Charged Or Elementary Particles Patents (Class 257/429)
  • Patent number: 8426897
    Abstract: An improved semiconductor apparatus that comprises an elongated structure that extends into the substrate. The apparatus comprises a collection contact, a resistive path, a bias connection that creates along the length of the elongated structure, an electric field component that drives signal charge carriers in a direction perpendicular to the elongated structure, and a second bias that generates a current flow that creates within the substrate a constant electric field component to drive signal charge carriers towards the collection contact on the first surface.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 23, 2013
    Inventor: Artto Aurola
  • Patent number: 8421172
    Abstract: A large area SDD detector having linear anodes surrounded by steering electrodes and having an oblong, circular, hexagonal, or rectangular shape. The detectors feature stop rings having a junction on the irradiation side and an ohmic contact on the anode side and/or irradiation side. The irradiation and anode stop ring biasing configuration influences the leakage current flowing to the anode and, hence, the overall efficiency of the active area of the detector. A gettering process is also described for creation of the disclosed SDD detectors. The SDD detector may utilize a segmented configuration having multiple anode segments and kick electrodes for reduction of the detector's surface electric field. In another embodiment, a number of strip-like anodes are linked together to form an interdigitated SDD detector for use with neutron detection. Further described is a wraparound structure for use with Ge detectors to minimize capacitance.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 16, 2013
    Assignee: Canberra Industries, Inc.
    Inventors: Massimo Morichi, Olivier Evrard, Marijke Keters, Frazier Bronson, Mathieu Morelle, Paul Burger
  • Publication number: 20130075848
    Abstract: Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
    Type: Application
    Filed: July 18, 2012
    Publication date: March 28, 2013
    Applicant: Lawrence Livermore National Security, LLc
    Inventors: Rebecca J. Nikolic, Adam M. Conway, Robert T. Graff, Joshua D. Kuntz, Catherine Reinhardt, Lars F. Voss, Chin Li Cheung, Daniel Heineck
  • Publication number: 20130049147
    Abstract: A bonded wafer structure having a handle wafer, a device wafer, and an interface region with an abrupt transition between the conductivity profile of the device wafer and the handle wafer is used for making semiconductor devices. The improved doping profile of the bonded wafer structure is well suited for use in the manufacture of integrated circuits. The bonded wafer structure is especially suited for making radiation-hardened integrated circuits.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Applicant: Aeroflex Colorado Springs Inc.
    Inventors: David B. Kerwin, Joseph M. Benedetto
  • Publication number: 20130037899
    Abstract: A semiconductor structure for photon detection, comprising a substrate composed of a semiconductor material having a first doping, a contact region fitted at the frontside of the substrate, a bias layer composed of a semiconductor material having a second doping, which is arranged on the backside of the substrate at a distance from the contact region, wherein the contact region at least partly lies opposite the bias layer, such that an overlap region is present in a lateral direction, a guard ring, which is arranged at the frontside of the substrate and surrounds the contact region, wherein a reverse voltage can be applied between the contact region and the guard ring. In order to enable more cost-effective production, the overlap region has a lateral extent amounting to at least one quarter of the distance between contact region and bias layer.
    Type: Application
    Filed: July 18, 2012
    Publication date: February 14, 2013
    Applicant: ESPROS Photonics AG
    Inventors: Martin POPP, Beat DE COI, Marco ANNESE
  • Patent number: 8368156
    Abstract: The present invention relates to a method for designing an electrically small antenna, in one embodiment, within an enclosing volume. In a preferred embodiment, the method comprises the steps of designing the electrically small antenna which has a general cross-sectional contour shape of an oblate spheroid from a top load portion to a stem portion below the top load portion. The oblate spheroid contour shape is represented by an antenna dipole moment algorithm which includes a dipole moment term. The method further comprises the steps of controlling the amplitude of the dipole moment term, including adjusting the amplitude of the dipole moment term to independently change the oblate spheroid contour shape, resulting in a change to the electric field outside the enclosing volume and a change to the electric field inside the enclosing volume.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas O. Jones, III
  • Patent number: 8363859
    Abstract: A microelectromechanical system microphone package structure includes a base plate and a plurality of chips is provided. The plurality of chips are disposed on the base plate, wherein an active area of each of the chips is disposed with a microelectromechanical system microphone structure, each of the active areas comprises a normal line, and the normal lines of the chips are unparallel and nonorthogonal to each other.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 29, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Li-Che Chen
  • Publication number: 20130020661
    Abstract: A detector (100) for detecting neutrons comprises a neutron reactive material (102) adapted to interact with neutrons to be detected and release ionizing radiation reaction products in relation to said interactions with neutrons. The detector also comprises a first semiconductor element (101) being coupled with said neutron reactive material (102) and adapted to interact with said ionizing radiation reaction products and provide electrical charges proportional to the energy of said ionizing radiation reaction products. In addition electrodes are arranged in connection with said first semiconductor element (101) for providing charge collecting areas (106) for collecting the electrical charges and to provide electrically readable signal proportional to said collected electrical charges.
    Type: Application
    Filed: October 26, 2010
    Publication date: January 24, 2013
    Applicant: Finphys Oy
    Inventors: Risto Orava, Tom Schulman
  • Publication number: 20120313196
    Abstract: A three-dimensional (3D) Trench detector and a method for fabricating the detector are disclosed. The 3D-Trench detector includes a bulk of semiconductor material that has first and second surfaces separated from each other by a bulk thickness, a first electrode in the form of a 3D-Trench, and a second electrode in the form of a 3D column. The first and second electrodes extend into the bulk along the bulk thickness. The first and second electrodes are separated from each other by a predetermined electrode distance, and the first electrode completely surrounds the second electrode along essentially the entire distance that the two electrodes extend into the bulk such that the two electrodes are substantially concentric to each other. The fabrication method includes doping a first narrow and deep region around the periphery of the bulk to form the first electrode, and doping a second narrow and deep region in the center of the bulk to form the second electrode.
    Type: Application
    Filed: October 15, 2010
    Publication date: December 13, 2012
    Applicant: Brookhaven Science Associates ,LLC et al.
    Inventor: Zheng Li
  • Patent number: 8310021
    Abstract: A method of manufacturing a neutron detector comprises forming a first wafer by at least forming an oxide layer on a substrate, forming an active semiconductor layer on the oxide layer, and forming an interconnect layer on the active semiconductor layer, forming at least one electrically conductive pathway extending from the interconnect layer through the active semiconductor layer and the oxide layer, forming a circuit transfer bond between the interconnect layer and a second wafer, removing the substrate of the first wafer after forming the circuit transfer bond, depositing a bond pad on the oxide layer after removing the substrate of the first wafer, wherein the bond pad is electrically connected to the electrically conductive pathway, depositing a barrier layer on the oxide layer after removing the substrate of the first wafer, and depositing a neutron conversion layer on the barrier layer after depositing the barrier layer.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: November 13, 2012
    Assignee: Honeywell International Inc.
    Inventors: Bradley J. Larsen, Todd A. Randazzo
  • Patent number: 8304848
    Abstract: Certain embodiments provide an infrared imaging device including: an SOI structure that is placed at a distance from a substrate, and includes: heat-sensitive diodes that detect infrared rays and convert the infrared rays into heat; and STI regions that separate the heat-sensitive diodes from one another; an interlayer insulating film that is stacked on the SOI structure; and supporting legs that are connected to the heat-sensitive diodes and vertical signal lines provided in outer peripheral regions of the heat-sensitive diodes. Each of the supporting legs includes: an interconnect unit that transmit signals to the vertical signal lines; and interlayer insulating layers that sandwich the interconnect unit, each bottom side of the interlayer insulating layers being located in a higher position than the SOI structure.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Suzuki, Ikuo Fujiwara, Keita Sasaki, Honam Kwon, Hitoshi Yagi, Hiroto Honda, Koichi Ishii, Masako Ogata, Risako Ueno, Hideyuki Funaki
  • Publication number: 20120267737
    Abstract: A radiation detector includes a semiconductor substrate which contains front and rear major surfaces and at least one side surface, a guard ring and a plurality of anode electrode pixels located over the rear surface of the semiconductor substrate, where each anode electrode pixel is formed between adjacent pixel separation regions, a side insulating layer formed on the at least one side surface of the semiconductor substrate, a cathode electrode located over the front major surface of the semiconductor substrate, and an electrically conductive cathode extension formed over at least a portion of side insulating layer, where the cathode extension contacts an edge of the cathode electrode. Further embodiments include various methods of making such semiconductor radiation detector.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 25, 2012
    Applicant: Redlen Technologies
    Inventors: Henry Chen, Salah Awadalla, Pramodha Marthandam
  • Patent number: 8278182
    Abstract: The invention provides, in one exemplary embodiment, an isolation gate formed over a substrate for biasing the substrate and providing isolation between adjacent active areas of an integrated circuit structure, for example a DRAM memory cell. An aluminum oxide (Al2O3) is used as a gate dielectric, rather than a conventional gate oxide layer, to create a hole-rich accumulation region under and near the trench isolation region. Another exemplary embodiment of the invention provides an aluminum oxide layer utilized as a liner in a shallow trench isolation (STI) region to increase the effectiveness of the isolation region. The embodiments may also be used together at an isolation region.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 2, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Publication number: 20120235260
    Abstract: Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>104) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.
    Type: Application
    Filed: April 25, 2012
    Publication date: September 20, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Rebecca J. Nikolic, Adam M. Conway, Daniel Heineck, Lars F. Voss, Tzu Fang Wang, Qinghui Shao
  • Publication number: 20120161265
    Abstract: Provided is a surface contamination monitor that comprises a hand and foot contamination monitor that can be relocated to an inspection site in a simple manner. A surface contamination monitor has a folding mechanism that allows folding a monitor main body, and comprises a base (1) whose top face is provided with radiation detection elements (10) for measurement of a foot portion, a support column (2) provided at a center of a far side of the top face of the base (1), and an upper unit (3), which is fixed to a top end portion of the support column (2), and on which there are provided radiation detection elements (10) for measurement of a hand portion.
    Type: Application
    Filed: July 9, 2010
    Publication date: June 28, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Akihito Hora, Takeshi Ishikura, Satoshi Takano, Daisuke Inui
  • Publication number: 20120161266
    Abstract: Radiation detectors can be made of n-type or p-type silicon. All segmented detectors on p-type silicon and double-sided detectors on n-type silicon require an “inter-segment isolation” to separate the n-type strips from each other; an alumina layer for isolating the strip detectors is applied, and forms negative charges at the silicon interface with appropriate densities. When alumina dielectric is deposited on silicon, the negative interface charge acts like an effective p-stop or p-spray barrier because electrons are “pushed” away from the interface due to the negative interface charge.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 28, 2012
    Applicants: Counsel
    Inventors: Marc Christophersen, Bernard F. Phlips
  • Publication number: 20120133009
    Abstract: There has been such a problem that radiation detecting elements using semiconductor elements have a low radiation detection efficiency, since the radiation detecting elements easily transmit radiation, even though the radiation detecting elements have merits, such as small dimensions and light weight. Disclosed are a radiation detecting element and a radiation detecting device, wherein a film formed of a metal, such as tungsten, is formed on the radiation incident surface of the radiation detecting element, and the incident energy of the radiation is attenuated. The efficiency of generating carriers by way of radiation incidence is improved by attenuating the incident energy, the thickness of the metal film is optimized, and the radiation detection efficiency is improved.
    Type: Application
    Filed: May 17, 2010
    Publication date: May 31, 2012
    Inventor: Takehisa Sasaki
  • Publication number: 20120126095
    Abstract: A detection apparatus includes conversion elements and switch elements disposed below the conversion elements; insulating layers are disposed between the conversion elements and switch elements. Each conversion element includes a first electrode corresponding to a switch element. A second electrode extends over the plurality of conversion elements; and a semiconductor layer formed between the first electrodes and the second electrode extends over the plurality of conversion elements. Insulating layers include first regions located immediately below the first electrodes and a second region located between the first regions. A third electrode is disposed in the second region and between the insulating layers. The third electrode is supplied with a potential that sets a potential of a part where the second region is in contact with the semiconductor layer to a value between a potential of the second electrode and a potential of the first electrode.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 24, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Minoru Watanabe, Chiori Mochizuki, Takamasa Ishii, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 8183655
    Abstract: A radiation detector of the ?E-E type is proposed.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: May 22, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giuseppe Valvo, Piero Giorgio Fallica, Stefano Agosteo, Alberto Fazzi
  • Publication number: 20120091336
    Abstract: A microelectromechanical system (MEMS) device is configured to be actuated directly by an energy field through Coulombic interactions to have a translational motion. The MEMS device can be untethered, and actuated by irradiating an actuator with the energy field thereby building up electrical charges on the actuator. The MEMS device can thus be actuated with Coulomb forces from the built up electrical charges to suspend a movable portion over a rail. In one example, the energy field includes an electron beam from a scanning electron microscope (SEM).
    Type: Application
    Filed: October 13, 2011
    Publication date: April 19, 2012
    Inventors: Keng-Min Lin, Ian Harvey, Brian Baker
  • Publication number: 20120081013
    Abstract: According to one embodiment, an energy conversion device comprises a nuclear battery, a light source coupled to the nuclear battery and operable to receive electric energy from the nuclear battery and radiate electromagnetic energy, and a photocell operable to receive the radiated electromagnetic energy and convert the received electromagnetic energy into electric energy. The nuclear battery comprises a radioactive substance and a collector operable to receive particles emitted by the radioactive substance.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Applicant: Raytheon Company
    Inventors: Gary A. Frazier, Timothy J. Imholt, Alexander F. St. Claire
  • Patent number: 8143587
    Abstract: An intermediate layer is located between a recording photoconductive layer and an electrode, which is either one of a bias electrode and a reference electrode, and which is located on the side at positive electric potential with respect to a charge accumulating section at the time of readout of electric charges of the charge accumulating section. The intermediate layer is an a-Se layer containing, as a specific substance, at least one kind of substance selected from the group consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal oxide, an alkaline earth metal oxide, SiOx, and GeOx, where x represents a number satisfying 0.5?x?1.5, in a concentration falling within the range of 0.003 mol % to 0.03 mol %.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: March 27, 2012
    Assignee: Fujifilm Corporation
    Inventor: Shinji Imai
  • Publication number: 20120056287
    Abstract: A method for manufacturing an ionizing radiation detection device having a block of a semiconductor material adapted to undergo local separations of charges between positive and negative charges under the effect of ionizing radiation. The device including a first series of at least two collecting electrodes formed on the surface of the semiconductor block, and a second series of at least two non-collecting electrodes formed on a support and separated from the semiconductor block by an insulating layer. During processing, after forming the insulating layer on the support so as to cover the non-collecting electrodes, the block of semiconductor material bearing the collecting electrodes and the support bearing the non-collecting electrodes and the insulating layer are assembled.
    Type: Application
    Filed: June 28, 2011
    Publication date: March 8, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Olivier MONNET, Guillaume MONTEMONT, Loick VERGER, Marie-Claude GENTET
  • Publication number: 20120043633
    Abstract: According to a radiation detector of this invention, a common electrode for bias voltage application and a lead wire for bias voltage supply are connected through a conductive plate as a planarly formed plate interposed therebetween. Since the conductive plate is connected instead of connecting the lead wire directly onto the common electrode, it can prevent damage to a radiation sensitive semiconductor and avoid performance degradation. Since the conductive plate is formed planarly, even if a conductive paste with high resistance is used, connection resistance can be lowered to be comparable to the use of silver paste. That is, the range of selection of the conductive paste is broadened. Also, connection can be made without using an insulating seat and performance degradation can be avoided. As a result, performance degradation can be avoided, without using an insulating seat.
    Type: Application
    Filed: April 30, 2009
    Publication date: February 23, 2012
    Inventors: Junichi Suzuki, Kenji Sato, Hidetoshi Kishimoto
  • Publication number: 20120043632
    Abstract: Methods for fabricating three-dimentional PIN structures having conformal electrodes are provided, as well as the structures themselves. The structures include a first layer and an array of pillars with cavity regions between the pillars. A first end of each pillar is in contact with the first layer. A segment is formed on the second end of each pillar. The cavity regions are filled with a fill material, which may be a functional material such as a neutron sensitive material. The fill material covers each segment. A portion of the fill material is etched back to produce an exposed portion of the segment. A first electrode is deposited onto the fill material and each exposed segment, thereby forming a conductive layer that provides a common contact to each the exposed segment. A second electrode is deposited onto the first layer.
    Type: Application
    Filed: January 27, 2011
    Publication date: February 23, 2012
    Inventors: Rebecca J. Nikolic, Adam M. Conway, Robert T. Graff, Catherine Reinhardt, Lars F. Voss, Qinghui Shao
  • Patent number: 8120014
    Abstract: Nanoscaled, tunable detector devices for ultrasensitive detection of terahertz (THz) radiation based on the fabrication of one-dimensional (1D) plasma devices having clouds of strongly correlated and spatially confined electronic charge carriers are disclosed. These one-dimensional collective excitations (“plasmons”) are realized using coaxial semiconducting core-shell nanowires or by electrostatically confining a two dimensional charge to one dimension. By exploiting the properties of plasmons confined to reduced dimensions and under a selected device configuration, conventional limitations on carrier drift and transit times that dictate the speed and sensitivity of transistors can be circumvented, and detector sensitivity can be improved. 1D devices with sub-picosecond response times will be important for a range of applications in diverse areas such as remote sensing and imaging, molecular spectroscopy, biotechnology, and in a range of the spectrum that has been difficult to detect.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: February 21, 2012
    Assignee: Drexel University
    Inventors: Bahram Nabet, Jonathan E. Spanier
  • Publication number: 20120012958
    Abstract: Charged particle sensing devices and methods of forming charged particle sensing devices are provided. The charged particle sensing device includes a source of charged particles, a plurality of collector electrodes for receiving a first portion of the charged particles and a grid formed around and spaced apart from the plurality of collector electrodes. The grid receives a second portion of the charged particles and directs backscattered charged particles, generated responsive to the second portion, to adjacent collector electrodes.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Applicant: ITT MANUFACTURING ENTERPRISES, INC.
    Inventors: DAN WESLEY CHILCOTT, William J. Baney, John Richard Troxell
  • Publication number: 20120012957
    Abstract: A method of manufacturing a neutron detector comprises forming a first wafer by at least forming an oxide layer on a substrate, forming an active semiconductor layer on the oxide layer, and forming an interconnect layer on the active semiconductor layer, forming at least one electrically conductive pathway extending from the interconnect layer through the active semiconductor layer and the oxide layer, forming a circuit transfer bond between the interconnect layer and a second wafer, removing the substrate of the first wafer after forming the circuit transfer bond, depositing a bond pad on the oxide layer after removing the substrate of the first wafer, wherein the bond pad is electrically connected to the electrically conductive pathway, depositing a barrier layer on the oxide layer after removing the substrate of the first wafer, and depositing a neutron conversion layer on the barrier layer after depositing the barrier layer.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Bradley J. Larsen, Todd A. Randazzo
  • Publication number: 20120007197
    Abstract: A solid-state imaging apparatus comprising a plurality of pixels each including a photoelectric conversion element, and a light shielding layer which covers the photoelectric conversion element is provided. The light shielding layer comprises a first light shielding portion which covers at least part of a region between the photoelectric conversion elements that are adjacent to each other, and a second light shielding portion for partially shielding light incident on the photoelectric conversion element of each of the plurality of pixels. An aperture is provided for the light shielding layer, the remaining component of the incident light passing through the aperture. A shape of the aperture includes a cruciform portion including a portion extending in a first direction and a portion extending in a second direction that intersects the first direction.
    Type: Application
    Filed: June 10, 2011
    Publication date: January 12, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shin Kikuchi, Yuichiro Yamashita, Masaru Fujimura, Shoji Kono, Yu Arishima, Shinichiro Shimizu
  • Publication number: 20120001282
    Abstract: A radiation detector of a compact size and producing almost no image defect is disclosed, comprising a first radiation-transmissive substrate, a first adhesive layer, a second radiation-transmissive substrate, a scintillator layer and an output substrate provided with a photoelectric conversion element layer which are provided sequentially in this order, wherein an arrangement region of the scintillator layer in a planar direction of the layer includes an arrangement region of the photoelectric conversion element layer in a planar direction of the layer and an arrangement region of the first substrate in a planar direction of the substrate, and the arrangement region of the first substrate includes the arrangement region of the photoelectric conversion element layer; and when the arrangement region of the scintillator layer is divided to plural areas, a coefficient of variation of filling factor is 20% or less which is defined as a standard deviation of filling factor of phosphor of the plural areas, divided
    Type: Application
    Filed: February 23, 2010
    Publication date: January 5, 2012
    Inventors: Narito Goto, Mitsuru Sekiguchi
  • Patent number: 8084806
    Abstract: The invention provides, in one exemplary embodiment, an isolation gate formed over a substrate for biasing the substrate and providing isolation between adjacent active areas of an integrated circuit structure, for example a DRAM memory cell. An aluminum oxide (Al2O3) is used as a gate dielectric, rather than a conventional gate oxide layer, to create a hole-rich accumulation region under and near the trench isolation region. Another exemplary embodiment of the invention provides an aluminum oxide layer utilized as a liner in a shallow trench isolation (STI) region to increase the effectiveness of the isolation region. The embodiments may also be used together at an isolation region.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Publication number: 20110308593
    Abstract: A layer including modified cadmium telluride and unmodified cadmium telluride disposed within the cadmium telluride layer. The modified area includes a concentration of telluride that is greater than the concentration of telluride in the unmodified cadmium telluride area. The modified area also includes a hexagonal close packed crystal structure. A method for modifying a cadmium telluride layer and a thin film device are also disclosed.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Applicant: PRIMESTAR SOLAR
    Inventor: Jonathan M. FREY
  • Publication number: 20110298071
    Abstract: To increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area, rather than greater radioisotope material volume. An example of this invention is a high power density betavoltaic battery. In one example of this invention, tritium is used as a fuel source. In other examples, radioisotopes, such as Nickel-63, Phosphorus-33 or promethium, may be used. The semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond, and SiC. For example (for purposes of illustration/example, only), tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material. Other variations and examples are also discussed and given.
    Type: Application
    Filed: August 6, 2010
    Publication date: December 8, 2011
    Inventors: Michael Spencer, MVS Chandrashekhar
  • Publication number: 20110291210
    Abstract: A power converter comprises a first die and a second die. Each die comprises a semiconductor substrate comprising a junction for converting nuclear radiation particles to electrical energy, the junction of each semiconductor substrate comprising a first side and a second side, a first electrode comprising a nuclear radiation-emitting radioisotope deposited on the semiconductor substrate, the first electrode being electrically connected to the first side of the junction, and a second electrode deposited on the semiconductor substrate, the second electrode being electrically connected to the second side. A bond is formed between one of the first electrode or the second electrode of the first die and one of the first electrode or the second electrode of the second die, wherein the bond forms an electrical contact between the bonded electrodes.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: Medtronic, Inc.
    Inventor: Geoffrey D. Batchelder
  • Publication number: 20110266643
    Abstract: A low-cost device for the detection of thermal neutrons. Thin layers of a material chosen for high absorption of neutrons with a corresponding release of ionizing particles are stacked in a multi-layer structure interleaved with thin layers of hydrogenated amorphous silicon PIN diodes. Some of the neutrons passing into the stack are absorbed in the neutron absorbing material producing neutron reactions with the release of high energy ionizing particles. These high-energy ionizing particles pass out of the neutron absorbing layers into the PIN diode layers creating electron-hole pairs in the intrinsic (I) layers of the diode layers; the electrons and holes are detected by the PIN diodes.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 3, 2011
    Inventors: Michael G. Engelmann, Peter Martin
  • Patent number: 8044358
    Abstract: A neutron sensing material detector includes an anode; a cathode; and a semiconductor material disposed between the anode and the cathode. An electric field is applied between the anode and cathode. The semiconductor material is composed of a ternary composition of stoichiometry LiM2+GV and exhibits an antifluorite-type ordering, where the stoichiometric fractions are Li=1, M2+=1, and GV=1. Electron-hole pairs are created by absorption of radiation, and the electron-hole pairs are detected by the current they generate between the anode and the cathode. The anode may include an array of pixels to provide improved spatial and energy resolution over the face of the anode. The signal value for each pixel can be mapped to a color or grey scale normalized to all the other pixel signal values for a particular moment in time. A guard ring or guard grid may be provided to reduce leakage current.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: October 25, 2011
    Assignee: General Electric Company
    Inventors: Adrian Ivan, Daniel Bruno McDevitt, Brent Allen Clothier
  • Publication number: 20110248366
    Abstract: A method of manufacturing a radiation-detecting device including spaced first columnar scintillators, second columnar scintillators which are located between the neighboring first columnar scintillators and which are spaced from the first columnar scintillators, and photodetecting elements overlapping with the first columnar scintillators includes a step of preparing the substrate such that the substrate has a surface having an uneven section having protruding portions and a plurality of spaced flat sections surrounded by the uneven section and also includes a step of forming the first columnar scintillators and the second columnar scintillators on the flat sections and the protruding portions, respectively, by depositing a scintillator material on the substrate having the uneven section and the flat sections. The uneven section has recessed portions and satisfies the following inequality: h/d?1 where h is the depth of each recessed portion and d is the distance between the protruding portions.
    Type: Application
    Filed: March 25, 2011
    Publication date: October 13, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Saito, Ryoko Horie, Nobuhiro Yasui, Toru Den
  • Patent number: 8036025
    Abstract: A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0?Ms<?{square root over ( )}{Jw/(6?At)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: October 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Masatoshi Yoshkawa, Eiji Kitagawa, Masahiko Nakayama, Tadashi Kai, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20110241144
    Abstract: We introduce a new technology for Manufactureable, High Power Density, High Volume Utilization Nuclear Batteries. Betavoltaic batteries are an excellent choice for battery applications which require long life, high power density, or the ability to operate in harsh environments. In order to optimize the performance of betavoltaic batteries for these applications or any other application, it is desirable to maximize the efficiency of beta particle energy conversion into power, while at the same time increasing the power density of an overall device. The small (submicron) thickness of the active volume of both the isotope layer and the semiconductor device is due to the short absorption length of beta electrons. The absorption length determines the self absorption of the beta particles in the radioisotope layer as well as the range, or travel distance, of the betas in the semiconductor converter which is typically a semiconductor device comprising at least one PN junction.
    Type: Application
    Filed: March 7, 2011
    Publication date: October 6, 2011
    Inventors: Michael Spencer, MVS Chandrashekhar, Chris Thomas
  • Publication number: 20110204872
    Abstract: A sensor device (100, 2800) for detecting particles, the sensor device (100, 2800) comprising a substrate (102), a first doped region (104) formed in the substrate (102) by a first dopant of a first type of conductivity, a second doped region (106, 150) formed in the substrate (102) by a second dopant of a second type of conductivity which differs from the first type of conductivity, a depletion region (108) at a junction between the first doped region (104) and the second doped region (106, 150), a sensor active region (110) adapted to influence a property of the depletion region (108) in the presence of the particles, and a detection unit (112) adapted to detect the particles based on an electric measurement performed upon application of a predetermined reference voltage between the first doped region (104) and the second doped region (106, 150), the electric measurement being indicative of the presence of the particles in the sensor active region (110).
    Type: Application
    Filed: March 9, 2009
    Publication date: August 25, 2011
    Applicant: NXP B.V.
    Inventors: Evelyne Gridelet, Almudena Huerta, Pierre Goarin, Jan Sonsky
  • Publication number: 20110193186
    Abstract: A radiation detector module includes a radiation detecting substrate including a plurality of semiconductor devices mounted thereon for detecting radiation, a shielding material at a position nearer to an incident side of the radiation than the radiation detecting substrate, the shielding material being capable of shielding a portion of the radiation, and a fixing member including a bottom, a first side wall extending in a normal direction to the bottom from one end of the bottom, and a second side wall extending in the normal direction to the bottom from an other end of the bottom. The first side wall and the second side wall each include a substrate supporting portion for supporting the radiation detecting substrate, and a shielding material supporting portion at a predetermined position relative to the substrate supporting portion for supporting the shielding material.
    Type: Application
    Filed: July 23, 2010
    Publication date: August 11, 2011
    Applicant: HITACHI CABLE, LTD.
    Inventors: Juhyun YU, Naoyuki YAMADA, Shinichi INOUE, Yoshinori SUNAGA, Isao TAKAHASHI
  • Publication number: 20110180890
    Abstract: A method of producing a radiographic image detector includes: preparing a thin-film transistor substrate comprising an insulating substrate and a thin-film transistor that is disposed on a surface of the insulating substrate at a first side; attaching, to the thin-film transistor substrate, a protective member comprising a protective member support and an adhesive layer that includes conductive particles and that is disposed on the protective member support, such that the adhesive layer and a surface of the thin-film transistor substrate at the first side contact each other; polishing a surface of the thin-film transistor substrate at a second side opposite to the first side, after the attaching of the protective member; separating and removing the protective member from the thin-film transistor substrate after the polishing; and providing a scintillator layer on a surface of the thin-film transistor substrate at the first side, after the removing of the protective member.
    Type: Application
    Filed: December 14, 2010
    Publication date: July 28, 2011
    Applicant: FUJIFILM CORPORATION
    Inventor: Keiichiro SATO
  • Publication number: 20110169116
    Abstract: The invention discloses a process for manufacturing a radiation detector for detecting e.g. 200 eV electrons. This makes the detector suited for e.g. use in an Scanning Electron Microscope. The detector is a PIN photodiode with a thin layer of pure boron connected to the p+-diffusion layer. The boron layer is connected to an electrode with an aluminium grid to form a path of low electrical resistance between each given point of the boron layer and the electrode. The invention addresses forming the aluminium grid on the boron layer without damaging the boron layer.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 14, 2011
    Applicant: FEI Company
    Inventors: Lis Karen Nanver, Thomas Ludovicus Maria Scholtes, Agata Sakic, Cornelis Sander Kooijman, Gerard Nicolaas Anne van Veen
  • Publication number: 20110163242
    Abstract: Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy ?-particles or ?-photons generated by neutron interaction.
    Type: Application
    Filed: July 23, 2009
    Publication date: July 7, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Samuel S. Mao, Dale L. Perry
  • Patent number: 7968959
    Abstract: Gray-tone lithography technology is used in combination with a reactive plasma etching operation in the fabrication method and system of a thick semiconductor drift detector. The thick semiconductor drift detector is based on a trench array, where the trenches in the trench array penetrate the bulk with different depths. These trenches form an electrode. By applying different electric potentials to the trenches in the trench array, the silicon between neighboring trenches fully depletes. Furthermore, the applied potentials cause a drifting field for generated charge carriers, which are directed towards a collecting electrode.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: June 28, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Marc Christophersen, Bernard F. Phlips
  • Publication number: 20110127527
    Abstract: A silicon-on-insulator (SOI) neutron detector comprising a silicon-on-insulator structure, wherein the silicon-on-insulator structure consists of an active semiconductor layer, a buried layer, and a handle substrate, a lateral carrier transport and collection detector structure within the active semiconductor layer of the silicon-on-insulator structure, and a neutron to high energy particle converter layer on the active semiconductor layer.
    Type: Application
    Filed: January 21, 2011
    Publication date: June 2, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Bernard F. Phlips, Karl D. Hobart, Eric A. Wulf
  • Patent number: 7939900
    Abstract: Polymerizable anions and/or cations can be used as the ionically conductive species for the formation of a p-i-n junction in conjugated polymer thin films. After the junction is formed, the ions are polymerized in situ, and the junction is locked thereafter. The resulting polymer p-i-n junction diodes could have a high current rectification ratio. Electroluminescence with high quantum efficiency and low operating voltage may be produced from this locked junction. The diodes may also be used for photovoltaic energy conversion. In a photovoltaic cell, the built-in potential helps separate electron-hole pairs and increases the open-circuit voltage.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: May 10, 2011
    Assignee: The Regents of the University of California
    Inventor: Qibing Pei
  • Publication number: 20110095386
    Abstract: A semiconductor sensor for detecting a radiation including a sensitive layer obtained in an inactive layer adapted to detect a light radiation, a portion thereof having a metal layer attached thereto, while on the remaining portion of the sensitive layer there is an overlapping scintillator. A bonding wire branches from said metal layer. Said sensor is shaped so that, according to a section of the sensor, said metal layer is at a lower height with respect to the scintillator crystal, so that the bonding wire does not interfere therewith. Such a result is obtained by tapering the thickness of said inactive layer and/or interposing a transparent layer between said sensitive layer and said scintillator crystal.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 28, 2011
    Inventor: Claudio Piemonte
  • Publication number: 20110095194
    Abstract: A detector for detecting neutrons includes a neutron reactive material interacting with neutrons to be detected and releasing ionizing radiation reaction products in relation to the interactions. It also includes a first semiconductor element being coupled with the neutron reactive material and adapted to interact with the ionizing radiation reaction products and provide electrical charges proportional to the energy of the ionizing radiation reaction products. In addition electrodes are arranged in connection with the first semiconductor element for providing charge collecting areas for collecting the electrical charges and to provide electrically readable signal proportional to the collected electrical charges.
    Type: Application
    Filed: May 19, 2010
    Publication date: April 28, 2011
    Applicant: FINPHYS OY
    Inventors: Risto ORAVA, Tom SCHULMAN
  • Publication number: 20110079791
    Abstract: High aspect ratio micromachined structures in semiconductors are used to improve power density in Betavoltaic cells by providing large surface areas in a small volume. A radioactive beta-emitting material may be placed within gaps between the structures to provide fuel for a cell. The pillars may be formed of SiC. In one embodiment, SiC pillars are formed of n-type SiC. P type dopant, such as boron is obtained by annealing a borosilicate glass boron source formed on the SiC. The glass is then removed. In further embodiments, a dopant may be implanted, coated by glass, and then annealed. The doping results in shallow planar junctions in SiC.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 7, 2011
    Applicant: Cornell Research Foundation, Inc.
    Inventors: MVS Chandrashekhar, Christopher Ian Thomas, Michael G. Spencer