In Integrated Circuit Patents (Class 257/491)
  • Patent number: 8691707
    Abstract: A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC. A method includes depositing a voltage-switchable dielectric layer on a first die between a first terminal and a second terminal.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 8, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Ratibor Radojcic, Yiming Li
  • Patent number: 8686505
    Abstract: A method produces a semiconductor device including a semiconductor body, an electrode thereon, and an insulating structure insulating the electrode from the semiconductor body. The semiconductor body includes a first contact region of a first conductivity type, a body region of a second conductivity type, a drift region of the first conductivity type, and a second contact region having a higher maximum doping concentration than the drift region. The insulating structure includes a gate dielectric portion forming a first horizontal interface. with the drift region and has a first maximum vertical extension A field dielectric portion forms with the drift region second and third horizontal interfaces arranged below the main surface. A second maximum vertical extension of the field dielectric portion is larger than the first maximum vertical extension. A third maximum vertical extension of the field dielectric portion is larger than the second maximum vertical extension.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 1, 2014
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Marc Strasser, Karl-Heinz Gebhardt, Ralf Rudolf, Lincoln O'Riain
  • Publication number: 20140027773
    Abstract: A semiconductor device includes a transistor cell array in the semiconductor body of a first conductivity type. The semiconductor device further includes a first trench in the transistor cell array between transistor cells. The first trench extends into the semiconductor body from a first side and includes a pn junction diode electrically coupled to the semiconductor body at a sidewall.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thorsten Meyer, Andreas Meiser
  • Patent number: 8633562
    Abstract: A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Ratibor Radojcic, Yiming Li
  • Patent number: 8604618
    Abstract: A semiconductor device and a method of fabricating the same, includes vertically stacked layers on an insulator. Each of the layers includes a first dielectric insulator portion, a first metal conductor embedded within the first dielectric insulator portion, a first nitride cap covering the first metal conductor, a second dielectric insulator portion, a second metal conductor embedded within the second dielectric insulator portion, and a second nitride cap covering the second metal conductor. The first and second metal conductors form first vertically stacked conductor layers and second vertically stacked conductor layers. The first vertically stacked conductor layers are proximate the second vertically stacked conductor layers, and at least one air gap is positioned between the first vertically stacked conductor layers and the second vertically stacked conductor layers.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Jeffrey P. Gambino, Zhong-Xiang He, Xiao Hu Liu, Thomas L. McDevitt, Gary L. Milo, William J. Murphy
  • Patent number: 8575694
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 8553380
    Abstract: Apparatus and methods for electronic circuit protection are disclosed. In one embodiment, an apparatus comprises a substrate includes an n-well and a p-well adjacent the n-well. An n-type active area and a p-type active area are disposed in the n-well. The p-type active area, the n-well, and the p-well are configured to operate as an emitter, a base, and a collector of an PNP bipolar transistor, respectively, and the p-type active area surrounds at least a portion of the n-type active area so as to aid in recombining carriers injected into the n-well from the p-well before the carriers reach the n-type active area. The n-well and the p-well are configured to operate as a breakdown diode, and a punch-through breakdown voltage between the n-well and the p-well is lower than or equal to about a breakdown voltage between the p-type active area and the n-well.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: October 8, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Javier A Salcedo
  • Publication number: 20130249044
    Abstract: A semiconductor device includes a first diode, a second diode, and a third diode. The first diode has an anode connected to a first power supply terminal to which a first power-source voltage is applied and a cathode connected to an input-output terminal at which input-output signals are input and output. The second diode has an anode connected to the input-output terminal and a cathode connected to a second power supply terminal to which a second power-source voltage that is higher than the first power-source voltage is applied. The third diode has an anode connected to the first supply terminal and a cathode connected to the second power supply terminal. The breakdown voltage of at least one of either the first or second diode is higher than the breakdown voltage of the third diode.
    Type: Application
    Filed: February 27, 2013
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Satoshi HARUKI, Kazuhiro Kato
  • Publication number: 20130234279
    Abstract: A semiconductor device with buried word line structures and methods of forming the semiconductor device are provided. The semiconductor device includes a plurality of insulating line patterns extending in a direction in a substrate, a plurality of word lines alternately with ones of the plurality of insulating line patterns, the plurality of word lines extending in the direction and comprising a metal, a plurality of first doped regions on respective ones of the plurality of the word lines and between two adjacent ones of the plurality of insulating line patterns, an interlayer insulating film on the plurality of insulating line patterns and the plurality of first doped regions, the interlayer insulating film including a plurality of openings exposing upper surfaces of ones of the plurality of first doped regions and a plurality of second doped regions contacting respective ones of the plurality of first doped regions within the openings.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 12, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Eun-jung Kim, Seung-pil Ko, Yong-june Kim
  • Patent number: 8481337
    Abstract: An object of the present invention is to provide a silicon spin transport device manufacturing method and silicon spin transport device whereby improved voltage output characteristics can be obtained. The silicon spin transport device manufacturing method comprises: a first step of patterning a silicon film by wet etching and forming a silicon channel layer; and a second step of forming a magnetization free layer and a magnetization fixed layer, which are apart from each other, on the silicon channel layer.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: July 9, 2013
    Assignee: TDK Corporation
    Inventors: Tomoyuki Sasaki, Tohru Oikawa, Katsumichi Tagami
  • Patent number: 8373248
    Abstract: A device includes a well region over a substrate, and a heavily doped well region over the well region, wherein the well region and the heavily doped well region are of a same conductivity type. A gate dielectric is formed on a top surface of the heavily doped well region. A gate electrode is formed over the gate dielectric. A source region and a drain region are formed on opposite sides of the heavily doped well region. The source region and the drain region have bottom surfaces contacting the well region, and wherein the source region and the drain region are of opposite conductivity types.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: February 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chewn-Pu Jou
  • Patent number: 8357985
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: January 22, 2013
    Assignee: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuinness, Bernard Patrick Stenson
  • Patent number: 8350352
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: January 8, 2013
    Assignee: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuinness, Bernard Patrick Stenson
  • Patent number: 8319471
    Abstract: A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 27, 2012
    Assignee: Solaredge, Ltd.
    Inventors: Meir Adest, Lior Handelsman, Yoav Galin, Amir Fishelov, Guy Sella
  • Patent number: 8264057
    Abstract: A semiconductor device includes a low-side circuit, high-side circuit, a virtual ground potential pad, a common ground potential pad and a diode, formed on a semiconductor substrate. The low-side circuit drives a low-side power transistor. The high-side circuit is provided at a high potential region, and drives a high-side power transistor. The virtual ground potential pad is arranged at the high potential region, and coupled to a connection node of both power transistors to supply a virtual ground potential to the high-side circuit. The common ground potential pad supplies a common ground potential to the low-side circuit and high-side circuit. The diode has its cathode connected to the virtual ground potential pad and its anode connected to the common ground potential pad.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: September 11, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuhiro Shimizu
  • Patent number: 8242572
    Abstract: A semiconductor apparatus includes, below a high-voltage wiring, a p? diffusion layer in contact with an n drain buffer layer and a p+ diffusion layer in contact with a p? diffusion layer for reducing the electric field strength in an insulator film, which the high-voltage wiring crosses over. Reducing electric field strength in the insulator film prevents lowering of breakdown voltage of a high-voltage NMOSFET, break down of an interlayer insulator film, and impairment of isolation breakdown voltage of a device isolation trench. The semiconductor apparatus according to the invention facilitates bridging a high-voltage wiring from a high-voltage NMOSFET and such a level-shifting device to a high-voltage floating region crossing over a device isolation trench without impairing the breakdown voltage of the high-voltage NMOSFET, without breaking down the interlayer insulator film and without impairing the isolation breakdown voltage of the device isolation trench.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: August 14, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Masaharu Yamaji
  • Publication number: 20120170163
    Abstract: In one general aspect, an apparatus can include a barrier diode including a refractory metal layer coupled to a semiconductor substrate including at least a portion of a PN junction and the apparatus can include an overcurrent protection device operably coupled to the barrier diode.
    Type: Application
    Filed: November 30, 2011
    Publication date: July 5, 2012
    Inventor: Adrian Mikolajczak
  • Patent number: 8212322
    Abstract: Techniques for combining transistors having different threshold voltage requirements from one another are provided. In one aspect, a semiconductor device comprises a substrate having a first and a second nFET region, and a first and a second pFET region; a logic nFET on the substrate over the first nFET region; a logic pFET on the substrate over the first pFET region; a SRAM nFET on the substrate over the second nFET region; and a SRAM pFET on the substrate over the second pFET region, each comprising a gate stack having a metal layer over a high-K layer. The logic nFET gate stack further comprises a capping layer separating the metal layer from the high-K layer, wherein the capping layer is further configured to shift a threshold voltage of the logic nFET relative to a threshold voltage of one or more of the logic pFET, SRAM nFET and SRAM pFET.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Arvind Kumar, Vijay Narayanan, Vamsi K. Paruchuri, Jeffrey Sleight
  • Publication number: 20120074516
    Abstract: An object is to provide a semiconductor device having a plate electrode adapted to a plurality of chips, capable of being produced at low cost, and having high heat cycle property. A semiconductor device according to the present invention includes a plurality of semiconductor chips formed on a substrate, and a plate electrode connecting electrodes of the plurality of semiconductor chips. The plate electrode has half-cut portions formed by half-pressing and the raised sides of the half-cut portions are bonded with the electrodes of the semiconductor chips.
    Type: Application
    Filed: June 1, 2011
    Publication date: March 29, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro YAMAGUCHI, Yoshiko OBIRAKI
  • Publication number: 20120074515
    Abstract: A device includes a substrate having a front surface and a back surface; an integrated circuit device at the front surface of the substrate; and a metal plate on the back surface of the substrate, wherein the metal plate overlaps substantially an entirety of the integrated circuit device. A guard ring extends into the substrate and encircles the integrated circuit device. The guard ring is formed of a conductive material. A through substrate via (TSV) penetrates through the substrate and electrically couples to the metal plate.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chewn-Pu Jou, Sally Liu
  • Patent number: 8138569
    Abstract: A guard ring structure for use in a semiconductor device. The guard ring structure includes a semiconductor layer stack having a first layer and a second layer on top of the first layer, gates structures formed in the first layer; and guard rings formed in the first layer. The second layer has a dopant concentration that is higher than the dopant concentration of the first layer. The gates and the guard rings are formed simultaneously using a single mask.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 20, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John Victor D. Veliadis, Megan J. Snook
  • Patent number: 8120136
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 21, 2012
    Assignee: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, Bernard Patrick Stenson
  • Publication number: 20120007207
    Abstract: Apparatus and methods for electronic circuit protection are disclosed. In one embodiment, an apparatus comprises a substrate includes an n-well and a p-well adjacent the n-well. An n-type active area and a p-type active area are disposed in the n-well. The p-type active area, the n-well, and the p-well are configured to operate as an emitter, a base, and a collector of an PNP bipolar transistor, respectively, and the p-type active area surrounds at least a portion of the n-type active area so as to aid in recombining carriers injected into the n-well from the p-well before the carriers reach the n-type active area. The n-well and the p-well are configured to operate as a breakdown diode, and a punch-through breakdown voltage between the n-well and the p-well is lower than or equal to about a breakdown voltage between the p-type active area and the n-well.
    Type: Application
    Filed: February 18, 2011
    Publication date: January 12, 2012
    Applicant: Analog Devices, Inc.
    Inventor: Javier A. Salcedo
  • Patent number: 8093676
    Abstract: A semiconductor component includes a semiconductor body having a first side, a second side, an edge delimiting the semiconductor body in a lateral direction, an inner region and an edge region. A first semiconductor zone of a first conduction type is arranged in the inner region and in the edge region. A second semiconductor zone of a second conduction type is arranged in the inner region and adjacent to the first semiconductor zone. A trench is arranged in the edge region and has first and second sidewalls and a bottom, and extends into the semiconductor body. A doped first sidewall zone of the second conduction type is adjacent to the first sidewall of the trench. A doped second sidewall zone of the second conduction type is adjacent to the second sidewall of the trench. A doped bottom zone of the second conduction type is adjacent to the bottom of the trench. Doping concentrations of the sidewall zones are lower than a doping concentration of the bottom zone.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerhard Schmidt
  • Patent number: 8093652
    Abstract: A power device includes a semiconductor substrate of first conductivity having an upper surface and a lower surface. An isolation diffusion region of second conductivity is provided at a periphery of the substrate and extends from the upper surface to the lower surface of the substrate. The isolation diffusion region has a first surface corresponding to the upper surface of the substrate and a second surface corresponding to the lower surface. A peripheral junction region of second conductivity is formed at least partly within the isolation diffusion region and formed proximate the first surface of the isolation diffusion region. First and second terminals are provided.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: January 10, 2012
    Assignee: IXYS Corporation
    Inventors: Subhas C. Bose Jayappa Veeramma, Ulrich Kelberlau
  • Patent number: 8093623
    Abstract: Disclosed herein is a semiconductor integrated circuit including a protected circuit; and a protection element formed on the same semiconductor substrate as the protected circuit and adapted to protect the protected circuit, wherein the protection element includes two diodes having their anodes connected together to form a floating node and two cathodes connected to the protected circuit, the two diodes are formed in a well-in-well structure on the semiconductor substrate, and the well-in-well structure includes a P-type well forming the floating gate, an N-type well which surrounds the surfaces of the P-type well other than that on the front side of the substrate with the deep portion side of the substrate so as to form the cathode of one of the diodes, and a first N-type region formed in the P-type well so as to form the cathode of the other diode.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: January 10, 2012
    Assignee: Sony Corporation
    Inventors: Kouzou Mawatari, Motoyasu Yano
  • Patent number: 8080858
    Abstract: A Semiconductor component having a space saving edge structure is disclosed. One embodiment provides a first side, a second side, an inner region, an edge region adjoining the inner region in a lateral direction of the semiconductor body, and a first semiconductor layer extending across the inner region and the edge region and having a basic doping of a first conductivity type. At least one active component zone of a second conductivity type, which is complementary to the first conductivity type, is disposed in the inner region in the first semiconductor layer. An edge structure is disposed in the edge region and includes at least one trench extending from the first side into the semiconductor body. An edge electrode is disposed in the trench, a dielectric layer is disposed in the trench between the edge electrode and the semiconductor body, a first edge zone of the second conductivity type adjoin the trench and are at least partially disposed below the trench.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 20, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Ralf Siemieniec, Christian Geissler
  • Patent number: 8079528
    Abstract: A chip for a smart card including a plurality of electrical contacts for communication of data with a smart card reader is disclosed. In one embodiment, a chip for a smart card includes a core circuit and a plurality of input/output pads corresponding to said set of electrical contacts, wherein said input/output pads are divided into at least a first column and a second column placed immediately adjacent to the first column, such that the first and second columns form a cluster. In another embodiment, eight input/output pads are divided into two columns, placed immediately adjacent to each other. The cluster may be partially surrounded by the core circuit. The chip may further comprise an ESD network, comprising VDD and GND buses for improved ESD protection while reducing the size of the chip.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: December 20, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Ming-Hsiang Song
  • Patent number: 8076748
    Abstract: A semiconductor device is provided having a high performance resistance element. In an N-type well isolated by an insulating film, two higher concentration N-type regions are formed. An interlayer insulating film is also formed. In a plurality of openings in the interlayer insulating film, one electrode group having a plurality of electrodes is formed on one N-type region, while a second electrode group having a plurality of electrodes is formed on the other N-type region. The relationship between the two N-type regions is between an island region and an annular region surrounding the island. The annular region of the N-type well between the island region and the annular region serves as a resistor R. Thus, discharge channels for charges applied excessively because of ESD or the like evenly exist in the periphery (four regions) of the one N-type region.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 13, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Takayuki Saiki, Kazuhiko Okawa
  • Patent number: 8053859
    Abstract: To provide a semiconductor device that exhibits a high breakdown voltage, excellent thermal properties, a high latch-up withstanding capability and low on-resistance. The semiconductor device according to the invention, which includes a buried insulator region 5 disposed between an n?-type drift layer 3 and a first n-type region 7 above n?-type drift layer 3, facilitates limiting the emitter hole current, preventing latch-up from occurring, raising neither on-resistance nor on-voltage. The semiconductor device according to the invention, which includes a p-type region 4 disposed between the buried insulator region 5 and n?-type drift layer 3, facilitates depleting n?-type drift layer 3 in the OFF-state of the device.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: November 8, 2011
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Hong-fei Lu, Shinichi Jimbo
  • Patent number: 8018022
    Abstract: A guard ring structure for use in a semiconductor device. The guard ring structure includes a semiconductor layer stack having a first layer and a second layer on top of the first layer, gates structures formed in the first layer; and guard rings formed in the first layer. The second layer has a dopant concentration that is higher than the dopant concentration of the first layer. The gates and the guard rings are formed simultaneously using a single mask.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: September 13, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John Victor D. Veliadis, Megan J. Snook
  • Publication number: 20110169564
    Abstract: An integrated circuit is disclosed having a semiconductor component comprising a first p-type region and a first n-type region adjoining the first p-type region, which together form a first pn junction having a breakdown voltage. A further n-type region adjoining the first p-type region or a further p-type region adjoining the first n-type region is provided, the first p-type or n-type region and the further n-type or p-type region adjoining the latter together forming a further pn junction having a further breakdown voltage, the first pn junction and the further pn junction being connected or connectable to one another in such a way that, in the case of an overloading of the semiconductor component, on account of a current loading of the first pn junction, first of all the further pn junction breaks down.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 14, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Nils Jensen, Marie Denison
  • Patent number: 7973382
    Abstract: A gate electrode 20 and first field plates 22a to 22d and 23 are provided on a field oxide film 19. The gate electrode 20 and first field plates 22a to 22d and 23 are covered with an insulating film 24. A high-voltage wiring conductor 28 is provided on the insulating film 24. A shielding electrode 29 is provided between the first field plate 22a positioned closest to a source side and the high-voltage wiring conductor 28.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: July 5, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tetsuo Takahashi
  • Publication number: 20110101486
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, Bernard Patrick Stenson
  • Patent number: 7919822
    Abstract: A semiconductor device that suppresses variation and a drop in the breakdown voltage of transistors. In the semiconductor device in which a logic transistor and a high-breakdown-voltage transistor are formed on one Si substrate, an insulating film which has an opening region and which is thick around the opening region is formed on a low concentration drain region formed in the Si substrate on one side of a gate electrode of the high-breakdown-voltage transistor. The insulating film around the opening region has a two-layer structure including a gate insulating film and a sidewall insulating film. When ion implantation is performed on the low concentration drain region beneath the opening region to form a high concentration drain region, the insulating film around the opening region prevents impurities from passing through.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: April 5, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hitoshi Asada
  • Publication number: 20110049666
    Abstract: A guard ring structure for use in a semiconductor device. The guard ring structure includes a semiconductor layer stack having a first layer and a second layer on top of the first layer, gates structures formed in the first layer; and guard rings formed in the first layer. The second layer has a dopant concentration that is higher than the dopant concentration of the first layer. The gates and the guard rings are formed simultaneously using a single mask.
    Type: Application
    Filed: October 7, 2010
    Publication date: March 3, 2011
    Applicant: Northrop Grumman Systems Corporation
    Inventors: John Victor D. VELIADIS, Megan J. Snook
  • Patent number: 7898056
    Abstract: Disclosed is a seal-ring architecture that can minimize noise injection from noisy digital circuits to sensitive analog and/or radio frequency (RF) circuits in system-on-a-chip (SoC) applications. In order to improve the isolation, the seal-ring structure contains cuts and ground connections to the segment which is close to the analog circuits. The cuts are such that the architecture is fully compatible with standard design rules and that the mechanical strength of the seal rings is not significantly sacrificed. Some embodiments also include a grounded p-tap ring between the analog circuits and the inner seal ring in order to improve isolation. Some embodiments also include a guard strip between the analog circuits and the digital circuits to minimize the noise injection through the substrate.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: March 1, 2011
    Assignee: Alvand Technology, Inc.
    Inventors: Mansour Keramat, Syed S. Islam, Mehrdad Heshami
  • Publication number: 20110042776
    Abstract: A guard ring structure for use in a semiconductor device. The guard ring structure includes a semiconductor layer stack having a first layer and a second layer on top of the first layer, gates structures formed in the first layer; and guard rings formed in the first layer. The second layer has a dopant concentration that is higher than the dopant concentration of the first layer. The gates and the guard rings are formed simultaneously using a single mask.
    Type: Application
    Filed: October 7, 2010
    Publication date: February 24, 2011
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: JOHN VICTOR D. VELIADIS, MEGAN J. SNOOK
  • Patent number: 7868409
    Abstract: A semiconductor integrated circuit which is connected to a substrate by solder bumps wherein, when at least one solder bump is connected to a signal line of the semiconductor integrated circuit and the semiconductor integrated circuit is mounted on the substrate, the semiconductor integrated circuit is bonded to the substrate by the solder bump, and the interconnection to the substrate is made by dummy bumps forming wires at the substrate side.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: January 11, 2011
    Assignee: Fujitsu Limited
    Inventor: Takao Sasaki
  • Patent number: 7851883
    Abstract: This invention aims at providing an inexpensive semiconductor device having a parasitic diode and lowering an hfe of a parasitic PNP transistor and a manufacturing method thereof. Such semiconductor device includes a P-type silicon substrate and a gate electrode formed above the P-type silicon substrate. The P-type silicon substrate includes an N-type well layer, an N-type buried layer, a P-type body layer, an N-type source layer formed in the P-type body layer, and a drain contact layer formed in the N-type well layer. The P-type body layer and the N-type source layer are formed by self alignment that uses the gate electrode as a mask. The N-type drain contact layer is formed opposite the N-type source layer across the P-type body layer formed below the gate electrode. The N-type buried layer is formed below the P-type body layer.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaki Inoue, Akira Ohdaira
  • Patent number: 7825487
    Abstract: A guard ring structure for use in a semiconductor device. The guard ring structure includes a semiconductor layer stack having a first layer and a second layer on top of the first layer, gates structures formed in the first layer; and guard rings formed in the first layer. The second layer has a dopant concentration that is higher than the dopant concentration of the first layer. The gates and the guard rings are formed simultaneously using a single mask.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 2, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John Victor D. Veliadis, Megan J. Snook
  • Publication number: 20100264507
    Abstract: A semiconductor device includes: a semiconductor substrate having a main surface having an element formation region, a guard ring, a guard ring electrode, a channel stopper region, a channel stopper electrode, and a field plate disposed over and insulated from the semiconductor substrate. The field plate includes a first portion located between the main surface of the semiconductor substrate and the guard ring electrode, and a second portion located between the main surface of the semiconductor substrate and the channel stopper electrode. The first portion has a portion overlapping with the guard ring electrode when viewed in a plan view. The second portion has a portion overlapping with the channel stopper electrode when viewed in the plan view. In this way, a semiconductor device allowing for stabilized breakdown voltage can be obtained.
    Type: Application
    Filed: December 31, 2009
    Publication date: October 21, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tetsuo TAKAHASHI, Takami Otsuki
  • Publication number: 20100224907
    Abstract: To provide a semiconductor device in which dielectric breakdown strength in a peripheral region is increased without increasing on-resistance. An IGBT comprises a body region, guard ring, and collector layer. The body region is formed within an active region in a surface layer of a drift layer. The guard ring is formed within a peripheral region in the surface layer of the drift layer, and surrounds the body region. The collector layer is formed at a back surface side of the drift layer, and is formed across the active region and the peripheral region. A distance F between a back surface of the guard ring and the back surface of the drift layer is greater than a distance between a back surface of the body region and the back surface of the drift layer. A thickness H of the collector layer in the peripheral region is smaller than a thickness D of the collector layer in the active region.
    Type: Application
    Filed: November 5, 2008
    Publication date: September 9, 2010
    Inventor: Masafumi Hara
  • Patent number: 7768100
    Abstract: This invention is directed to improve the electrostatic discharge strength and the latch-up strength of the semiconductor integrated circuit. To achieve the certain level of stable quality of the semiconductor integrated circuit by eliminating the variety in the electrostatic discharge strength and the latch-up strength is also aimed. The first NPN type bipolar transistor 3 and the second NPN type bipolar transistor 4 in the electrostatic discharge protection cell EC 1 are surrounded by the isolation region 6 made of the P+ type semiconductor layer and electronically isolated from other elements. The width WB1 of the isolating region 6 is larger than the width WB2 of the isolation region 7 that separates the elements comprising the internal circuit 50 from each other. This configuration can efficiently improve the electrostatic discharge strength and the latch-up strength.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: August 3, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventor: Fuminori Hashimoto
  • Patent number: 7759759
    Abstract: An integrated circuit includes a high voltage NPN bipolar transistor and a low voltage device. The NPN bipolar transistor includes a lightly doped p-well as the base region of the transistor while the low voltage devices are built using standard, more heavily doped p-wells. By using a process including a lightly doped p-well and a standard p-well, high and low voltage devices can be integrated onto the same integrated circuit. In one embodiment, the lightly doped p-well and the standard p-well are formed by performing ion implantation using a first dose to form the lightly doped p-well, masking the lightly doped p-well, and performing ion implantation using a second dose to form the standard p-well. The second dose is the difference of the dopant concentrations of the lightly doped p-well and the standard p-well. Other high voltage devices can also be built by incorporating the lightly doped p-well structure.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 20, 2010
    Assignee: Micrel Incorporated
    Inventor: Hideaki Tsuchiko
  • Publication number: 20100163972
    Abstract: An embodiment of a semiconductor power device provided with: a structural body made of semiconductor material with a first conductivity, having an active area housing one or more elementary electronic components and an edge area delimiting externally the active area; and charge-balance structures, constituted by regions doped with a second conductivity opposite to the first conductivity, extending through the structural body both in the active area and in the edge area in order to create a substantial charge balance. The charge-balance structures are columnar walls extending in strips parallel to one another, without any mutual intersections, in the active area and in the edge area.
    Type: Application
    Filed: December 17, 2009
    Publication date: July 1, 2010
    Applicant: STMICROELECTRONICS S.R.I
    Inventors: Mario Giuseppe SAGGIO, Alfio GUARNERA
  • Patent number: 7714407
    Abstract: A high voltage/power semiconductor device has a semiconductor layer having a high voltage terminal end and a low voltage terminal end. A drift region extends between the high and low voltage terminal ends. A dielectric layer is provided above the drift region. An electrical conductor extends across at least a part of the dielectric layer above the drift region, the electrical conductor being connected or connectable to the high voltage terminal end. The drift region has plural trenches positioned below the electrical conductor. The trenches extend laterally across at least a part of the drift region in the direction transverse the direction between the high and low voltage terminal ends of the semiconductor layer, each trench containing a dielectric material. The trenches improve the distribution of electric field in the device in the presence of the electrical conductor.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: May 11, 2010
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Cerdin Lee
  • Patent number: 7709925
    Abstract: A semiconductor device, including: a semiconductor substrate of a first conductivity type; a semiconductor layer of a second conductivity type formed on the semiconductor substrate; a trench formed in the semiconductor region; a trench diffusion layer of the first conductivity type formed along wall surfaces of the trench; and a buried conductor buried in the trench, wherein an insulation film is further disposed between the wall surfaces of the trench and the buried conductor.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuo Takahashi, Tomohide Terashima
  • Publication number: 20100090306
    Abstract: In one embodiment, a two terminal multi-channel ESD device is configured to include a zener diode and a plurality of P-N diodes.
    Type: Application
    Filed: October 15, 2008
    Publication date: April 15, 2010
    Inventors: Ali Salih, Mingjiao Liu, Thomas Keena
  • Patent number: 7692241
    Abstract: A semiconductor device includes a semiconductor substrate and a super junction structure on the substrate. The super junction structure is constructed with p-type and n-type column regions that are alternately arranged. A p-type channel layer is formed to a surface of the super junction structure. A trench gate structure is formed to the n-type column region. An n+-type source region is formed to a surface of the channel layer near the trench structure. A p+-type region is formed to the surface of the channel layer between adjacent n+-type source regions. A p-type body region is formed in the channel layer between adjacent trench gate structures and in contact with the p+-type region. Avalanche current is caused to flow from the body region to a source electrode via the p+-type region without passing through the n+-type source region.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: April 6, 2010
    Assignee: DENSO CORPORATION
    Inventor: Takumi Shibata