Insulating Layer Of Glass Patents (Class 257/650)
  • Patent number: 5977561
    Abstract: The MOSFET has a stacked gate structure which has a first silicon layer, a second silicon layer, and a spacer structure. The first silicon layer is formed over the semiconductor substrate. The second silicon layer contains second type dopants and is formed on the first silicon layer. The spacer structure containing first type dopants is formed on the sidewall of the first silicon layer and the second silicon layer. A gate insulator layer is formed between the first silicon layer and the semiconductor substrate. The second silicon layer is also formed on the semiconductor substrate at a region uncovered by the stacked gate structure. A junction region is formed in the semiconductor substrate under the second silicon layer but not under the stacked gate structure. An extended junction is formed in the semiconductor substrate under the spacer structure.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: November 2, 1999
    Assignee: Texas Instruments - Acer Incorporated
    Inventor: Shye-Lin Wu
  • Patent number: 5973385
    Abstract: Significant amounts of pattern distortion were found to be the result of reflowing borophosphosilicate glass (BPSG) and silicon dioxide shrinkage during high temperature junction anneals. In order to remedy this problem, a method for suppressing the pattern distortion by subjecting the wafer coated with BPSG and with silicon dioxide layers to a high temperature anneal before patterning is disclosed. The high temperature anneal densifies the undoped silicon dioxide before patterning, so that shrinkage of the undoped silicon dioxide does not affect the patterning steps.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: October 26, 1999
    Assignees: International Business Machines Corporation, Siemens Aktiengesellschaft
    Inventors: Jeffrey Peter Gambino, Son Van Nguyen, Reinhard Stengl
  • Patent number: 5969408
    Abstract: A process for the formation of a device edge morphological structure for protecting and sealing peripherally an electronic circuit integrated in a major surface of a substrate of semiconductor material includes formation above an intermediate process structure of a dielectric multilayer comprising a layer of amorphous planarizing material. The process also includes the partial removal of the dielectric multilayer so as to create at least one peripheral termination of the multilayer in the device edge morphological structure. Removal of the dielectric multilayer requires that the peripheral termination thereof be located in a zone of the intermediate process structure relatively higher than the level of the major surface, if compared with adjacent zones of the intermediate structure itself at least internally toward the circuit and in so far as to the device edge morphological structure.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: October 19, 1999
    Assignee: SGS-Thomson Microelectronics S.r.l.
    Inventor: Alberto Perelli
  • Patent number: 5942793
    Abstract: A low alpha-ray level glass which emits only an extremely small amount of alpha-ray while maintaining excellent chemical durability, coefficient of thermal expansion and hardness is obtained by introducing fluorine into a SiO.sub.2 --B.sub.2 O.sub.3 --Al.sub.2 O.sub.3 --R.sub.2 O (R being an alkali metal) system glass of a specific content range. The amount of alpha-ray emitted from this glass is below 0.02 count/cm.sup.2.hr.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: August 24, 1999
    Assignee: Kabushiki Kaisya Ohara
    Inventors: Tatsuya Senoo, Hisao Yatsuda
  • Patent number: 5912068
    Abstract: A process for forming a structure including an epitaxial layer of a oxide material such as yttria-stabilized zirconia on a thick layer of amorphous silicon dioxide having a thickness of at least about 500 Angstroms on a single crystal silicon substrate and the resultant structures derived therefrom are provided.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: June 15, 1999
    Assignee: The Regents of the University of California
    Inventor: Quanxi Jia
  • Patent number: 5910680
    Abstract: A semiconductor device (11) has a spin on glass layer or region, and the spin on glass has a method of synthesis and use. The spin on glass composition is formed which comprises on the order of 0% to 20% by volume of tetraethylorthosilicate (TEOS), on the order of 0.01% to 20% by volume of tetraethylorthogermanate (TEOG), on the order of 0% to 1% by volume the equivalent of nitric acid (HNO.sub.3), on the order of 70% to 85% by volume of alcohol, and a remaining balance of the spin on glass composition being water. The spin on glass is applied to a semiconductor substrate and heated and/or densified to form the spin on glass layer or region.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: June 8, 1999
    Assignee: Motorola, Inc.
    Inventor: Papu D. Maniar
  • Patent number: 5907182
    Abstract: A semiconductor device which contains an electrode or an interconnection subjected to a high voltage prevents current leakage due to polarization of a mold resin. In this semiconductor device, a glass coat film 13a covering a semiconductor element has an electrical conductivity in a range defined by the following formula (1) under the conditions of temperature between 17.degree. C. and 145.degree. C.:conductivity.gtoreq.1.times.10.sup.-10 /E (1)(E: an electric field intensity ?V/cm!, E.gtoreq.2.times.10.sup.4 ?V/cm!)Owing to employment of the electrically conductive glass coat film, an electron current flowing through the conductive glass coat film suppresses an electric field caused by polarization of a mold resin.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: May 25, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tomohide Terashima
  • Patent number: 5864172
    Abstract: A low dielectric insulation layer for an integrated circuit structure material, and a method of making same, are disclosed. The low dielectric constant insulation layer comprises a porous insulation layer, preferably sandwiched between non-porous upper and lower insulation layers. The presence of some gases such as air or an inert gas, or a vacuum, in the porous insulation material reduces the overall dielectric constant of the insulation material, thereby effectively reducing the capacitance of the structure. The porous insulation layer is formed by a chemical vapor deposition of a mixture of the insulation material and a second extractable material; and then subsequently selectively removing the second extractable material, thereby leaving behind a porous matrix of the insulation material, comprising the low dielectric constant insulation layer.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: January 26, 1999
    Assignee: LSI Logic Corporation
    Inventors: Ashok K. Kapoor, Nicholas F. Pasch
  • Patent number: 5847444
    Abstract: A semiconductor device has a memory cell area which contains a component having a height and a peripheral circuit area free of a component having a height. The first area includes a interlayer insulating film comprising a first interlayer film as an uppermost insulating film. The second area includes an interlayer insulating film comprising the first interlayer film and a second interlayer film disposed directly on the first interlayer film and having a chemical mechanical polishing rate greater than the first interlayer film. The interlayer insulating film in the memory cell area has a surface higher than the interlayer insulating film in the peripheral circuit area.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: December 8, 1998
    Assignee: NEC Corporation
    Inventor: Yasushi Yamazaki
  • Patent number: 5841195
    Abstract: A method is provided for forming contact via in an integrated circuit. Initially, a first buffer layer is formed over an insulating layer in an integrated circuit. The first buffer layer has a different etch rate from the insulating layer. A second buffer layer is then formed over the first buffer layer, with the second buffer layer having an etch rate which is faster than the first buffer layer. An isotropic etch is performed to create an opening through the second buffer layer and a portion of the first buffer layer. Because the second buffer layer etches faster than the first buffer layer, the slant of the sideswalls of the opening can be controlled. An anisotropic etch is then performed to complete formation of the contact via.
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: November 24, 1998
    Assignee: STMicroelectronics, Inc.
    Inventors: Yih-Shung Lin, Lun-Tseng Lu, Fu-Tai Liou, Che-Chia Wei, John Leonard Walters
  • Patent number: 5828121
    Abstract: This invention deals with the formation of the multi-level electrode metal structure and the interconnecting inter-level metal studs used in the fabrication of VLSI circuits. After the metal layers have been formed the inter-level dielectric material used in forming the structure is etched away leaving an air dielectric between the levels. The electrode metal and the inter-level metal studs are coated with a thin envelope oxide and the entire structure is covered with a passivation layer using material with a poor step coverage. The structure of this invention provides reduced parasitic capacitance, better step coverage in interconnecting layers, and improved circuit performance.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: October 27, 1998
    Assignee: United Microelectronics Corporation
    Inventors: Water Lur, Jiunn Yuan Wu
  • Patent number: 5808353
    Abstract: A EEPROM 140 has a storage transistor 160 with a gate insulating layer 104 of BPSG and a polysilicon gate 112.2 of the same layer as the polysilicon gate 112.1 of the FET transistor 150. The BPSG layer 104 has POHC traps that capture holes injected into N well 103.2. A positive voltage applied to N well 103.2 programs the storage transistor 160 off. Applying a positive voltage to the gate 112.2 neutralizes the holes stored in layer 104 and erases the memory of transistor 160.
    Type: Grant
    Filed: June 20, 1996
    Date of Patent: September 15, 1998
    Assignee: Harris Corporation
    Inventors: Robert T. Fuller, Howard L. Evans, Michael J. Morrison, David A. DeCrosta, Robert K. Lowry
  • Patent number: 5808366
    Abstract: High speed integrated circuits are designed and fabricated by taking into account the capacitive loading on the integrated circuit by the integrated circuit potting material. Line drivers may be sized to drive conductive lines as capacitively loaded by the potting material. Repeaters may be provided along long lines, to drive the lines as capacitively loaded by the potting material. Intelligent drivers may sense the load due to the potting material and drive the lines as capacitively loaded by the potting material. The thickness of the passivating layer on the outer conductive lines may also be increased so as to prevent the potting material from extending between the conductive lines. High speed potted integrated circuits may thereby be provided.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: September 15, 1998
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Minkyu Song
  • Patent number: 5793114
    Abstract: A method and structure for self-aligned zero-margin contacts to active and poly-1, using silicon nitride (or another dielectric material with low reflectivity and etch selectivity to oxide) for an etch stop layer and also for sidewall spacers on the gate.
    Type: Grant
    Filed: April 24, 1996
    Date of Patent: August 11, 1998
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Loi N. Nguyen, Robert Louis Hodges
  • Patent number: 5760466
    Abstract: A semiconductor device including an insulating substrate which has a semiconductor element-mounting portion for mounting a semiconductor element on the center of its top surface, and a plurality of metallized wiring layers which lead outward extendedly from the periphery of the semiconductor element-mounting portion to the rim of the top surface; a semiconductor element which is mounted on the semiconductor element-mounting portion and has electrodes connected to the inner end sections of the metallized wiring layers; a plurality of outer lead terminals which are attached to the outer end sections of the metallized wiring layers to connect the semiconductor element to an exterior electric circuit; and a molding resin which covers the insulating substrate, the semiconductor element and part of the outer lead terminals.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: June 2, 1998
    Assignee: Kyocera Corporation
    Inventors: Kenji Masuri, Yoshihiro Hosoi, Hisashi Kojima, Kazuhito Imuta, Hiroshi Matsumoto
  • Patent number: 5739590
    Abstract: A semiconductor device is constructed to have an insulating layer containing an impurity provided upon a semiconductor substrate. This insulating layer contains a plurality of windows of different sizes. A first layer is provided in the windows. This first layer does not extend over a periphery of the windows to the surface of the insulating layer. Further, this semiconductor device is constructed such that the surface of the insulating layer and the first layer opposite the semiconductor substrate are flat. In addition, the semiconductor substrate in contact with the first layer also contains the impurity. The semiconductor device, having less surface unevenness that a conventional device, provides both improved and greater stability of device properties.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: April 14, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masaru Sakamoto, Masakazu Morishita, Shigeru Nishimura
  • Patent number: 5739580
    Abstract: A process and resulting product is described for forming an oxide in a semiconductor substrate which comprises initially implanting the substrate with atoms of a noble gas, then oxidizing the implanted substrate at a reduced temperature, e.g., less than 900.degree. C., to form oxide in the implanted region of the substrate, and then etching the oxidized substrate to remove a portion of the oxide. The resulting oxidation produces a dual layer of oxide in the substrate. The upper layer is an extremely porous and frothy layer of oxide, while the lower layer is a more dense oxide. The upper porous layer of oxide can be selectively removed from the substrate by a mild etch, leaving the more dense oxide layer in the substrate. Further oxide can then be formed adjacent the dense layer of oxide in the substrate, either by oxide deposition over the dense oxide or by growing further oxide beneath the dense oxide layer.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: April 14, 1998
    Assignee: LSI Logic Corporation
    Inventors: Sheldon Aronowitz, James Kimball
  • Patent number: 5731628
    Abstract: A semiconductor device which contains an electrode or an interconnection subjected to a high voltage prevents current leakage due to polarization of a mold resin. In this semiconductor device, a glass coat film 13a covering a semiconductor element has an electrical conductivity in a range defined by the following formula (1) under the conditions of temperature between 17.degree. C. and 145.degree. C.:conductivity.gtoreq.1.times.10.sup.-10 /E . . . (1)(E: an electric field intensity ?V/cm!, E.gtoreq.2.times.10.sup.4 ?V/cm!)Owing to employment of the electrically conductive glass coat film, an electron current flowing through the conductive glass coat film suppresses an electric field caused by polarization of a mold resin.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: March 24, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tomohide Terashima
  • Patent number: 5710460
    Abstract: A method and structure for reducing short circuits in semiconductor devices is disclosed. A three layer interlevel dielectric structure is formed over a semiconductor substrate, which typically comprises a first metallization level, M1. The three layer dielectric includes a first insulator layer, a middle spin-on glass (SOG) layer, and a top second insulator layer. The spin-on glass fills defects in the surface of the first insulator layer created during planarization using chemical-mechanical-polishing (CMP). Prior to deposition of the second insulator, a first via is etched through the SOG film and the first insulator layer to expose a portion of the semiconductor substrate, typically a conductive metal. A conductive metal is deposited into the first via and planarized to form a metal interconnection stud. Because the surface defects are filled and covered with the SOG film, none of the deposited metal enters the defects, and short circuits with the stud are greatly reduced.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: January 20, 1998
    Assignee: International Business Machines Corporation
    Inventors: Robert Kenneth Leidy, Jeffrey Scott Miller, Jon A. Patrick, Rosemary Ann Previti-Kelly
  • Patent number: 5703404
    Abstract: A semiconductor device having an interlayer insulating film improved to decrease film shrinkage and film stress is provided. Metal interconnections are formed on a substrate. A silicon oxide film is provided on the substrate to cover the metal interconnections and to fill a space between the metal interconnections. The chemical formula of the silicon oxide film contains Si-F bond.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: December 30, 1997
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Masazumi Matsuura
  • Patent number: 5672907
    Abstract: A semiconductor device in which the elution quantity of boron and phosphorus from a BPSG film in a process of washing a wafer is controlled low so as to realize sufficient flattening and in which a reflow processing temperature is lowered by increasing concentrations of boron and phosphorus in the BPSG film. A first BPSG film in which the boron concentration is 3.5 wt % to 4.5 wt % and the phosphorus concentration is 5.5 wt % to 6.5 wt % is formed through a polysilicon wiring layer on a semiconductor substrate by a CVD method using an inorganic material source such as SiH.sub.4, B.sub.2 H.sub.6, PH.sub.3, O.sub.2 or an organic material source such as TEOS, TMOP, TMB, or O.sub.3. A gas flow rate is then changed so as to form a second BPSG film having a boron concentration of 2.0 wt % to 3.0 wt % and a phosphorus concentration of 5.5 wt % to 6.5 wt %.
    Type: Grant
    Filed: March 19, 1996
    Date of Patent: September 30, 1997
    Assignee: Nippon Steel Corporation
    Inventor: Yasuo Kasagi
  • Patent number: 5665995
    Abstract: A ROM device with an array of cells has conductors formed in a substrate. Insulation is formed, and parallel conductors are formed orthogonally to the line regions, as thin as about 2000 .ANG.. Glass insulation having a thickness of about 3000 .ANG. or less, formed over the conductors is is reflowed. Contacts and a metal layer on the glass insulation are formed. Resist is patterned and used for etching the resist pattern in the metal. Removal of the second resist and device passivation with a layer having a thickness of about 1000 .ANG., precede activation of the impurity ions by annealing the device at less than or equal to about 520.degree. C. in a reducing gas atmosphere. After resist removal, a second resist is formed and exposed with a custom code pattern to form a mask. Ions are implanted into the substrate with a dosage of between about 1 E 14 and 3 E 14 atoms/cm.sup.2 with an energy of less than or equal to 200 keV adjacent to the conductors through the openings in the insulation.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: September 9, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Chen-Chiu Hsue, Shing-Ren Shev, Kuan-Cheng Su, Chen-Hui Chung
  • Patent number: 5661335
    Abstract: A field oxide is provided which purposefully takes advantage of fluorine mobility from an implanted impurity species. The field oxide can be enhanced or thickened according to the size (area and thickness) of the oxide. Fluorine from the impurity species provides for dislodgement of oxygen at silicon-oxygen bond sites, leading to oxygen recombination at the field oxide/substrate interface. Thickening of the oxide through recombination occurs after it is initially grown and implanted. Accordingly, initial thermal oxidation can be shortened to enhance throughput. The fluorine-enhanced thickening effect can therefore compensate for the shorter thermal oxidation time. Moreover, the thickened oxide regions are anistropically oxidized underneath existing thermally grown oxides and directly underneath openings between nitrides. The thickened oxides therefore do not cause additional shrinkage of the active areas which reside between field oxides.
    Type: Grant
    Filed: August 15, 1995
    Date of Patent: August 26, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mohammed Anjum, Ibrahim K. Burki, Craig W. Christian
  • Patent number: 5640053
    Abstract: A method for forming an alignment mark during semiconductor device manufacturing. A first area and a second area are provided on the semiconductor substrate wherein the second area is adjacent to the first area. An alignment mark is formed in the first area. A first layer is formed over the first area and the second area wherein the alignment mark is replicated in the first layer. The first layer is then removed from the second area and left over the first area. A globally planarized second layer, is formed over the first area and the second area. The second layer is then removed from the first area and is left over the second area.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: June 17, 1997
    Assignee: Cypress Semiconductor Corp.
    Inventor: Roger F. Caldwell
  • Patent number: 5598028
    Abstract: A planarization process for the manufacturing of highly-planar interlayer dielectric thin films in integrated circuits, particularly in non-volatile semiconductor memory devices, comprises the steps of: forming a first barrier layer over a semiconductor substrate wherein integrated devices have been previously obtained; forming a second layer of oxide containing phosphorous and boron over the first undoped oxide the concentration of boron being lower than the concentration of phosphorous; forming a third layer of oxide containing phosphorous and boron over the second oxide layer, the concentration of phosphorous being lower than or equal to the concentration of boron; performing a thermal process at a temperature sufficient to melt the third oxide layer, to obtain a planar surface.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: January 28, 1997
    Assignee: SGS-Thomson Microelectronics S.r.l.
    Inventors: Aldo Losavio, Maurizio Bacchetta
  • Patent number: 5598026
    Abstract: A low dielectric insulation layer for an integrated circuit structure material, and a method of making same, are disclosed. The low dielectric constant insulation layer comprises a porous insulation layer, preferably sandwiched between non-porous upper and lower insulation layers. The presence of some gases such as air or an inert gas, or a vacuum, in the porous insulation material reduces the overall dielectric constant of the insulation material, thereby effectively reducing the capacitance of the structure. The porous insulation layer is formed by a chemical vapor deposition of a mixture of the insulation material and a second extractable material; and then subsequently selectively removing the second extractable material, thereby leaving behind a porous matrix of the insulation material, comprising the low dielectric constant insulation layer.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 28, 1997
    Assignee: LSI Logic Corporation
    Inventors: Ashok K. Kapoor, Nicholas F. Pasch
  • Patent number: 5567970
    Abstract: A ROM device includes cells with buried bit lines in a semiconductor substrate. A thin insulating layer covers the substrate has closely spaced, parallel, word lines formed thereon arranged orthogonally relative to the bit lines. The word lines are covered with reflowed glass insulating layers about 2500.ANG. thick. The glass insulating layers comprise a sublayer of undoped glass and an overlayer of doped glass, the underlayer about 500.ANG.-1500.ANG. thick and the overlayer about 1000.ANG.-1500.ANG. thick. An etched, patterned metal layer is formed on the glass insulating layer. The overlayer has been substantially removed by etching where the metal layer has been etched. An ion implantation pattern has been implanted into the substrate adjacent to the conductive lines. The device has been passivated. The implanted impurity ions having been activated by annealing the device.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: October 22, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Shing-Ren Sheu, Chen-Chiu Hsue, Chen-Hui Chung
  • Patent number: 5554884
    Abstract: A multilevel metallization is deposited on a microelectronic device base structure (40). The process includes depositing a glassy dielectric layer (48) of a thickness that is from about two to about three times as thick as the topography thickness (D) of the base structure (40). The glassy dielectric layer (48) is heated to a temperature above its glass transition temperature to flow the glassy dielectric layer (48). The glassy dielectric layer (48) is thinned to a preselected thickness, and a first patterned metallization layer (54) is deposited. The process further includes depositing an interlevel dielectric layer (58), dry etching the interlevel dielectric layer (58) to thin the interlevel dielectric layer (58) and, optionally, depositing additional interlevel dielectric layer (58') material to achieve a preselected thickness. A second patterned metallization layer (64) is deposited over the interlevel dielectric layer ( 58/58').
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: September 10, 1996
    Assignee: Hughes Aircraft Company
    Inventor: Warren F. McArthur
  • Patent number: 5530268
    Abstract: An LED array is fabricated by forming an insulating film on a semiconductor substrate of a first conductive type, forming a plurality of windows in the insulating film, and diffusing an impurity of a second conductive type through these windows to create a plurality of diffusion regions. In addition, an anti-reflection coating consisting of one or more transparent dielectric thin films is formed on the diffusion regions where they are exposed in the windows. The thickness of the anti-reflection coating, or of its constituent thin films, is optimized for maximum transmission of light.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: June 25, 1996
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Mitsuhiko Ogihara, Yukio Nakamura, Takatoku Shimizu, Masumi Taninaka
  • Patent number: 5523597
    Abstract: Reduced soft errors in charge-sensitive circuit elements such as volatile memory cells 200 occur by using boron-11 to the exclusion of boron-10 or essentially free of boron-10 in borosilicate glass 230, 240 deposited on the substrate 206 directly over the arrays of memory cells. Boron-10 exhibits a high likelihood of fission to release a 1.47 MeV alpha particle upon capture of a naturally occurring cosmic ray neutron. This capture occurs frequently in boron-10 because of its high neutron capture cross-section. Boron-11 does not fission.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: June 4, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Robert C. Baumann, Timothy Z. Hossain
  • Patent number: 5508555
    Abstract: A thin film field effect transistor (1) is formed by an insulating substrate (2,3) carrying a semiconductor layer (4) having a polycrystalline channel region (5) which is passivated to reduce the density of charge carrier traps. Source and drain electrodes (6 and 7) contact opposite ends (5a,5b) of the channel region (5), and a gate electrode (8) is provided at one major surface (4a) of the semiconductor layer (4) for controlling a conduction channel of one conductivity type in the polycrystalline channel region (5) to provide a gateable connection between the source and drain electrodes (6 and 7). An area (50) of the polycrystalline channel region (5) spaced from the electrodes (6,7,8) of the transistor (1) and lying adjacent to the other major surface (4b) of the semiconductor layer (4) is doped with impurities of the opposite conductivity type for suppressing formation of a conduction channel of the one conductivity type adjacent to the other major surface (4b).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: April 16, 1996
    Assignee: U.S. Philips Corporation
    Inventors: Stanley D. Brotherton, John R. A. Ayres
  • Patent number: 5506443
    Abstract: A multilayer insulating film of a semiconductor device, where the distributed quantity of carbon or fluorine is maximized at the interface between insulating films. The concentration of carbon present at the interface is 1.times.10.sup.20 atoms/cm.sup.3 or more.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: April 9, 1996
    Assignee: Fujitsu Limited
    Inventors: Yuji Furumura, Masahiko Doki, Hidetoshi Nishio
  • Patent number: 5497016
    Abstract: An integrated circuit capacitor is formed on a semiconductor substrate by forming an insulating layer over the substrate, forming a sacrificial layer on the insulating layer and patterning it. A first polysilicon layer is formed in an opening in the sacrificial layer which is then removed. A second insulating layer is formed over the conducting layer and the exposed substrate. A second polysilicon layer, and a third insulating layer are formed. A mask is formed over the first polysilicon layer. A polysilicon oxidation product is formed in place of the second polysilicon layer away from the first polysilicon conducting structure. A mask is formed over the surface of the device, etching through the mask to the substrate and the second polysilicon layer. Metallization is deposited onto the surface of the mask and into the openings therein. The polysilicon layers are conductive.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: March 5, 1996
    Assignee: Industrial Technology Institute Research
    Inventor: Chao-Ming Koh
  • Patent number: 5365081
    Abstract: A semiconductor device and a method for forming the same. The semiconductor device comprises an insulating or semiconductor substrate, a thermally-contractive insulating film which is formed on said substrate and provided with grooves, and a semiconductor film which is formed on the thermally-contractive insulating film and divided in an islandish form through the grooves. The thermally-contractive insulating film is contracted in a heat process after the semiconductor film is formed.
    Type: Grant
    Filed: March 27, 1992
    Date of Patent: November 15, 1994
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura
  • Patent number: 5306936
    Abstract: An electrically programmable read only memory device store data bits in the form of electric charges accumulated in floating gate electrodes of the memory cells, and a spin-on glass film is incorporated in an inter-level insulating film structure over the memory cells so as to create a smooth surface for wirings, wherein a silicon oxynitride film is inserted between the floating gate electrodes and the spin-on-glass film for preventing the accumulated electric charges from undesirable ion-containing water diffused from the spin-on-glass film.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: April 26, 1994
    Assignee: NEC Corporation
    Inventor: Yoshiro Goto
  • Patent number: 5304840
    Abstract: A cryogenic radiation-hard dual-layer field oxide of reoxidized nitrided oxide (ONO) which provides radiation hardness for field-effect transistors and other semiconductor devices at cryogenic temperatures. The dual-layer field oxide includes a thin lower dielectric layer of reoxidized nitrided oxide and an upper deposited dielectric layer that remains charge neutral. The upper dielectric layer is preferably silicon nitride or a doped oxide, such as phospho silicate glass or boro phospho silicate glass. The lower dielectric layer can be made very thin since reoxidized nitrided oxide is a much better barrier layer to the diffusion of boron or phosphorous from the upper dielectric layer into the silicon substrate than silicon dioxide. A thin lower dielectric layer allows only a small amount of positive charge buildup, while the upper dielectric layer traps both holes and electrons and remains charge neutral.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: April 19, 1994
    Assignee: TRW Inc.
    Inventor: James S. Cable
  • Patent number: 5245213
    Abstract: An integrated circuit structure is presented that includes a substrate in which integrated circuit elements are constructed, a first interconnection metalization over the substrate interconnecting selected ones of the integrated circuit elements, and an oxide layer over the substrate and the first metal interconnection pattern. A glass layer over the oxide layer is substantially planar between portions that overlie the metalization and portions that do not over lie the metalization.
    Type: Grant
    Filed: October 10, 1991
    Date of Patent: September 14, 1993
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventor: Kuei-Wu Huang
  • Patent number: 5235202
    Abstract: A radiation hardened MOSFET is fabricated by forming a dielectric layer of boro-phosphosilicate glass (BPSG) over the field oxide layer of the MOSFET. The BPSG covers only a small part of the gate electrode of the MOSFET. The gate electrode of the MOSFET is formed from two layers of polycrystalline silicon so as to prevent contamination of the gate oxide by the BPSG dopants.
    Type: Grant
    Filed: October 18, 1990
    Date of Patent: August 10, 1993
    Assignee: LSI Logic Corporation
    Inventors: Abraham F. Yee, Roger T. Szeto, Alex Hui
  • Patent number: 5218214
    Abstract: An integrated circuit has a silicon mesa disposed on a substrate and a field insulator structure in proximity to the mesa and having an opening over a top mesa surface. The opening, which exposes sidewalls in the structure, is positioned with respect to the mesa and has dimensions such that the structure is disposed to overlap a region of the mesa along an outer mesa periphery. A layer of polysilicon extends along a top surface of the structure and into the opening and adjacent to the mesa top surface. An insulator is disposed between the poly layer and the mesa top surface, the insulator having a layer of thermal gate oxide disposed adjacent to the poly layer and having a layer of pyrogenic oxide disposed between the thermal gate oxide layer and the mesa top surface.
    Type: Grant
    Filed: September 24, 1992
    Date of Patent: June 8, 1993
    Assignee: United Technologies Corporation
    Inventors: Scott M. Tyson, Gary M. Wodek