With Particular Doping Concentration Patents (Class 257/463)
  • Publication number: 20090008739
    Abstract: Methods of manufacturing a photo diode include sequentially forming a buried layer of a first conductivity type, a first epitaxial layer of the first conductivity type, and a second epitaxial layer of a second conductivity type on a substrate. The second and first epitaxial layers are etched to form a trench that exposes a portion of the buried layer. A conductive plug of the first conductivity type is formed in the trench. A first electrode is formed on an upper surface of the second epitaxial layer. A second electrode may be formed to contact an upper surface of the conductive plug. Photodiodes having a conductive plug contact to a buried layer are also provided.
    Type: Application
    Filed: September 17, 2008
    Publication date: January 8, 2009
    Inventors: Sung-ryoul Bae, Dong-kyun Nam
  • Patent number: 7432578
    Abstract: A photosensitive device is disclosed which comprises a semiconductor substrate, at least one reverse biased device, such as a P-N junction diode formed in the semiconductor substrate, and at least one photosensitive layer disposed above the semiconductor substrate and substantially covering the reverse biased device, the photosensitive layer releasing electrons and holes when struck by photons, wherein the photon generated electrons and holes in the photosensitive layer reach the reverse biased device and create a combination current therein when a light shines thereon.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: October 7, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shine Chung, Shou-Gwo Wuu
  • Patent number: 7394141
    Abstract: A substrate for a solid-state image pickup element, comprising: an n-type silicon substrate; and an n-type epitaxial growth layer formed on a surface of the n-type silicon substrate, wherein the substrate is configured to form a solid-state image pickup element in the n-type epitaxial growth layer, the solid-state image pickup element comprising: a photoelectric converting section; and a charge transferring section having charge transfer electrodes which transfer charges produced in the photoelectric converting section, and the n-type silicon substrate has a specific resistance of 10/1,000 ?cm or less.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: July 1, 2008
    Assignee: Fujifilm Corporation
    Inventors: Fumitoshi Toyokawa, Haru Okawa, Eiichi Okamoto
  • Publication number: 20080150071
    Abstract: In a photodiode formed by a region of a first type inside a region of a second type, of a semiconductor substrate, the region of the first type includes a first zone including a dopant of the first type having a first concentration and a first depth. The region of the first type also has a second zone adjacent to the first zone in the dopant of the first type has a second concentration higher than the first concentration and a second depth smaller than the first depth. A method for making such a diode is also disclosed.
    Type: Application
    Filed: December 24, 2007
    Publication date: June 26, 2008
    Applicant: STMICROELECTRONICS S.A.
    Inventor: FRANCOIS ROY
  • Publication number: 20080142920
    Abstract: According to the present invention, a highly sensitive photo-sensing element and a sensor driver circuit are prepared by planer process on an insulating substrate by using only polycrystalline material. Both the photo-sensing element and the sensor driver circuit are made of polycrystalline silicon film. As the photo-sensing element, a photo transistor is formed by using TFT, which comprises a first electrode 11 prepared on an insulating substrate 10, a photoelectric conversion region 14 and a second electrode 12, and a third electrode 13 disposed above the photoelectric conversion region 14. An impurity layer positioned closer to an intrinsic layer (density of active impurities is 1017 cm?3 or lower) is provided on the regions 15 and 16 on both sides under the third electrode 13 or on one of the regions 15 or 16 on one side.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 19, 2008
    Inventors: Mitsuharu Tai, Hideo Sato, Mutsuko Hatano, Masayoshi Kinoshita
  • Patent number: 7385272
    Abstract: An improved CMOS sensor integrated circuit is disclosed, along with methods of making the circuit and computer readable descriptions of the circuit.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: June 10, 2008
    Assignee: ESS Technology, Inc.
    Inventors: Zeynep Toros, Richard Mann, Selim Bencuya
  • Patent number: 7382007
    Abstract: A solid-state image pickup device includes, in a substrate, a plurality of photoelectric conversion regions for subjecting incoming light to photoelectric conversion, a reading gate for reading a signal charge from the photoelectric conversion regions, and a transfer register (vertical register) for transferring the signal charge read by the reading gate. Therein, a groove is formed on the surface side of the substrate, and the transfer register and the reading gate are formed at the bottom part of the groove. With such a structure, in the solid-state image pickup device, reduction can be achieved for the smear characteristics, a reading voltage, noise, and others.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: June 3, 2008
    Assignee: Sony Corporation
    Inventors: Yoshiaki Kitano, Nobuhiro Karasawa, Jun Kuroiwa, Hideshi Abe, Mitsuru Sato, Hiroaki Ohki
  • Publication number: 20080111206
    Abstract: A method of processing a substrate having first and second surfaces applies a first dopant in liquid form on the first surface of the substrate, and applies a second dopant in liquid form on the second surface of the substrate. The method then causes the first and second dopants to diffuse into the substrate.
    Type: Application
    Filed: November 2, 2007
    Publication date: May 15, 2008
    Applicant: EVERGREEN SOLAR, INC.
    Inventors: Jack I. Hanoka, Christopher E. Dube, Carolyn K. Schad
  • Publication number: 20080099872
    Abstract: The objective of this invention is to provide a photodiode which has high sensitivity even to light with a wavelength in the blue region while maintaining the high-frequency characterstics. The n type second semiconductor layer (13) containing an n type electroconductive impurity at a low concentration is formed directly or via an intrinsic semiconductor layer (11) on the p type first semiconductor layer (10). The third semiconductor layer (20) containing an n type electroconductive impurity at a medium concentration is formed shallower than said second semiconductor layer (13) in its main plane. The fourth semiconductor layer (21) containing an n type electroconductive impurity at a high concentration is formed shallower than said third semiconductor layer (20) in the main plane of the third semiconductor layer (20).
    Type: Application
    Filed: August 6, 2007
    Publication date: May 1, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Hiroyuki TOMOMATSU, Tohru KATOH, Motoaki KUSAMAKI, Tetsuhiko KINOSHITA
  • Patent number: 7345355
    Abstract: Methods are disclosed for forming ultra shallow junctions in semiconductor substrates using multiple ion implantation steps. The ion implantation steps include implantation of at least one electronically-active dopant as well as the implantation of at least two species effective at limiting junction broadening by channeling during dopant implantation and/or by thermal diffusion. Following dopant implantation, the electronically-active dopant is activated by thermal processing.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: March 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Amitabh Jain, Stephanie W. Butler
  • Patent number: 7329557
    Abstract: A solid-state imaging device includes: a plurality of N-type photodiode regions formed inside a P-type well; a gate electrode having one edge being positioned adjacent to each of the photodiode regions; a N-type drain region positioned adjacent to the other edge of the gate electrode; an element-isolating portion having a STI structure, and a gate oxide film having a thickness of not more than 10 nm. One edge of the gate electrode overlaps the photodiode region.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: February 12, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Ken Mimuro, Mikiya Uchida, Mototaka Ochi
  • Patent number: 7297590
    Abstract: A method for producing an integrated PIN photodiode. The PIN photodiode contains a doped region of a first conduction type near the substrate and a doped region that is remote from the substrate. The doped region that is remote from the substrate has a different construction type than the region near the substrate. In addition, an intermediate region provided that is a range between the doped region remote from the substrate and the doped region near the substrate. The intermediate region is undoped or provided with weak doping.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 20, 2007
    Assignee: Infineon Technologies, AG
    Inventors: Karlheinz Müller, Johannes Karl Sturm
  • Patent number: 7250665
    Abstract: An improved CMOS sensor integrated circuit is disclosed, along with methods of making the circuit and computer readable descriptions of the circuit.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: July 31, 2007
    Assignee: ESS Technology, Inc.
    Inventors: Zeynep Toros, Richard Manrt, Selim Bencuya
  • Patent number: 7217982
    Abstract: A photodetector (10) includes a substrate (12) having a surface; a first layer (14) of semiconductor material that is disposed above the surface, the first layer containing a first dopant at a first concentration for having a first type of electrical conductivity; and a second layer (16) of semiconductor material overlying the first layer. The second layer contains a second dopant at a second concentration for having a second type of electrical conductivity and forms a first p-n junction (15) with the first layer. The second layer is compositionally graded through at least a portion of a thickness thereof from wider bandgap semiconductor material to narrower bandgap in a direction away from the p-n junction. The compositional grading can be done in a substantially linear fashion, or in a substantially non-linear fashion, e.g., in a stepped manner.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 15, 2007
    Assignee: Raytheon Company
    Inventors: Scott M. Taylor, Kenneth Kosai, James A. Finch
  • Patent number: 7205627
    Abstract: A structure (and method for forming the same) for an image sensor cell. The structure includes (a) a semiconductor substrate; (b) a charge collection well on the substrate, the charge collection well comprising a semiconductor material doped with a first doping polarity; (c) a surface pinning layer on and in direct physical contact with the charge collection well, the surface pinning layer comprising a semiconductor material doped with a second doping polarity opposite to the first doping polarity; and (d) an electrically conducting push electrode being in direct physical contact with the surface pinning layer but not being in direct physical contact with the charge collection well.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: April 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Richard J. Rassel
  • Patent number: 7202511
    Abstract: Electromagnetic energy is detected with high efficiency in the spectral range having wavelengths of about 1–2 microns by coupling an absorber layer having high quantum efficiency in the spectral range having wavelengths of about 1–2 microns to an intrinsic semiconducting blocking region of an impurity band semiconducting device included in a solid state photon detector.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: April 10, 2007
    Assignee: DRS Sensors & Targeting Systems, Inc.
    Inventors: Maryn G. Stapelbroek, Henry H. Hogue, Arvind I. D'Souza
  • Patent number: 7199412
    Abstract: A production method for an image sensor which is provided with a plurality of sensor portions arranged on a semiconductor substrate and each having a first photodiode constituted by a first region of a first conductivity type and a second region of a second conductivity type different from the first conductivity type and a second photodiode constituted by the second region and a third region of the first conductivity type. The method includes the steps of: forming a second region of the second conductivity type on a first region defined in a semiconductor substrate by epitaxial growth; and forming a third region of the first conductivity type on the second region by epitaxial growth.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: April 3, 2007
    Assignee: Rohm Co., Ltd.
    Inventors: Kensuke Sawase, Yuji Matsumoto, Kiyotaka Sawa
  • Patent number: 7187052
    Abstract: A primary object of the present invention is to provide a photoelectric conversion apparatus with less leak current in a floating diffusion region. In order to obtain the above object, a photoelectric conversion apparatus according to the present invention includes a photodiode for converting light into a signal charge, a first semiconductor region having a first conductivity type, a floating diffusion region formed from a second semiconductor region having a second conductivity type for converting the signal charge generated by the photodiode into a signal voltage, the second semiconductor region being formed in the first semiconductor region, and an electrode formed above the first semiconductor region through an insulating film and having an effect of increasing a concentration of majority carriers in the first semiconductor region, in which the electrode is not formed above a depletion region formed from the second semiconductor region.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: March 6, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akira Okita, Katsuhito Sakurai, Hiroki Hiyama, Hideaki Takada
  • Patent number: 7176532
    Abstract: An active pixel sensor which provides reduced dark current, improved sensitivity, and improved modulation transfer function. An N well, surrounded by a P well is formed in a P type epitaxial substrate. A P+ region is formed extending from within the P well into the substrate leaving a gap between the P+ region and the N well. A gate dielectric is formed covering at least the gap, part of the P+ region, and part of the N well. A gate electrode is formed on the gate dielectric over the gap, part of the P+ region, and part of the N well. The gate electrode is biased so that the region of the substrate under the gate electrode is accumulated with holes and the region of the N well under the gate electrode is depleted of electrons. This will reduce the dark current and improve the sensitivity of the active pixel sensor.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: February 13, 2007
    Assignee: Dialog Semiconductor GmbH
    Inventor: Taner Dosluoglu
  • Patent number: 7164164
    Abstract: A display device has display elements provided inside of pixels, each being formed in vicinity of intersections of signal lines and scanning lines aligned in matrix form; and photoelectric conversion elements, wherein each of the photoelectric conversion elements includes first, second and third semiconductor regions disposed adjacently in sequence in parallel to a surface of a substrate; a first electrode connected to the first semiconductor region; and a second electrode connected to the third semiconductor region, the first semiconductor region being formed by injecting a first conductive impurity in first dose amount; the third semiconductor region being formed by injecting a second conductive impurity in second dose amount; and the second semiconductor region being formed by injecting the first conductive impurity in third dose amount less than the first dose amount.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: January 16, 2007
    Assignee: Toshiba Matsushita Display Technology Co., Ltd.
    Inventors: Takashi Nakamura, Norio Tada, Masahiro Tada
  • Patent number: 7164447
    Abstract: A solid state image pickup device is provided which can reduce crosstalks between range finding photoelectric conversion elements (AF sensor) and photometry photoelectric conversion elements (AE sensor). The solid state image pickup device has an n-type epitaxial semiconductor region, a p-type first well region formed in the semiconductor region, a p-type second well region formed in the semiconductor region and electrically separated from the first well, an n-type first impurity doped region formed in the first well region and an n-type second impurity doped region formed in the second well, wherein a photometry photoelectric conversion element is formed by using the p-type first well region and n-type first impurity doped region, and a range finding photoelectric element is formed by using the p-type second well region and n-type impurity doped region.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: January 16, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hidekazu Takahashi
  • Patent number: 7151305
    Abstract: In a photoelectric conversion device including a first-conductivity type first semiconductor region located in a pixel region, a second-conductivity type second semiconductor region provided in the first semiconductor region, and a wiring for electrically connecting the second semiconductor region to a circuit element located outside the pixel region, a shield is provided on the light-incident side of the wiring, via an insulator in such a way that it covers at least part of the wiring and also the shield includes a conductor whose potential stands fixed. This photoelectric conversion device may hardly be affected with low-frequency radiated noises as typified by power-source noise.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: December 19, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiraku Kozuka, Takahiro Kaihotsu
  • Patent number: 7132724
    Abstract: A vertical-color-filter detector disposed in a semiconductor structure comprises a complete-charge-transfer detector comprising semiconductor material doped to a first conductivity type and has a horizontal portion disposed at a first depth in the semiconductor structure substantially below an upper surface thereof and a vertical portion communicating with the upper surface of the semiconductor structure. The complete-charge-transfer detector is disposed within a first charge container forming a potential well around it. The horizontal portion of the complete-charge-transfer detector has a substantially uniform doping density in a substantially horizontal direction and the vertical portion of the complete-charge-transfer detector has a doping density that is a monotonic function of depth and is devoid of potential wells. A first charge-transfer device is disposed substantially at an upper surface of the semiconductor structure and is coupled to the vertical portion of the complete-charge-transfer detector.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: November 7, 2006
    Assignee: Foveon, Inc.
    Inventor: Richard B. Merrill
  • Patent number: 7126052
    Abstract: A method of disordering a layer of an optoelectronic device including; growing a plurality of lower layers; introducing an isoelectronic surfactant; growing a layer; allowing the surfactant to desorb; and growing subsequent layers all performed at a low pressure of 25 torr.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: October 24, 2006
    Assignee: The Boeing Company
    Inventors: Christopher M. Fetzer, James H. Ermer, Richard R. King, Peter C. Cotler
  • Patent number: 7122734
    Abstract: A method of reducing propagation of threading dislocations into active areas of an optoelectronic device having a III–V material system includes growing a metamorphic buffer region in the presence of an isoelectronic surfactant. A first buffer layer may be lattice matched to an adjacent substrate and a second buffer layer may be lattice matched to device layers disposed upon the second buffer layer. Moreover, multiple metamorphic buffer layers fabricated in this manner may be used in a single given device allowing multiple layers to have their band gaps and lattice constants independently selected from those of the rest of the device.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: October 17, 2006
    Assignee: The Boeing Company
    Inventors: Christopher M. Fetzer, James H. Ermer, Richard R. King, Peter C. Cotler
  • Patent number: 7115925
    Abstract: An active pixel includes a a photosensitive element formed in a semiconductor substrate. A transfer transistor is formed between the photosensitive element and a floating diffusion and selectively operative to transfer a signal from the photosensitive element to the floating diffusion. The floating diffusion is formed from an n-type implant with a dosage in the range of 5e13 to 5e14 ions/cm2. Finally, an amplification transistor is controlled by the floating diffusion.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: October 3, 2006
    Assignee: OmniVision Technologies, Inc.
    Inventor: Howard E. Rhodes
  • Patent number: 7078741
    Abstract: The present invention includes a photodiode having a first p-type semiconductor layer and an n-type semiconductor layer coupled by a second p-type semiconductor layer. The second p-type semiconductor layer has graded doping along the path of the carriers. In particular, the doping is concentration graded from a high value near the anode to a lower p concentration towards the cathode. By grading the doping in this way, an increase in absorption is achieved, improving the responsivity of the device. Although this doping increases the capacitance relative to an intrinsic semiconductor of the same thickness, the pseudo electric field that is created by the graded doping gives the electrons a very high velocity which more than compensates for this increased capacitance.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: July 18, 2006
    Assignee: Picometrix, Inc.
    Inventors: Cheng C. Ko, Barry Levine
  • Patent number: 7057256
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: June 6, 2006
    Assignee: President & Fellows of Harvard College
    Inventors: James Edward Carey, III, Eric Mazur
  • Patent number: 7034347
    Abstract: There is provided a charge detecting device that can convert an accumulated charge to a voltage at a low voltage and a high efficiency, and has a large dynamic range of an output voltage and satisfactory linearity of a conversion efficiency. The charge detecting device includes a charge accumulating portion including a low concentration N-type (N?) layer 108 formed in a P-type well 101 and a high concentration N-type (N+) layer formed between the N? layer and a principal surface. The N+ layer is connected to an input terminal of an amplifying transistor of an output circuit, and after a reverse bias is applied to the N+ layer during discharging of the accumulated charge, the entire N? layer is depleted at least until a saturated charge is accumulated.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: April 25, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Toshihiro Kuriyama
  • Patent number: 7009185
    Abstract: The present invention relates to an ultraviolet detector and manufacture method thereof, in which a buffer layer is formed on a baseplate and a P-type GaN layer is formed on the baseplate by using epitaxial method. By availing ion-distribution-and-vegetation technology, a first N-type GaN layer is vegetated and invested in the P-type GaN layer by distributing and vegetating Si+ ions in that layer, and a second N-type GaN layer having a thicker ion concentration is invested in the N-type GaN layer. Finally, an annular and a circular metallic layer are formed between the P-type GaN layer and the first N-type GaN layer as well as inside the second N-type GaN layer, respectively, to serve for respective ohmic contact layers. The present invention is characterized in that an incident light can project upon a depletion layer of the GaN planar structure to have the detection efficiency significantly improved.
    Type: Grant
    Filed: July 19, 2003
    Date of Patent: March 7, 2006
    Assignee: National Central University
    Inventors: Gou-Chung Chi, Iinn-Kong Sheu, Meng-Che Chen, Min-Lum Lee
  • Patent number: 7002156
    Abstract: A detection system for detecting gamma rays including a scintillator crystal for receiving at least one gamma ray and generating at least one ultraviolet ray and an avalanche photodiode for detecting the ultraviolet ray. The avalanche photodiode includes: a substrate having a first dopant; a first layer having a second dopant, positioned on top of the substrate; a passivation layer for providing electrical passivation on a surface of the avalanche photodiode; a phosphorous silicate glass layer for limiting mobile ion transport, positioned above of the first layer; and a pair of metal electrodes for providing an ohmic contact wherein a first electrode is positioned below the substrate and a second electrode is positioned above the first layer. The avalanche photodiode comprises a first sidewall and a second sidewall forming a sloped mesa shape.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: February 21, 2006
    Assignee: General Electric Company
    Inventors: Peter M. Sandvik, Dale M. Brown, Stephen D. Arthur, Kevin S. Matocha, James W. Kretchmer
  • Patent number: 6995444
    Abstract: Photodetector device comprising a semiconductor substrate (1) of a first type of conductivity connected to a first electrode (2). Said substrate comprises an active area (4) made up of different semiconductor regions of a second type of conductivity (8, 9, 10) insulated from each other and connected to respective second electrodes (13, 14, 15) so that each of them can be connected separately from the others to an appropriate bias voltage. By regulating the bias voltages applied to these regions the function of optic diaphragm of the device can be controlled. The device works without needing any form of optical insulation between the different regions of the active area and always uses the same single output electrode for the signal in all the different situations of diaphragm adjustment.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: February 7, 2006
    Assignee: Carl Zeiss Jena GmbH
    Inventors: Sergio Cova, Franco Zappa, Massimo Ghioni, Robert Grub, Eberhard Derndinger, Thomas Hartmann
  • Patent number: 6956273
    Abstract: In a photoelectric conversion element which is formed by alternately stacking a region of a first conductivity type and a region of a second conductivity type as a conductivity type opposite to the first conductivity type to form a multi-layered structure, in which junction surfaces between the neighboring regions of the first and second conductivity types are formed to have depths suited to photoelectrically convert light in a plurality of different wavelength ranges, and which outputs signals for respective wavelength ranges, a region of a conductivity type opposite to the conductivity type of a surface-side region of the junction surface closest to a surface is formed in the surface of the surface-side region. Thus, highly color-separable signals which suffer less color mixture upon reading out signals from a plurality of photodiode layers is read out.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 18, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toru Koizumi
  • Patent number: 6949809
    Abstract: A light receiving element, comprising a semiconductor structure comprising at least a first conductivity type semiconductor layer, a first, second conductivity type semiconductor layer provided on the first conductivity type semiconductor layer in the semiconductor structure, a second, second conductivity type semiconductor layer having an impurity concentration lower than that of the first, second conductivity type semiconductor layer, a second, first conductivity type semiconductor layer provided on the second, second conductivity type semiconductor layer, or a second, first conductivity type semiconductor layer provided within the second, second conductivity type semiconductor layer.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: September 27, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takahiro Takimoto, Isamu Ohkubo, Masaru Kubo, Hiroki Nakamura, Toshihiko Fukushima, Toshifumi Yoshikawa
  • Patent number: 6940009
    Abstract: Improved solar cell composed of an upper layer or mesh of a conductive nature, a lower layer or mesh also of a conductive nature, and a series of intermediate semiconductor layers composed of a mixture of silicon, mercury and silver nitrate.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: September 6, 2005
    Inventor: Juan Jose Damian Alvarez
  • Patent number: 6933488
    Abstract: A leakage compensated snapshot imager provides a number of different aspects to prevent smear and other problems in a snapshot imager. The area where the imager is formed may be biased in a way that prevents photo carriers including electrons and holes from reaching a storage area. In addition, a number of different aspects may improve the efficiency. The capacitance per unit area of the storage area may be one, two or more orders of magnitude greater than the capacitance per-unit area of the photodiode. In addition, a ratio between photodiode capacitance and storage area capacitance is maintained larger than 0.7.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: August 23, 2005
    Assignee: California Institute of Technology
    Inventor: Bedabrata Pain
  • Patent number: 6914314
    Abstract: A vertical color filter sensor group formed on a substrate (preferably a semiconductor substrate) and including at least two vertically stacked, photosensitive sensors, each having a different spectral response. At least one of the sensors includes at least one layer of a semiconductor material other than crystalline silicon (for example, silicon carbide, or InxGa1-xN, or another III-V semiconductor material, or polysilicon, or amorphous silicon). Other aspects of the invention are arrays of such vertical color filter sensor groups, and methods for fabricating such vertical color filter sensor groups and arrays thereof.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 5, 2005
    Assignee: Foveon, Inc.
    Inventors: Richard B. Merrill, Russel A. Martin
  • Patent number: 6909162
    Abstract: A method for reducing dark current in a photodiode is disclosed. The photodiode comprises a N-well formed in a P-substrate. The method comprises doping the surface of said N-well with a nitrogen dopant. Alternatively, an oxygen or silicon dopant may be used. Still alternatively, a silicon oxynitride layer may be formed over the N-well.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 21, 2005
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chih-huei Wu, Tiemin Zhao, Xinping He
  • Patent number: 6897559
    Abstract: There is provided an apparatus for forming a plurality of silicon-based thin films on a substrate using a plurality of deposited film forming vessels that can form silicon-based thin films of higher quality and excellent uniformity by applying a high frequency power of a first frequency selected from the range between 30 MHz and 500 MHz to a power-applying electrode in a deposited film forming vessel wherein the distance between the power-supplying electrode and the substrate is 10 mm±5 mm, and by supplying a high frequency power of a second frequency selected from the range between 10 MHz and 30 MHz to a power-supplying electrode in a deposited film forming vessel wherein the distance between the power-supplying electrode and the substrate is 20 mm±5 mm.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: May 24, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takaharu Kondo, Akira Sakai, Koichi Matsuda
  • Patent number: 6853014
    Abstract: An optoelectronic circuit employing a heterojunction thyristor device that is configured as an optically-controlled (or electrically-controlled) sampling/switching device. First and second channel regions are disposed between the anode terminal and the cathode terminal of the device, and an electrical input terminal and an electrical output terminal are coupled to opposite ends of the first channel region. At least one control signal is supplied to the device. When the control signal corresponds to a predetermined ON condition, sufficient charge is stored in the second channel region to cause the heterojunction thyristor device to operate in an ON state whereby current flows between the anode terminal and the cathode terminal and the electrical input terminal is electrically coupled to the electrical output terminal.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 8, 2005
    Assignees: The University of Connecticut, Opel, Inc.
    Inventors: Geoff W. Taylor, Jianhong Cai
  • Patent number: 6838741
    Abstract: An aspect of the present invention is directed to an avalanche photodiode (APD) device for use in oil well drilling applications in harsh, down-hole environments where shock levels are near 250 gravitational acceleration (G) and/or temperatures approach or exceed 150° C. Another aspect of the present invention is directed to an APD device fabricated using SiC materials. Another aspect of the present invention is directed to an APD device fabricated using GaN materials.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: January 4, 2005
    Assignee: General Electtric Company
    Inventors: Peter M. Sandvik, Dale M. Brown, Stephen D. Arthur, Kevin S. Matocha, James W. Kretchmer
  • Patent number: 6831344
    Abstract: An optical semiconductor device of the present invention is equipped with a photo detect element 10 comprising a photo detect part 7 provided with two photodiodes having two photodiodes having peak wavelength sensitivity in a visible light region and an infrared region, respectively and an amplifying operation processing circuit 8 for amplifying and processing outputs of the photodiodes, and characterized in that substrate resistivity R is as follows: 1≦R≦3(&OHgr;cm)
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: December 14, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Isao Ogawa, Takashi Iwasaki, Yoshitsugu Fujino
  • Patent number: 6815789
    Abstract: A semiconductor electronic device includes a die of semiconductor material and a support. The die of semiconductor material includes an integrated electronic circuit and a plurality of contact pads associated with the electronic circuit and connected electrically to the support by wire leads. Each contact pad may include a lower layer of aluminum, copper, or alloys thereof, and an upper layer including at least one film of a metal and/or metallic alloy including nickel, palladium, or alloys thereof, and being deposited by an electroless chemical process.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: November 9, 2004
    Assignee: STMicroelectronics S.r.l.
    Inventors: Roberto Tiziani, Carlo Passagrilli
  • Patent number: 6809391
    Abstract: A photodiode comprises an optical detection portion for detecting an optical signal and outputting a photoelectric conversion signal. The optical detection portion has a semiconductor substrate of a first conductive type and semiconductor layers of a second conductive type formed in spaced-apart relation in a surface of the semiconductor subtrate. A depletion layer is formed in the semiconductor subtrate by application of a reverse bias to the photodiode so as to surround the semiconductor layers. An etched surface portion of the depletion layer is disposed between the semiconductor layers so that an interface level region of the surface of the semiconductor substrate does not exist between the semiconductor layers.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 26, 2004
    Assignee: Seiko Instruments Inc.
    Inventor: Sumio Koiwa
  • Patent number: 6803614
    Abstract: An AE/AF solid-state imaging apparatus exhibiting suitable characteristics of spectral sensitivities of an AE sensor and an AF sensor respectively, is actualized, wherein visual sensitivity corrections filters of an optical system are reduced. In the solid-state imaging apparatus includes AF photodiode regions for auto-focusing and An AE photodiode region for executing a photometric process of a photographing region, are integrated on a same semiconductor substrate, characteristics of spectral sensitivities of the AF photodiode regions are different from a characteristic of the spectral sensitivity of the AE photodiode region. Desirably, a peak wavelength of each of the spectral sensitivity characteristics of the AF photodiode regions is positioned on a longer wavelength side than a peak wavelength of the AE photodiode region.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: October 12, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hidekazu Takahashi
  • Publication number: 20040195518
    Abstract: The present invention relates to an ultraviolet detector and manufacture method thereof, in which a buffer layer is formed on a baseplate and a P-type GaN layer is formed on the baseplate by using epitaxial method. By availing ion-distribution-and-vegetation technology, a first N-type GaN layer is vegetated and invested in the P-type GaN layer by distributing and vegetating Si+ ions in that layer, and a second N-type GaN layer having a thicker ion concentration is invested in the N-type GaN layer. Finally, an annular and a circular metallic layer are formed between the P-type GaN layer and the first N-type GaN layer as well as inside the second N-type GaN layer, respectively, to serve for respective ohmic contact layers. The present invention is characterized in that an incident light can project upon a depletion layer of the GaN planar structure to have the detection efficiency significantly improved.
    Type: Application
    Filed: July 19, 2003
    Publication date: October 7, 2004
    Inventors: Gou-Chung Chi, Iinn-Kong Sheu, Meng-Che Chen, Min-Lum Lee
  • Patent number: 6791124
    Abstract: A sequential mesa type avalanche photodiode (APD) comprises a semiconductor substrate and a sequential mesa portion formed on the substrate. In the sequential mesa portion, a plurality of semiconductor layers, including a light absorbing layer and a multiplying layer, are laminated by epitaxial growth. In the plurality of semiconductor layers, a pair of semiconductor layers forming a pn junction is included. The carrier density of a semiconductor layer which is near to the substrate among the pair of semiconductor layers is larger than the carrier density of a semiconductor layer which is far from the substrate among the pair of semiconductor layers. In the APD, light-receiving current based on movement of electrons and positive holes generated in the sequential mesa portion when light is incident from the substrate toward the light absorbing layer is larger at a central portion than at a peripheral portion of the sequential mesa portion.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: September 14, 2004
    Assignee: Anritsu Corporation
    Inventors: Jun Hiraoka, Kazuo Mizuno, Yuichi Sasaki
  • Patent number: 6784513
    Abstract: A semiconductor light receiving device is provided, which comprises a semiconductor substrate, a collector region, a base region, and an emitter region, an insulating film covering the surface of the collector region, the base region, and the emitter region, a first metal line on the insulating film at a position corresponding to the base region and being electrically connected to the emitter region, and a second metal line on the insulating film at a position corresponding to a junction portion of the base region and the collector region and being electrically connected to the emitter region. The first metal line has a sloped surface such that incident light falling on the first metal line is reflected and directed toward the surface of the base region.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: August 31, 2004
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Motonari Aki, Yoshiki Yasuda
  • Patent number: 6777769
    Abstract: A light-receiving element, comprises an absorption layer formed on a semiconductor substrate, a window layer formed on the absorption layer, a first electrode formed on the window layer, a second electrode formed on the window layer and electrically connected to the first electrode, and a diffusion region which is formed in the absorption layer and the window layer and is formed between the first electrode and the substrate and between the second electrode and the substrate.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: August 17, 2004
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Takeshi Higuchi, Naoki Tsukiji
  • Patent number: 6756618
    Abstract: The present invention relates to a complementary metal-oxide semiconductor (CMOS) image sensor. Particularly, the present invention provides effects of suppressing electrical and optical interferences and improving light sensitivity in a unit pixel of a highly integrated and low power consuming CMOS image sensor. In order to achieve these effects, a red pixel is two-dimensionally encompassed by a green pixel and a blue pixel formed with an additional p-type ion implantation region for suppressing the interference between the pixels. Also, in addition to the above-described structure, a photodiode optimized to the blue pixel is formed further to enhance the light sensitivity.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: June 29, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee-Jeong Hong