which in turn produces a ROM that is more area efficient and consequently lower in cost. As the bitline length and capacitance are reduced, the speed and power consumption are also improved.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: January 31, 2012
    Assignee: ARM, Inc.
    Inventors: Sudhir S. Moharir, Zhigeng Liu
  • Patent number: 8102007
    Abstract: A method and apparatus for trimming a high-resolution digital-to-analog converter (DAC) utilizes floating-gate synapse transistors to trim the current sources in the DAC by providing a trimmable current source. Fowler-Nordheim electron tunneling and hot electron injection are the mechanisms used to vary the amount of charge on the floating gate. Since floating gate devices store charge essentially indefinitely, no continuous trimming mechanism is required, although one could be implemented if desired. By trimming the current sources with high accuracy, a DAC can be built with a much higher resolution and with smaller size than that provided by intrinsic device matching.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 24, 2012
    Assignee: Synopsys, Inc.
    Inventors: John D. Hyde, Miguel E. Figueroa, Todd E. Humes, Christopher J. Diorio, Terry D. Hass, Chad A. Lindhorst
  • Publication number: 20110316092
    Abstract: A mask read-only memory (ROM) includes parallel doping lines of a second conductivity type formed in a substrate of a first conductivity type, a first insulation film formed on the doping lines and the substrate, conductive pads fainted on the first insulation film, a second insulation film formed on the first insulation film and the conductive pads, parallel wires formed on the second insulation film extending perpendicular to the doping lines, contact plugs formed in the first insulation film that connect the doping lines to the conductive pads, and vias formed in the second insulation film that connect the conductive pads to the wires, wherein crossings of the doping lines and the wires define memory cells, contact plugs and vias are formed in memory cells of a first type, and at least one of the contact plug and via are missing from memory cells of a second type.
    Type: Application
    Filed: March 17, 2011
    Publication date: December 29, 2011
    Inventors: Seung-Jin Yang, Yong-Tae Kim, Hyuck-Soo Yang, Jung-Ho Moon
  • Patent number: 8043916
    Abstract: A method of fabricating a semiconductor device is provided. The method includes preparing a semiconductor substrate having first and second regions, forming a mask layer pattern on the second region, growing an oxidation retarding layer on the first region and removing the mask layer pattern. The method further includes growing a silicon oxide layer on the semiconductor substrate to form gate insulating layers having different thicknesses from one another on the first and second regions.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chan-Sik Park
  • Publication number: 20110221008
    Abstract: A semiconductor package with connecting plate for internal connection comprise: a plurality of chips each having a plurality of contact areas on a top surface; one or more connecting plates having a plurality of electrically isolated connecting plate portions each connecting a contact area of the semiconductor chips. The method of making the semiconductor package includes the steps of connecting one or more connecting plates to a plurality of semiconductor chips, applying a molding material to encapsulate the chips and the connecting plates, separating a plurality of connecting plate portions of the connecting plates by shallow cutting through or by grinding.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Inventors: Jun Lu, Kai Liu, Yan Xun Xue
  • Patent number: 8004048
    Abstract: A semiconductor device having a buried gate that can realize a reduction in gate-induced drain leakage is presented. The semiconductor device includes a semiconductor substrate, a buried gate, and a barrier layer. The semiconductor substrate has a groove. The buried gate is formed in a lower portion of the groove and has a lower portion wider than an upper portion. The barrier layer is formed on sidewalls of the upper portion of the buried gate.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 23, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Soo Yoo
  • Patent number: 7999331
    Abstract: In a semiconductor substrate in a first section, a channel region having an impurity concentration peak in an interior of the semiconductor substrate is formed, and in the semiconductor substrate in a second section and a third section, channel regions having an impurity concentration peak at a position close to a surface of the substrate are formed. Then, extension regions are formed in the first section, the second section and the third section. After that, the substrate is thermally treated to eliminate defects produced in the extension regions. Then, using gate electrodes and side-wall spacers as a mask, source/drain regions are formed in the first section, the second section and the third section.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: August 16, 2011
    Assignee: Panasonic Corporation
    Inventors: Susumu Akamatsu, Masafumi Tsutsui, Yoshinori Takami
  • Patent number: 7989897
    Abstract: A semiconductor device includes a first MISFET and a second MISFET which are formed over a semiconductor substrate and have the same conductive type. The first MISFET has a first gate insulating film arranged over the semiconductor substrate, a first gate electrode arranged over the first gate insulating film, and a first source region and a first drain region. The second MISFET has a second gate insulating film arranged over the semiconductor substrate, a second gate electrode arranged over the second gate insulating film, and a second source region and a second drain region. The first and the second gate electrode are electrically coupled, the first and the second source region are electrically coupled, and the first and the second drain region are electrically coupled. Accordingly, the first and the second MISFET are coupled in parallel. In addition, threshold voltages are different between the first and the second MISFET.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 2, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Noriaki Maeda
  • Publication number: 20110175175
    Abstract: Provided is a semiconductor device for applying common source lines with individual bias voltages. The device includes a substrate, cell transistors arrayed in a cell matrix shape on the substrate and configured to have gate insulating patterns, gate electrodes, common source regions, drain regions and channel regions. Word lines are configured to electrically interconnect the gate electrodes with each other. Common source lines are shared between only a pair of the neighboring word lines and are configured to electrically interconnect the common source regions with each other. Drain metal contacts and source metal contacts are arranged in a straight line on the drain regions. Bit lines are electrically connected to the drain metal contacts. And impurity regions are configured to control the threshold voltage of the channel regions.
    Type: Application
    Filed: November 30, 2010
    Publication date: July 21, 2011
    Inventors: Seung-Jin Yang, Yong-Tae Kim
  • Patent number: 7982274
    Abstract: A device comprising a doped semiconductor nano-component and a method of forming the device are disclosed. The nano-component is one of a nanotube, nanowire or a nanocrystal film, which may be doped by exposure to an organic amine-containing dopant. Illustrative examples are given for field effect transistors with channels comprising a lead selenide nanowire or nanocrystal film and methods of forming these devices.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Christopher B. Murray, Robert L. Sandstrom, Dmitri V. Talapin
  • Patent number: 7960786
    Abstract: A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring of the first conductivity type occupying a top portion of the HVW, wherein at least one of the pre-HVW, the HVW, and the field ring comprises at least two tunnels; an insulation region over the field ring and a portion of the HVW; a drain region in the HVW and adjacent the insulation region; a gate electrode over a portion the insulation region; and a source region on an opposite side of the gate electrode than the drain region.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 14, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eric Huang, Tsung-Yi Huang, Fu-Hsin Chen, Chyi-Chyuan Huang, Chung-Yeh Wu
  • Patent number: 7951678
    Abstract: Disclosed are embodiments of an integrated circuit structure that incorporates at least two field effect transistors (FETs) that have the same conductivity type and essentially identical semiconductor bodies (i.e., the same semiconductor material and, thereby the same conduction and valence band energies, the same source, drain, and channel dopant profiles, the same channel widths and lengths, etc.). However, due to different gate structures with different effective work functions, at least one of which is between the conduction and valence band energies of the semiconductor bodies, these FETs have selectively different threshold voltages, which are independent of process variables. Furthermore, through the use of different high-k dielectric materials and/or metal gate conductor materials, the embodiments allow threshold voltage differences of less than 700 mV to be achieved so that the integrated circuit structure can function at power supply voltages below 1.0V.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 31, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7952149
    Abstract: An apparatus and method for controlling the net doping in the active region of a semiconductor device in accordance with a gate length is provided. A compensating dopant is chosen to be a type of dopant which will electrically neutralize dopant of the opposite type in the substrate. By implanting the compensating dopant at relatively high angle and high energy, the compensating dopant will pass into and through the gate region for short channels and have little or no impact on the total dopant concentration within the gate region. Where the channel is of a longer length, the high implant angle and the high implant energy cause the compensating dopant to lodge within the channel thereby neutralizing a portion of the dopant of the opposite type.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 31, 2011
    Assignee: International Business Machines Corporation
    Inventors: Omer H. Dokumaci, Oleg Gluschenkov
  • Patent number: 7939898
    Abstract: A transistor is defined to include a substrate portion and a diffusion region defined in the substrate portion so as to provide an operable transistor threshold voltage. An implant region is defined within a portion of the diffusion region so as to transform the operable transistor threshold voltage of the diffusion region portion into an inoperably high transistor threshold voltage. A gate electrode is defined to extend over both the diffusion region and the implant region. A first portion of the gate electrode defined over the diffusion region forms a first transistor segment having the operable transistor threshold voltage. A second portion of the gate electrode defined over the implant region forms a second transistor segment having the inoperably high transistor threshold voltage. Therefore, a boundary of the implant region defines a boundary of the operable first transistor segment.
    Type: Grant
    Filed: November 16, 2008
    Date of Patent: May 10, 2011
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 7915589
    Abstract: An idling time period after applying a bias to a conversion element until a start of an accumulation of the conversion element for deriving an image and an accumulation period from the start of the accumulation to a termination of the accumulation are measured. An offset correction of the image is conducted by using a dark current accumulation charge quantity in the accumulation calculated based on the measured idling time period and accumulation period and stored dark current response characteristics. Thus, even just after applying the bias to the conversion element, the offset correction can be properly conducted. An imaging apparatus which can execute a good radiographing without increasing costs and a size even just after applying the bias to the conversion element is provided.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: March 29, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsuro Takenaka, Tadao Endo, Toshio Kameshima, Tomoyuki Yagi, Keigo Yokoyama
  • Patent number: 7910444
    Abstract: A forms spacers in a electronic device integrated on a semiconductor substrate that includes: first and second transistors each comprising a gate electrode projecting from the substrate and respective source/drain regions. The process comprises: forming in cascade a first protective layer and a first conformal insulating layer of a first thickness on the whole electronic device; forming a first mask to cover the first transistor; removing the first conformal insulating layer not covered by the first mask; removing the first mask; forming a second conformal insulating layer of a second thickness on the whole device; and removing the insulating layers until the protective layer is exposed to form first spacers of a first width on the side walls of the gate electrodes of the first transistor and second spacers of a second width on the side walls of the gate electrodes of the second transistor.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 22, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giorgio Servalli, Giulio Albini, Carlo Cremonesi
  • Publication number: 20110049631
    Abstract: In one embodiment, a semiconductor integrated circuit is provided a first well region, a second well region, a first body bias supply unit and a second body bias supply unit. The first well region includes a first transistor having a first threshold voltage. The second well region includes a second transistor having an absolute value of a second threshold voltage higher than an absolute value of the first threshold voltage. The second well region is separated from the first well region. The second well region has the same conductive type as the first well region. The first body bias supply unit supplies a first body bias voltage to the first well region. The second body bias supply unit supplies a second body bias voltage to the second well region.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 3, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yasuhito Itaka
  • Patent number: 7893503
    Abstract: By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: February 22, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sven Beyer, Manfred Horstmann, Patrick Press, Wolfgang Buchholtz
  • Publication number: 20110037121
    Abstract: An I/O electrostatic discharge (ESD) device having a gate electrode over a substrate, a gate dielectric layer between the gate electrode and the substrate, a pair of sidewall spacers respectively disposed on two opposite sidewalls of the gate electrode, a first lightly doped drain (LDD) region disposed under one of the sidewall spacers, a source region disposed next to the first LDD region, a second LDD region disposed under the other sidewall spacer, and a drain region disposed next to the second LDD region, wherein a doping concentration of the second LDD region is larger than a doping concentration of the first LDD region.
    Type: Application
    Filed: August 16, 2009
    Publication date: February 17, 2011
    Inventors: Tung-Hsing Lee, I-Cheng Lin, Wei-Li Tsao
  • Patent number: 7880202
    Abstract: A semiconductor field effect transistor can be used with RF signals in an amplifier circuit. The transistor includes a source region and a drain region with a channel region interposed in between the source and drain regions. The transistor is structured such that the threshold voltage for current flow through the channel region varies at different points along the width direction, e.g., to give an improvement in the distortion characteristics of the transistor.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies AG
    Inventor: Peter Baumgartner
  • Patent number: 7867840
    Abstract: In a semiconductor substrate in a first section, a channel region having an impurity concentration peak in an interior of the semiconductor substrate is formed, and in the semiconductor substrate in a second section and a third section, channel regions having an impurity concentration peak at a position close to a surface of the substrate are formed. Then, extension regions are formed in the first section, the second section and the third section. After that, the substrate is thermally treated to eliminate defects produced in the extension regions. Then, using gate electrodes and side-wall spacers as a mask, source/drain regions are formed in the first section, the second section and the third section.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 11, 2011
    Assignee: Panasonic Corporation
    Inventors: Susumu Akamatsu, Masafumi Tsutsui, Yoshinori Takami
  • Publication number: 20100301426
    Abstract: A semiconductor memory device includes a first transistor. The first transistor includes a gate electrode, a channel region, a source region, a source region, an overlapping region, a contact region, and an impurity diffusion region. The channel region has a first impurity concentration. The source and drain regions have a second impurity concentration. The overlapping region is formed in the semiconductor layer where the channel region overlaps the source region and the drain region, and has a third impurity concentration. The contact region has a fourth impurity concentration. The impurity diffusion region has a fifth impurity concentration higher than the second impurity concentration and lower than the fourth impurity concentration. The impurity diffusion region is in contact with the contact region and away from the overlapping region and positioned at least in a region between the contact region and the overlapping region.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Inventors: Hiroyuki KUTSUKAKE, Kenji GOMIKAWA, Yoshiko KATO, Mitsuhiro NOGUCHI, Masato ENDO
  • Patent number: 7825457
    Abstract: There is provided a semiconductor device including a semiconductor substrate (10), a high concentration diffusion region (22) formed within the semiconductor substrate (10), a first low concentration diffusion region (24) that has a lower impurity concentration than the high concentration diffusion region (22) and is provided under the high concentration diffusion region (22), and a bit line (30) that includes the high concentration diffusion region (22) and the first low concentration diffusion region (24) and serves as a source region and a drain region, and a manufacturing method therefor. Reduction of source-drain breakdown voltage of the transistor is suppressed, and a low-resistance bit line can be formed. Thus, a semiconductor device that can miniaturize memory cells and a manufacturing method therefor can be provided.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Spansion LLC
    Inventor: Masatomi Okanishi
  • Patent number: 7812408
    Abstract: An integrated circuit is provided with groups of transistors that handle different maximum voltage levels. The transistors may be metal-oxide-semiconductor transistors having body, source, drain, and gate terminals. The gate of each transistor may have a gate insulator and a gate conductor. The gate conductor may be formed from a semiconductor such as polysilicon. Adjacent to the gate insulator, the polysilicon gate conductor may have a depletion layer. The depletion layer may have a thickness that is related to the doping level in the polysilicon gate conductor. By reducing the doping level in the polysilicon gates of some of the transistors, the equivalent oxide thickness of those transistors is increased, thereby enhancing their ability to withstand elevated voltages without experiencing gate oxide breakdown due to hot carrier injection effects.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: October 12, 2010
    Assignee: Altera Corporation
    Inventors: Albert Ratnakumar, Peter J. McElheny