With Heavily Doped Regions Contacting Amorphous Semiconductor Material (e.g., Heavily Doped Source And Drain) Patents (Class 257/61)
  • Patent number: 8124979
    Abstract: Provided are a thin film transistor and a method of manufacturing the same. The thin film transistor includes: a lower structure; a semiconductor layer formed on the lower structure and including a plurality of doping regions; a first insulating layer and a second insulating layer formed on the semiconductor layer and separated from each other; a third insulating layer formed on the first insulating layer and the second insulating layer; and a gate electrode layer formed between regions of the third insulating layer respectively corresponding to the first insulating layer and the second insulating layer.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: February 28, 2012
    Assignees: Samsung Electronics Co., Ltd., Seoul National University Industry Foundation
    Inventors: Ji-sim Jung, Myung-kwan Ryu, Jang-yeon Kwon, Kyung-bae Park, Min-koo Han, Sang-yoon Lee, Joong-hyun Park, Sang-myeon Han, Sun-jae Kim
  • Patent number: 8093916
    Abstract: A method of characterizing semiconductor device includes providing a silicon-on-insulator (SOI) substrate with at least a body-tied (BT) SOI device and a BT dummy device for measurement, respectively measuring tunneling currents (Igb) and scattering parameters (S-parameters) of the BT SOI device and the BT dummy device, subtracting Igb of BT dummy device from that of the BT SOI device to obtain Igb of a floating body (FB) SOI device, filtering characteristics of the BT dummy device out to extract S-parameters of the FB SOI device, and analyzing the S-parameters of the FB SOI device to obtain gate-related capacitances of the FB SOI device.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: January 10, 2012
    Assignee: United Microelectronics Corp,
    Inventors: Yue-Shiun Lee, Yuan-Chang Liu, Cheng-Hsiung Chen
  • Patent number: 8039844
    Abstract: This invention provides a top-gate microcrystalline thin film transistor and a method for manufacturing the same. An inversion layer channel is formed in a top interface of a microcrystalline active layer, and being separated from an incubation layer in a bottom interface of the microcrystalline active layer. The inversion layer channel is formed in the crystallized layer of the top interface of the microcrystalline active layer. As such, the present microcrystalline thin film transistor has better electrical performance and reliability.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: October 18, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Ju Tsai, Bo-Chu Chen, Ding-Kang Shih, Jung-Jie Huang, Yung-Hui Yeh
  • Patent number: 8022559
    Abstract: A substrate for a display panel includes an alignment accuracy measurement mark which is used for measuring alignment accuracy between patterns on the substrate without decreasing an aperture ratio of a pixel. The substrate for a display panel includes the alignment accuracy measurement mark in an isolated configuration which is used for measuring alignment accuracy between a pattern of a gate signal line and an auxiliary capacitance line and a pattern of a source signal line and a drain line, where the alignment accuracy measurement mark has a shape such that at least one straight line portion is included, is formed in a layer where the pattern of the source signal line and the drain line is formed, and is positioned on the gate signal line.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 20, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tomoki Noda, Masanori Takeuchi, Kenji Enda
  • Patent number: 8008789
    Abstract: A substrate for a display panel includes an alignment accuracy measurement mark which is used for measuring alignment accuracy between patterns on the substrate without decreasing an aperture ratio of a pixel. The substrate for a display panel includes the alignment accuracy measurement mark in an isolated configuration which is used for measuring alignment accuracy between a pattern of a gate signal line and an auxiliary capacitance line and a pattern of a source signal line and a drain line, where the alignment accuracy measurement mark has a shape such that at least one straight line portion is included, is formed in a layer where the pattern of the source signal line and the drain line is formed, and is positioned on the gate signal line.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 30, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tomoki Noda, Masanori Takeuchi, Kenji Enda
  • Patent number: 7968880
    Abstract: To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: June 28, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Takayuki Ikeda, Hidekazu Miyairi, Yoshiyuki Kurokawa, Hiromichi Godo, Daisuke Kawae, Takayuki Inoue, Satoshi Kobayashi
  • Patent number: 7956354
    Abstract: Provided is a method of patterning an organic thin film which can prevent surface damage of an organic semiconductor layer. Also, an organic thin film transistor that can reduce an off-current and can prevent surface damage of the organic semiconductor layer and a method of manufacturing the organic thin film transistor, and an organic electroluminescence display device having the organic thin film transistor are provided. The method of patterning the organic thin film includes forming the organic thin film on a substrate, selectively printing a mask material on a portion of the organic thin film, dry etching an exposed portion of the organic thin film using the mask material, and removing the mask material.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: June 7, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Min-Chul Suh, Jae-Bon Koo
  • Patent number: 7947984
    Abstract: An LCD device is disclosed, to minimize the signal distortion by decreasing the instability of voltage in a—Si:H TFT of a gate driving signal output unit, which includes a signal controller for outputting first and second control signals Q and /Q; a pull-up transistor between a clock signal terminal CLK and a gate driving signal output terminal for receiving the first control signal Q, the pull-up transistor having a first gate electrode, a first source electrode and a first drain electrode, wherein the pull-up transistor has an asymmetric structure in a first area of the first source electrode overlapped with the first gate electrode and a second area of the first drain electrode overlapped with the first gate electrode; and a pull-down transistor connected between the gate driving signal output terminal and a ground voltage terminal, wherein the pull-down transistor receives the second control signal.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: May 24, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Yong Ho Jang, Nam Wook Cho, Min Doo Chun
  • Patent number: 7919777
    Abstract: A method of manufacturing a bottom gate thin film transistor (“TFT”) in which a polycrystalline channel region having a large grain size is formed relatively simply and easily. The method of manufacturing a bottom gate thin film transistor includes forming a bottom gate electrode on a substrate, forming a gate insulating layer on the substrate to cover the bottom gate electrode, forming an amorphous semiconductor layer, an N-type semiconductor layer and an electrode layer on the gate insulating layer sequentially, etching an electrode region and an N-type semiconductor layer region formed on the bottom gate electrode sequentially to expose an amorphous semiconductor layer region, melting the amorphous semiconductor layer region using a laser annealing method, and crystallizing the melted amorphous semiconductor layer region to form a laterally grown polycrystalline channel region.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck Lim, Young-soo Park, Wenxu Xianyu, Young-kwan Cha
  • Patent number: 7892935
    Abstract: A semiconductor process is provided. The semiconductor process includes providing a substrate. Then, a surface treatment is performed to the substrate to form a buffer layer on the substrate. Next, a first pre-amorphous implantation is performed to the substrate.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 22, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Wei Chen, Chao-Ching Hsieh, Tsai-Fu Hsiao, Yu-Lan Chang, Tsung-Yu Hung, Chun-Chieh Chang
  • Patent number: 7825013
    Abstract: An integrated circuit comprises a doped semiconductor portion including an amorphous portion and a contact structure comprising a conductive material. The contact structure is in contact with the amorphous portion. According to another embodiment, an integrated circuit comprises a doped semiconductor portion including a region having a non-stoichiometric composition and a contact structure comprising a conductive material. The contact structure is in contact with the region having a non-stoichiometric composition.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: November 2, 2010
    Assignee: Qimonda AG
    Inventors: Matthias Goldbach, Dietmar Henke, Sven Schmidbauer
  • Patent number: 7804089
    Abstract: A TFT array substrate is provided. The TFT array substrate includes: a gate electrode connected to a gate line; a source electrode connected to a data line that crosses the gate line and defines a pixel region; a drain electrode facing the source electrode with a channel between; a semiconductor layer forming the channel in between the source electrode and the drain electrode; a pixel electrode in the pixel region and contacting the drain electrode; a channel passivation layer formed on the semiconductor layer; a gate pad with a gate pad lower electrode that extends from the gate line; and a data pad having a data pad lower electrode separated from the data line.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: September 28, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Young Seok Choi, Hong Woo Yu, Ki Sul Cho, Jae Ow Lee, Bo Kyoung Jung
  • Patent number: 7750347
    Abstract: A semiconductor device includes a control circuit for carrying out gamma correction of a supplied signal, and a memory for storing data used in the gamma correction. The control circuit and the memory are constituted by TFTs, and are integrally formed on the same insulating substrate. A semiconductor display device includes a pixel region in which a plurality of TFTs are arranged in matrix; a driver for switching the plurality of TFTs; a picture signal supply source for supplying a picture signal; a control circuit for carrying out gamma correction of the picture signal; and a memory for storing data used in the gamma correction of the picture signal. The plurality of TFTs, the driver, the control circuit, and the memory are integrally formed on the same insulating substrate.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: July 6, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 7741641
    Abstract: A TFT substrate includes a base substrate, a gate wiring formed on the base substrate, a gate insulation layer, an activation layer, an oxidation-blocking layer, a data wiring, a protection layer and a pixel electrode. The gate wiring includes a gate line and a gate electrode. The gate insulation layer is formed on the base substrate to cover the gate wiring. The activation layer is formed on the gate insulation layer. The oxidation-blocking layer is formed on the activation layer. The data wiring includes a data line, a source electrode and a drain electrode. The source and drain electrodes are disposed on the oxidation-blocking layer therefore lowering the on-current (“Ion”) for turning on the TFT and increasing the off-current (“Ioff”) for turning off the TFT due to the oxidation-blocking layer.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: June 22, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yang-Ho Bae, Chang-Oh Jeong, Min-Seok Oh, Je-Hun Lee, Beom-Seok Cho
  • Patent number: 7659213
    Abstract: By incorporating carbon by means of ion implantation and a subsequent flash-based or laser-based anneal process, strained silicon/carbon material with tensile strain may be positioned in close proximity to the channel region, thereby enhancing the strain-inducing mechanism. The carbon implantation may be preceded by a pre-amorphization implantation, for instance on the basis of silicon. Moreover, by removing a spacer structure used for forming deep drain and source regions, the degree of lateral offset of the strained silicon/carbon material with respect to the gate electrode may be determined substantially independently from other process requirements. Moreover, an additional sidewall spacer used for forming metal silicide regions may be provided with reduced permittivity, thereby additionally contributing to an overall performance enhancement.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 9, 2010
    Assignee: GlobalFoundries, Inc.
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann
  • Patent number: 7629207
    Abstract: A method of manufacturing a bottom gate thin film transistor (“TFT”) in which a polycrystalline channel region having a large grain size is formed relatively simply and easily. The method of manufacturing a bottom gate thin film transistor includes forming a bottom gate electrode on a substrate, forming a gate insulating layer on the substrate to cover the bottom gate electrode, forming an amorphous semiconductor layer, an N-type semiconductor layer and an electrode layer on the gate insulating layer sequentially, etching an electrode region and an N-type semiconductor layer region formed on the bottom gate electrode sequentially to expose an amorphous semiconductor layer region, melting the amorphous semiconductor layer region using a laser annealing method, and crystallizing the melted amorphous semiconductor layer region to form a laterally grown polycrystalline channel region.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: December 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck Lim, Young-soo Park, Wenxu Xianyu, Young-kwan Cha
  • Patent number: 7612375
    Abstract: A semiconductor device includes at least one thin-film transistor, which includes a semiconductor layer, a gate electrode and a gate insulating film. In the semiconductor layer, a crystalline region, including a channel forming region, a source region and a drain region, is defined. The gate electrode is provided to control the conductivity of the channel forming region. The gate insulating film is provided between the gate electrode and the semiconductor layer. The semiconductor layer includes a gettering region outside of the crystalline region thereof.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: November 3, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Naoki Makita
  • Patent number: 7547915
    Abstract: In fabricating a thin film transistor, an active layer comprising a silicon semiconductor is formed on a substrate having an insulating surface. Hydrogen is introduced into The active layer. A thin film comprising SiOxNy is formed to cover the active layer and then a gate insulating film comprising a silicon oxide film formed on the thin film comprising SiOxNy. Also, a thin film comprising SiOxNy is formed under the active layer. The active layer includes a metal element at a concentration of 1×1015 to 1×1019 cm?3 and hydrogen at a concentration of 2×1019 to 5×1021 cm?3.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: June 16, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Satoshi Teramoto
  • Patent number: 7501652
    Abstract: A thin film transistor source/drain structure and the manufacturing method thereof are disclosed. The thin film transistor source/drain structure uses a sandwich structure to reduce the resistivity of the source/drain and upgrade the reliability. The sandwich structure preferably comprises a structure of AlNdN alloy/AlNd alloy/AlNdN alloy. The AlNdN alloy is used as a buffer layer or a diffusion barrier to prevent the AlNd alloy and an amorphous silicon layer from diffusing into each other. The other AlNdN alloy is used as a glue layer and to protect the AlNd alloy from being over-etched. The other AlNdN alloy can also prevent the AlNd alloy and the following formed ITO from contact and interaction.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: March 10, 2009
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Yu-Chou Lee, Tsung-Chi Cheng
  • Patent number: 7495258
    Abstract: An N-channel TFT and OLED display apparatus and electronic device using the same are disclosed. The N-channel TFT comprises a a substrate; an active layer on the substrate, wherein the active layer comprises an N type source region and an N type drain region; a gate dielectric layer on the active layer; and a gate region on the gate dielectric layer. At least a part of the highly-doped source region is located under the gate region, and at least a part of the lightly-doped drain region is located under the gate region.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 24, 2009
    Assignee: TPO Displays Corp.
    Inventor: Ching-Wei Lin
  • Publication number: 20080308808
    Abstract: An exemplary TFT array substrate includes an insulating substrate, a gate electrode provided on the insulating substrate, a gate insulating layer covering the gate electrode and the insulating layer, an amorphous silicon (a-Si) pattern formed on the gate insulating layer, a heavily doped a-Si pattern formed on the a-Si pattern, a source electrode formed on the gate insulating layer and the heavily doped a-Si pattern and a drain electrode formed on the gate insulating layer and the heavily doped a-Si pattern. The source electrode and the drain electrode are isolated by a slit formed between the source electrode and the drain electrode, and the a-Si pattern includes a high resistivity portion corresponding to the slit whose resistance is higher than a resistance of the a-Si material.
    Type: Application
    Filed: June 16, 2008
    Publication date: December 18, 2008
    Inventors: Chih-Chieh Hsu, Shuo-Ting Yan
  • Patent number: 7449717
    Abstract: An asymmetry thin-film transistor includes a substrate, a semiconductor layer positioned on the substrate, and a gate positioned on the substrate. The semiconductor layer has a channel region, a single lightly doped region and a first heavily doped region positioned at a side of the channel region, and a second heavily doped region positioned at the other side of the channel region. The semiconductor layer has a central line extending through the semiconductor layer and the substrate, the first heavily doped region and the second heavily doped region have equal lengths and are symmetric with respect to the central line of the semiconductor layer, and the gate is asymmetric with respect to the central line of the semiconductor layer. There is no lightly doped region in between the channel region and the second heavily doped region.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: November 11, 2008
    Assignee: AU Optronics Corp.
    Inventor: Kun-Hong Chen
  • Patent number: 7413940
    Abstract: A fabrication method of a TFT includes successively forming four thin films containing a first conductive layer, an insulation layer, a semiconductor layer, and a second conductive layer on a substrate, performing a first PEP process to pattern the four thin films for forming a semiconductor island and a gate electrode with the semiconductor layer and the first conductive layer respectively. Then, a laser ablation process is performed to define a channel pattern in the four thin films and remove a portion of the second conductive layer so that unconnected source electrode and drain electrode are formed with the second conductive layer.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: August 19, 2008
    Assignee: AU Optronics Corp.
    Inventor: Han-Tu Lin
  • Patent number: 7394097
    Abstract: A thin film transistor array substrate including an insulating substrate, a first metallic pattern formed on the insulating substrate, and an insulating film provided on the first metallic pattern. A semiconductor pattern is provided on the insulating film, and a second metallic pattern is provided on the semiconductor pattern. The second metallic pattern is surrounded by the semiconductor pattern.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: July 1, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Kobayashi, Nobuhiro Nakamura, Ken Nakashima, Yuichi Masutani
  • Patent number: 7375373
    Abstract: A thin film transistor array panel includes an insulating substrate, a gate wire formed on the insulating substrate. A gate insulating layer covers the gate wire. A semiconductor pattern is formed on the gate insulating layer. A data wire having source electrodes, drain electrodes and data lines is formed on the gate insulating layer and the semiconductor pattern. A protective layer is formed on the data wire. Pixel electrodes connected to the drain electrode via contact holes are formed on the protective layer. The gate wire and the data wire are made of Ag alloy containing Ag and an additive including at least one selected from Zn, In, Sn and Cr.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: May 20, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Gab Lee, Bong-Joo Kang, Beom-Seok Cho, Chang-Oh Jeong
  • Patent number: 7348598
    Abstract: A TFT, in which source and drain electrodes having concentric circular shapes are formed, reduces an OFF current caused by a leakage current and optimizes an ON current and a stray capacitance between gate and source electrodes. The TFT includes a gate electrode formed on a substrate; and source and drain electrodes obtained by sequentially forming a gate insulating film, an intrinsic amorphous silicon layer, and an n+ amorphous silicon layer on the gate electrode, wherein the source and drain electrodes have circular shapes. One of the source and drain electrodes is disposed at the center, and the other one of the source and drain electrodes having a concentric circular shape surrounds the former. A channel region may be formed between the source and drain electrodes; and an area of an effective stray capacitance may be less than 150 ?m2. A ratio of a width of a channel to a length of the channel may be more than 4.5 and a filling capacity index to the effective stray capacitance may be less than 50.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: March 25, 2008
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Yasuhisa Oana
  • Publication number: 20070241333
    Abstract: An amorphous silicon thin film transistor, an organic light-emitting display (OLED) device including the same and method thereof are provided. The example amorphous silicon thin film transistor may include an amorphous silicon thin film transistor portion including a gate electrode, a gate insulating layer, an amorphous silicon layer, and source/drain electrodes and a heat generating portion generating heat and applying the heat to the amorphous silicon layer to reduce a threshold voltage of the amorphous silicon thin film transistor portion. The example method may include applying heat to an amorphous silicon layer if a threshold voltage of an amorphous silicon thin film transistor rises above a default level, the amorphous silicon thin film transistor including the amorphous silicon layer, the applied heat configured to reset the threshold voltage to the default level.
    Type: Application
    Filed: February 7, 2007
    Publication date: October 18, 2007
    Inventors: Jae-Chul Park, Young-Soo Park, Young-Kwan Cha
  • Patent number: 7268366
    Abstract: A method of fabricating an X-ray detecting device that is capable of preventing breakage of a transparent electrode. In the method, patterning of first and second insulating films occurs at different etching rates, with an etching ratio of the second insulating material to the first insulating material being greater than 1. Accordingly, undercut of the first and second insulating materials can be prevented. This stabilizes the step coverage of a subsequently formed transparent electrode.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: September 11, 2007
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Kyo Ho Moon
  • Patent number: 7247603
    Abstract: A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: July 24, 2007
    Assignee: Star Cryoelectronics
    Inventors: Robin Harold Cantor, John Addison Hall
  • Patent number: 7238963
    Abstract: A self-aligned LDD TFT and a fabrication method thereof. A substrate is provided, on which a semiconductor layer is formed. A first masking layer is provided over a first region of the portion of the semiconductor layer. The first masking layer includes a material that provides a permeable barrier to a dopant. The semiconductor layer including the first region covered by the first masking layer is exposed to the dopant, wherein the first region covered by the first masking layer is lightly doped with the dopant in comparison to a second region not covered by the first masking region.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: July 3, 2007
    Assignee: TPO Displays Corp.
    Inventors: Shih Chang Chang, De-Hua Deng, Chun-Hsiang Fang, Yaw-Ming Tsai, Chang-Ho Tseng
  • Patent number: 7235416
    Abstract: A method for fabricating a polysilicon liquid crystal display device includes: forming a first amorphous silicon layer on a substrate; forming a photoresist pattern on the first amorphous silicon layer; forming a second amorphous silicon layer over the photoresist pattern and the first amorphous silicon layer; defining a channel region on the first amorphous silicon layer; crystallizing the first and second silicon layers; forming an active layer by patterning the crystallized silicon layers; forming a first insulating layer on the active layer; forming a gate electrode on the first insulating layer; forming source and drain electrodes electrically connected to the active layer; and forming a pixel electrode electrically connected to the drain electrode.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: June 26, 2007
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Kum-Mi Oh
  • Patent number: 7230256
    Abstract: An ion doping system includes a chamber 11, an exhausting section 13 for exhausting gases from the chamber, an ion source 12 provided for the chamber, and an accelerating section 23 for extracting the ions, generated in the ion source 12, from the ion source 12 and accelerating the ions toward a target. The ion source 12 includes an inlet port 14 to introduce a gas including a dopant element, a filament 15 emitting thermo electrons, and an anode electrode 17 to produce an arc discharge between the filament and itself. The ion source 12 decomposes the gas through the arc discharge, thereby generating ions including the dopant element. The ion doping system controls the arc discharge such that a constant amount of arc current flows between the filament and the anode electrode.
    Type: Grant
    Filed: May 31, 2004
    Date of Patent: June 12, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ken Nakanishi, Hiroshi Aichi
  • Patent number: 7202499
    Abstract: An object of the present invention is to provide a TFT of new structure in which the gate electrode overlaps with the LDD region and a TFT of such structure in which the gate electrode does not overlap with the LDD region. The TFT is made from crystalline semiconductor film and is highly reliable. The TFT of crystalline semiconductor film has the gate electrode formed from a first gate electrode 113 and a second gate electrode in close contact with said first gate electrode and gate insulating film. The LDD is formed by ion doping using said first gate electrode as a mask, and the source-drain region is formed using said second gate electrode as a mask. After that the second gate electrode in the desired region is selectively removed. In this way it is possible to form LDD region which overlaps with the second gate electrode.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: April 10, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Setsuo Nakajima
  • Patent number: 7173278
    Abstract: A thin film transistor according to the present invention includes a gate electrode, a semiconductor layer having a channel forming region arranged on the gate electrode and an impurity region arranged on a part of the channel forming region, source and drain electrodes electrically connected to the impurity region, and a gate insulating film that electrically insulates the gate electrode and the semiconductor layer, wherein the distance between the upper end of the gate electrode and the upper end of the impurity region is larger than the distance between the upper end of the gate electrode and the upper end of the channel forming region.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: February 6, 2007
    Assignee: Kyocera Corporation
    Inventors: Takatoshi Tsujimura, Shinya Ono, Mitsuo Morooka, Koichi Miwa
  • Patent number: 7148507
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 12, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Patent number: 7148510
    Abstract: A semiconductor display device with an interlayer insulating film in which surface levelness is ensured with a limited film formation time, heat treatment for removing moisture does not take long, and moisture in the interlayer insulating film is prevented from escaping into a film or electrode adjacent to the interlayer insulating film. A TFT is formed and then a nitrogen-containing inorganic insulating film that transmits less moisture compared to organic resin film is formed so as to cover the TFT. Next, organic resin including photosensitive acrylic resin is applied and an opening is formed by partially exposing the organic resin film to light. The organic resin film where the opening is formed, is then covered with a nitrogen-containing inorganic insulating film which transmits less moisture than organic resin film does.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: December 12, 2006
    Assignee: Semiconductor Energy Laboratory Co. Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Masahiko Hayakawa, Kiyoshi Kato, Mitsuaki Osame, Takashi Hirosue, Saishi Fujikawa
  • Patent number: 7145175
    Abstract: According to the invention, a plurality of semiconductor devices which are required to have conformance are formed from crystalline semiconductor films having uniform crystallinity on the same line, and a semiconductor circuit in which variation between semiconductor devices is small can be provided, and a semiconductor integrated circuit having high conformance can be provided. The invention is characterized in that, in a part or whole of thin film transistors which configure an analog circuit such as a current mirror circuit, a differential amplifier circuit, or an operational amplifier, in which high conformance is required for semiconductor devices included therein, channel forming regions have crystalline semiconductor films on the same line. High conformance can be expected for an analog circuit which has the crystalline semiconductor films on the same line formed using the invention as the channel forming regions of the thin film transistors.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: December 5, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Tomoaki Atsumi, Atsuo Isobe
  • Patent number: 7132685
    Abstract: An asymmetry thin-film transistor includes a substrate, a semiconductor layer and a gate positioned on the substrate. The semiconductor layer includes a first lightly doped region and a first heavily doped region adjacent to a first gate side, and a second lightly doped region together with a second heavily doped region adjacent to a second gate side. A first junction is between the first lightly doped region and the first heavily doped region. A second junction is between the second lightly doped region and the second heavily doped region. A distance between the first junction and the first gate side is unequal to a distance between the second junction and the second gate side.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: November 7, 2006
    Assignee: AU Optronics Corp.
    Inventor: Kun-Hong Chen
  • Patent number: 7115903
    Abstract: An insulating film having depressions and projections are formed on a substrate. A semiconductor film is formed on the insulating film. Thus, for crystallization by using laser light, a part where stress concentrates is selectively formed in the semiconductor film. More specifically, stripe or rectangular depressions and projections are provided in the semiconductor film. Then, continuous-wave laser light is irradiated along the stripe depressions and projections formed in the semiconductor film or in a direction of a major axis or minor axis of the rectangle.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: October 3, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7095047
    Abstract: To realize the reduction of a manufacturing cost and the enhancement of yield by reducing the number of steps of a TFT in an electro-optical device typified by an active matrix liquid crystal display device. A semiconductor device of the present invention is characterized by including a first wiring and a second wiring formed of a first conductive film on the same insulating surface, a first semiconductor film of one conductivity type formed on the first and second wirings so as to correspond thereto, a second semiconductor film formed on an upper layer of the first semiconductor film of one conductivity type across the first wiring and the second wiring, an insulating film formed on the second semiconductor film, and a third conductive film formed on the insulating film.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: August 22, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Arao, Hideomi Suzawa
  • Patent number: 7081646
    Abstract: There are disclosed TFTs that have excellent characteristics and can be fabricated with a high yield. The TFTs are fabricated, using an active layer crystallized by making use of nickel. Gate electrodes are comprising tantalum. Phosphorus is introduced into source/drain regions. Then, a heat treatment is performed to getter nickel element in the active layer and to drive it into the source/drain regions. At the same time, the source/drain regions can be annealed out. The gate electrodes of tantalum can withstand this heat treatment.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: July 25, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 7034336
    Abstract: The channel region (11) and the source-drain regions (9, 10) are arranged vertically at a sidewall of a dielectric trench filling (4). On the opposite side, the semiconductor material is bounded by the gate dielectric (18) and the gate electrode (16), which is arranged in a cutout of the semiconductor material. A memory cell array comprises a multiplicity of vertically oriented strip-type semiconductor regions in which source-drain regions are implanted at the top and bottom and a channel region embedded in insulating material on all sides is present in between as a floating body.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: April 25, 2006
    Assignees: Infineon Technologies AG, Infineon Technologies Flash GmbH & Co. KG
    Inventor: Josef Willer
  • Patent number: 7009205
    Abstract: An image display device using transistors each having a polycrystalline semiconductor layer constructed so that drain and source regions are fully activated, and a manufacturing method thereof. The polycrystalline semiconductor layer is so provided that impurity concentrations are easy to control in LDD regions . The image display device further uses transistors having a gate electrode on an upper surface of the semiconductor layer with an insulating film therebetween, a drain region formed on one side of the gate electrode, and a source region formed on another side of the gate electrode. An activated P-type impurity is added to the area underlying the gate electrode, and an activated N-type impurity is added to the area excluding the area underlying the gate electrode.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: March 7, 2006
    Assignees: Hitachi, Ltd., Hitachi Device Engineering Co., Ltd.
    Inventors: Jun Gotoh, Katsutoshi Saito, Makoto Ohkura, Yukio Takasaki, Masanao Yamamoto
  • Patent number: 6984848
    Abstract: A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: January 10, 2006
    Assignee: AU Optronics Corp.
    Inventors: Long-Sheng Liao, Kun-Chih Lin, Chia-Tien Peng
  • Patent number: 6930326
    Abstract: According to the invention, a plurality of semiconductor devices which are required to have conformance are formed from crystalline semiconductor films having uniform crystallinity on the same line, and a semiconductor circuit in which variation between semiconductor devices is small can be provided, and a semiconductor integrated circuit having high conformance can be provided. The invention is characterized in that, in a part or whole of thin film transistors which configure an analog circuit such as a current mirror circuit, a differential amplifier circuit, or an operational amplifier, in which high conformance is required for semiconductor devices included therein, channel forming regions have crystalline semiconductor films on the same line. High conformance can be expected for an analog circuit which has the crystalline semiconductor films on the same line formed using the invention as the channel forming regions of the thin film transistors.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: August 16, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Tomoaki Atsumi, Atsuo Isobe
  • Patent number: 6900466
    Abstract: A semiconductor component for generating a polychromatic electromagnetic radiation has a semiconductor chip with a first semiconductor layer and a second semiconductor layer, which is provided adjacent to the first semiconductor layer and has an electroluminescent region. The electroluminescent region emits electromagnetic radiation of a first wavelength. The first semiconductor layer includes a material which, when excited with the electromagnetic radiation of the first wavelength, re-emits radiation with a second wavelength which is longer than the first wavelength.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: May 31, 2005
    Assignee: Osram GmbH
    Inventors: Detlef Hommel, Helmut Wenisch
  • Patent number: 6900464
    Abstract: The present invention relates to a thin film transistor device formed on an insulating substrate of a liquid crystal display device and others, a method of manufacturing the same, and a liquid crystal display device. In structure, there are provided the steps of forming a negative photoresist film on a first insulating film for covering a first island-like semiconductor film, forming a resist mask that has an opening portion in an inner region with respect to a periphery of the first island-like semiconductor film by exposing/developing the negative photoresist film from a back surface side of a transparent substrate, etching the first insulating film in the opening portion of the resist mask, forming a second insulating film for covering the first insulating film and a conductive film thereon, and forming a first gate electrode and a second gate electrode by patterning the conductive film.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: May 31, 2005
    Assignee: Fujitsu Display Technologies Corporation
    Inventors: Seiji Doi, Kazushige Hotta, Takuya Hirano, Kenichi Yanai
  • Patent number: 6897482
    Abstract: A transistor has a source electrode and a drain electrode formed with a predetermined interval secured in between on a semiconductor layer formed to perspectively overlap a gate electrode. The source and drain electrodes are each longer in their lengthwise direction than in their widthwise direction. The source electrode has a recessed portion formed therein to allow the tip portion of the drain electrode in. The semiconductor layer protrudes out of the gate electrode to form a portion that does not overlap the gate electrode but overlaps the source electrode and a portion that does not overlap the gate electrode but overlaps the drain electrode. Thus, the protruding portion that overlaps the source electrode and the protruding portion that overlaps the drain electrode are separated from each other by the gate electrode so as to be independent of each other.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: May 24, 2005
    Assignees: Sanyo Electric Co., Ltd., Tottori Sanyo Electric Co., Ltd.
    Inventors: Satoshi Morita, Osamu Kobayashi, Kohei Oda
  • Patent number: 6885028
    Abstract: A transistor array includes conductor lines, function lines, and transistors. Each of the conductor lines includes a core and a conductor layer that covers the core. Each of the function lines includes a core, at least the surface of which is electrically conductive, an insulating layer that covers the core, and a semiconductor layer that covers the insulating layer. Each of the function lines contacts with, and crosses, the conductor lines. Each of the transistors includes a first ohmic contact region, which is defined by a region where one of the conductor lines crosses one of the function lines and which makes an ohmic contact with the semiconductor layer, a second ohmic contact region, which also makes an ohmic contact with the semiconductor layer, and a channel region, which is defined in the semiconductor layer between the first and second ohmic contact regions.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: April 26, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hirohiko Nishiki, Kazuki Kobayashi
  • Patent number: 6852610
    Abstract: A semiconductor device includes a gate electrode formed on a semiconductor region via a gate insulative film and an extension high concentration diffusion layer of a first conductivity type formed in the semiconductor region beside the gate electrode. A dislocation loop defect layer is formed in a region of the semiconductor region beside the gate electrode and at a position shallower than an implantation projected range of the extension high concentration diffusion layer.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: February 8, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Taiji Noda