With Semiconductor Element Forming Part (e.g., Base, Of Housing) Patents (Class 257/684)
  • Patent number: 8729695
    Abstract: In an embodiment, a wafer level package may be provided. The wafer level package may include a device wafer including a MEMS device, a cap wafer disposed over the device wafer, at least one first interconnect disposed between the device wafer and the cap wafer and configured to provide an electrical connection between the device wafer and the cap wafer, and a conformal sealing ring disposed between the device wafer and the cap wafer and configured to surround the at least one first interconnect and the MEMS device so as to provide a conformally sealed environment for the at least one first interconnect and the MEMS device, wherein the conformal sealing ring may be configured to conform to a respective suitable surface of the device wafer and the cap wafer when the device wafer may be bonded to the cap wafer. A method of forming a wafer level package may also be provided.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: May 20, 2014
    Assignees: Agency for Science, Technology and Research, Seiko Instruments, Inc.
    Inventors: Chirayarikathu Veedu Sankarapillai Premachandran, Rakesh Kumar, Nagarajan Ranganathan, Won Kyoung Choi, Ebin Liao, Yasuyuki Mitsuoka, Hiroshi Takahashi, Ryuta Mitsusue
  • Publication number: 20140131850
    Abstract: A microchip has a base die with a conductive interconnect and an isolation trench around at least a portion of the conductive interconnect, and a cap die secured to the base die. A seal, formed from a metal material, is positioned between the base die and the cap die to secure them together. The microchip also has a blocking apparatus, between the isolation trench and the metal seal, that at least in part prevents the metal material from contacting the interconnect.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: ANALOG DEVICES, INC.
    Inventors: Li Chen, Thomas Kieran Nunan, Kuang L. Yang
  • Patent number: 8716853
    Abstract: A semiconductor device is manufactured by, first, providing a wafer, designated with a saw street guide, and having a bond pad formed on an active surface of the wafer. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A redistribution layer is patterned over a portion of the organic material. An under bump metallization (UBM) is deposited over the organic material in electrical communication, through the redistribution layer, with the bond pad.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: May 6, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan
  • Patent number: 8709877
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an integrated circuit device having a device contact surface, a device lateral side, and a device backside opposite the device contact surface; forming a device shell, having a shell lip, contiguous with the device backside and the device lateral side, the shell lip adjacent to and coplanar with the device contact surface; attaching a substrate to the integrated circuit device, the device shell between the integrated circuit device and the substrate; and forming an encapsulation on the substrate and covering the integrated circuit device and the device shell.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 29, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: DaeWook Yang, Yeongbeom Ko
  • Patent number: 8704314
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 22, 2014
    Assignee: Massachusetts Institute of Technology
    Inventor: Carl O. Bozler
  • Patent number: 8698292
    Abstract: An environment-resistant module which provides both thermal and vibration isolation for a packaged micromachined or MEMS device is disclosed. A microplatform and a support structure for the microplatform provide the thermal and vibration isolation. The package is both hermetic and vacuum compatible and provides vertical feedthroughs for signal transfer. A micromachined or MEMS device transfer method is also disclosed that can handle a wide variety of individual micromachined or MEMS dies or wafers, in either a hybrid or integrated fashion. The module simultaneously provides both thermal and vibration isolation for the MEMS device using the microplatform and the support structure which may be fabricated from a thin glass wafer that is patterned to create crab-leg shaped suspension tethers or beams.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 15, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Khalil Najafi, Sang-Hyun Lee, Sang Woo Lee
  • Patent number: 8692364
    Abstract: A semiconductor device includes an embedding layer in which one or more semiconductor element(s) is embedded and one or more interconnect layers as well as one or more insulation layers on one or both sides of the embedding layer. The embedding layer includes a woven cloth formed by reinforcement fibers. The woven cloth has an opening on its site embedding the semiconductor element. The opening is arranged so that direction of the reinforcement fibers will have a preset angle with respect to a direction of a side of or a tangent to at least a portion of the opening, the preset angle being other than a square angle or a zero angle (parallelism).
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 8, 2014
    Assignee: NEC Corporation
    Inventors: Katsumi Kikuchi, Yoshiki Nakashima, Kentaro Mori, Shintaro Yamamichi
  • Patent number: 8686461
    Abstract: A light emitting diode (LED) die includes a first substrate having a first surface and an opposing second surface; a second substrate on the second surface of the first substrate; a p-type semiconductor layer on the first surface of the first substrate; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 1, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Jiunn-Yi Chu, Chen-Fu Chu, Chao-Chen Cheng
  • Publication number: 20140084439
    Abstract: A semiconductor device includes a substrate, a semiconductor chip mounted on the substrate, a plate-like member that is fixed on the semiconductor chip and has a thermal expansion coefficient different from that of the substrate, and a first adhesive that is provided between the substrate and the plate-like member, the first adhesive being connected to the plate-like member and separated from the substrate, or being separated from the plate-like member and connected to the substrate.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 27, 2014
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Takumi Ihara
  • Patent number: 8680665
    Abstract: A method and encapsulation of a sensitive mechanical component structure in one embodiment includes a semiconductor substrate, and a film covering a component structure on the substrate, said film including at least one polymer layer, and at least one cavity formed between the component structure and the film, wherein at least one through contact penetrates through the film.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 25, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Peter Rothacher
  • Patent number: 8648454
    Abstract: Wafer-scale packaging structures and methods are provided for integrally packaging antenna structures with semiconductor RFIC (radio frequency integrated circuit) chips to form compact integrated radio/wireless communications systems for millimeter wave (mmWave) and Terahertz (THz) applications. For example, a chip package includes an RFIC chip, an antenna structure and an interface layer. The RFIC chip includes a semiconductor substrate having an active surface and an inactive surface, and a BEOL (back end of line) structure formed on the active surface of the semiconductor substrate. The antenna structure includes an antenna substrate and a planar antenna radiator formed on a surface of the antenna substrate, wherein the antenna substrate is formed of a low loss semiconductor material. The interface layer connects the antenna structure to the BEOL structure of the RFIC chip.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Duixian Liu, Jean-Olivier Plouchart, Scott K. Reynolds
  • Patent number: 8643169
    Abstract: A packaged semiconductor device with a cavity formed by a cover or lid mounted to a substrate. The lid covers one or more semiconductor sensor dies mounted on the substrate. The dies are coated with a gel or spray on coating, and the lid is encapsulated with a mold compound. A hole or passage may be formed through the cover and mold compound to expose the sensor dies to selected environmental conditions.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kai Yun Yow, Poh Leng Eu
  • Patent number: 8643127
    Abstract: A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: February 4, 2014
    Assignee: S3C, Inc.
    Inventors: John Dangtran, Roger Horton
  • Patent number: 8637967
    Abstract: A method includes structuring a semiconductor substrate to produce a number semiconductor chips. Each of the semiconductor chips includes a first main face and a number of side faces. An indentation is formed at a transition between the first main face and the side faces.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Markus Menath, Hermann Wendt, Berthold Schuderer
  • Patent number: 8637976
    Abstract: A semiconductor device in which a semiconductor chip, a lead frame and metal wires for electrically connecting the lead frame are sealed with sealing resin. The lead frame has a plurality of lead terminal portions, a supporting portion for supporting the semiconductor chip, and hanging lead portions supporting the supporting portion. Each of the lead terminal portions adjacent to the hanging lead portion is a chamfered lead terminal portion having, at its head, a chamfered portion formed substantially in parallel with the hanging lead portion so as to avoid interference with the hanging lead portion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 28, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Kazutaka Shibata
  • Patent number: 8638000
    Abstract: A micromechanical assembly for bonding semiconductor substrates includes a semiconductor substrate having a chip pattern having a plurality of semiconductor chips, each having a functional region and an edge region surrounding the functional region. There is a bonding frame made of a bonding alloy made from at least two alloy components in the edge region, spaced apart from the functional region. Within the part of the edge region surrounding the bonding frame between the bonding frame and the functional region, there is at least one stop frame made of at least one of the alloy components, which is configured such that when a melt of the bond alloy contacts the stop frame during bonding, the bonding alloy solidifies.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: January 28, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Achim Trautmann, Ralf Reichenbach
  • Publication number: 20140021595
    Abstract: A semiconductor component support is provided which includes a component support portion for a semiconductor component to be mounted on the semiconductor component support portion. The component support portion includes a metal part that includes an opening in plan view. The opening of the metal part includes first and second sections. The second section communicates with the first section, and is arranged outside the first section. The second section is wider than the first section. The first section can be at least partially positioned directly under a mount-side main surface of the semiconductor component.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 23, 2014
    Inventors: Takeaki SHIRASE, Toru HASHIMOTO
  • Patent number: 8633582
    Abstract: A chip package is disclosed. The package includes a carrier substrate and at least one semiconductor chip thereon. The semiconductor chip has a plurality of conductive pads, where a plurality of first redistribution layers (RDLs) is disposed thereon and is electrically connected thereto. A single-layer insulating structure covers the carrier substrate and the semiconductor chip, having a plurality of openings exposing the plurality of first RDLs. A plurality of second RDLs is disposed on the single-layer insulating structure and is electrically connected to the plurality of first RDLs. A passivation layer is disposed on the single-layer insulating structure and the plurality of second RDLs, having a plurality of openings exposing the plurality of second RDLs. A plurality of conductive bumps is correspondingly disposed in the plurality of openings to be electrically connected to the plurality of second RDLs. A fabrication method of the chip package is also disclosed.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 21, 2014
    Inventors: Shu-Ming Chang, Cheng-Te Chou
  • Patent number: 8633088
    Abstract: A bonded semiconductor device comprising a support substrate, a semiconductor device located with respect to one side of the support substrate, a cap substrate overlying the support substrate and the device, a glass frit bond ring between the support substrate and the cap substrate, an electrically conductive ring between the support substrate and the cap substrate. The electrically conductive ring forms an inner ring around the semiconductor device and the glass frit bond ring forms an outer bond ring around the semiconductor device.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 21, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B Montez, Robert F Steimle
  • Patent number: 8633583
    Abstract: A semiconductor package substrate suitable for supporting a damage-sensitive device and a package substrate core having an upper and a lower surface. At least one pair of metal layers coats the upper and lower surfaces of the package substrate core. One pair of solder mask layers coats the outer metal layers of the at least one pair of metal layers. A plurality of vias is formed across the package substrate core and the at least one pair of metal layers. Advantageously, the plurality of vias is substantially distributed according to a homogeneous pattern in an area that is to be covered by the damage-sensitive device. A method for the production of such semiconductor package substrate is also described.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: January 21, 2014
    Assignees: STMicroelectrics S.r.l., STMicroelectronics (Malta) Ltd.
    Inventors: Federico Giovanni Ziglioli, Giovanni Graziosi, Mark Andrew Shaw, Mario Francesco Cortese, Conrad Max Cachia
  • Patent number: 8629537
    Abstract: An integrated circuit package system is provided forming a die support system from a padless lead frame having die supports with each substantially equally spaced from another, and attaching an integrated circuit die having a peripheral area on the die supports.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 14, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry D. Bathan, Arnel Trasporto, Jeffrey D. Punzalan
  • Publication number: 20140008779
    Abstract: A wafer level package has a first wafer having a plurality of chips mounted or formed thereon in a plane, and a second wafer that is opposed to the first wafer. The first wafer and the second wafer are joined while a seal frame that seals a periphery of each chip is interposed therebetween. A gap is formed between the seal frames of the chips adjacent to each other. A partial connect part that partially connects the seal frames to each other is provided in the gap formed between the seal frames of the chips adjacent to each other.
    Type: Application
    Filed: March 16, 2011
    Publication date: January 9, 2014
    Applicant: OMRON CORPORATION
    Inventors: Toshiaki Okuno, Katsuyuki Inoue, Takeshi Fujiwara, Tomonori Seki
  • Patent number: 8624241
    Abstract: A semiconductor chip includes: a first substrate having a first surface and a second surface facing away from the first surface; a first test through silicon via (TSV) passing through the first substrate from the first surface to the second surface; and a conductive protrusion coupled to the first test TSV and protruding from the second surface.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 7, 2014
    Assignee: SK Hynix Inc.
    Inventor: Tac Keun Oh
  • Patent number: 8624380
    Abstract: A vertical mount pre-molded type package for use with a MEMS sensor may be formed with a low moisture permeable molding material that surrounds a portion of the leadframes and forms a cavity in which one or multiple dies may be held. The package includes structures to reduce package vibration, reduce die stress, increase vertical mount stability, and improve solder joint reliability. The vertical mount package includes a first leadframe having first leads and molding material substantially surrounding at least a portion of the first leads. The molding material forms a cavity for holding the MEMS sensor and forms a package mounting plane for mounting the package on a base. The cavity has a die mounting plane that is substantially non-parallel to the package mounting plane. The first leads are configured to provide electrical contacts within the cavity and to provide electrical contacts to the base.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: January 7, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Xiaojie Xue, Carl Raleigh, Thomas M. Goida
  • Patent number: 8610257
    Abstract: A semiconductor device and method for producing such a device is disclosed. One embodiment provides a semiconductor functional wafer having a first and second main surface. Component production processes are performed for producing a component functional region at the first main surface, wherein the component production processes produce an end state that is stable up to at least a first temperature. A carrier substrate is fitted to the first main surface. Access openings are produced to the first main surface. At least one further component production process is performed for producing patterned component functional regions at the first main surface of the functional wafer in the access openings. The end state produced in this process is stable up to a second temperature, which is less than the first temperature.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: December 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Kroener, Francisco Javier Santos Rodriguez, Carsten von Koblinski
  • Patent number: 8602315
    Abstract: The invention relates to a chip card comprising, a molded card body made by means of injection molding and, an integrated circuit chip, as well as to a method for manufacturing such a card. The invention is characterized in that the card body includes polyacrylic acid. The invention applies to SIM cards in particular.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 10, 2013
    Assignee: Gemalto SA
    Inventors: Alexis Froger, Jeremy Renouard, Laurent Oddou
  • Patent number: 8587108
    Abstract: An example embodiment relates to a semiconductor package. The semiconductor package includes a first substrate including a first pad, a second substrate upwardly spaced apart from the first substrate and including a second pad opposite to the first pad. At least one electrode is coupled between the first pad and the second pad. The semiconductor package includes a guide ring formed at a periphery of the electrode between the first substrate and the second substrate.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: HanShin Youn, Yonghwan Kwon, YoungHoon Ro, Woojae Kim, Sungwoo Park
  • Patent number: 8578591
    Abstract: Various embodiments include apparatus and methods having circuitry to test continuity of conductive paths coupled to dice arranged in a stack. In at least one of these embodiments, a method includes electrically coupling each of the conductive paths to at least one of a first supply node and a second supply node. One of the conductive paths includes conductive material inside a via that can extend at least partly through a die among the dice in the stack. The method also includes receiving signals from the conductive paths, and determining continuity of the conductive paths based on the signals without using a boundary scan.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: November 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Ebrahim H Hargan
  • Publication number: 20130285228
    Abstract: A bonded semiconductor device comprising a support substrate, a semiconductor device located with respect to one side of the support substrate, a cap substrate overlying the support substrate and the device, a glass frit bond ring between the support substrate and the cap substrate, an electrically conductive ring between the support substrate and the cap substrate. The electrically conductive ring forms an inner ring around the semiconductor device and the glass frit bond ring forms an outer bond ring around the semiconductor device.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Ruben B. Montez, Robert F. Steimle
  • Patent number: 8569883
    Abstract: A semiconductor device package is formed of DBC in which thinned MOSgated and/or diode die are soldered to the bottom of an etched depression in the upper conductive layer. A via in the insulation layer of the DBC is filled with a conductive material to form a resistive shunt. Plural packages may be formed in a DBC card and may be separated individually or in clusters. The individual packages are mounted in various arrays on a support DBC board and heat sink. Integrated circuits may be mounted on the assembly and connected to the die for control of the die conduction.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: October 29, 2013
    Assignee: International Rectifier Corporation
    Inventor: Henning M. Hauenstein
  • Patent number: 8564141
    Abstract: A chip unit includes: a first semiconductor chip and a second semiconductor chip disposed such that their surfaces for forming first bonding pads and second bonding pads face each other; first and second connection members disposed on the surfaces of the first and second semiconductor chips for forming the first and second bonding pads, and having redistribution lines which have one ends connected with the first and second bonding pads and the other ends projecting beyond one edges of the first and second semiconductor chips and films; an adhesive member interposed between the first connection members and the second connection members; and via patterns passing through the adhesive member and connecting projecting portions of the redistribution lines of the first and second connection members with each other.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: October 22, 2013
    Assignee: SK Hynix Inc.
    Inventors: Kyu Won Lee, Cheol Ho Joh, Eun Hye Do, Ji Eun Kim, Hee Min Shin
  • Patent number: 8558277
    Abstract: A semiconductor device has an integrated passive device (IPD) formed over a substrate. The IPD can be a metal-insulator-metal capacitor or an inductor formed as a coiled conductive layer. A signal interconnect structure is formed over the first side or backside of the substrate. The signal interconnect structure is electrically connected to the IPD. A thin film ZnO layer is formed over the substrate as a part of an electrostatic discharge (ESD) protection structure. The thin film ZnO layer has a non-linear resistance as a function of a voltage applied to the layer. A conductive layer is formed over the substrate. The thin film ZnO layer is electrically connected between the signal interconnect structure and conductive layer to provide an ESD path to protect the IPD from an ESD transient. A ground interconnect structure is formed over the substrate and electrically connects the conductive layer to a ground point.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 15, 2013
    Assignee: STATS ChipPAC, Ltd
    Inventors: Robert C. Frye, Yaojian Lin, Rui Huang
  • Patent number: 8553417
    Abstract: Disclosed herein are a heat-radiating substrate and a method of manufacturing the same. The heat-radiating substrate includes: a base substrate with a heat sink, having a groove; an insulating layer formed on the base substrate by performing anodization thereon; and a circuit layer formed on the insulating layer, whereby the heat-radiating substrate with the heat-sink, made of metal material, is manufactured, thereby making it possible to protect devices weak against heat and thus solve the problem in view of reduced life span and degraded reliability.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 8, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Ji Hyun Park, Seog Moon Choi, Young Ki Lee
  • Patent number: 8551799
    Abstract: An encapsulated micro-electro-mechanical device, wherein a MEMS chip is encapsulated by a package formed by a first, a second, and a third substrates that are bonded together. The first substrate has a main surface bearing the MEMS chip, the second substrate is bonded to the first substrate and defines a chamber surrounding the MEMS chip, and the third substrate is bonded to the second substrate and upwardly closes the chamber. A grid or mesh structure of electrically conductive material is formed in or on the third substrate and overlies the MEMS chip; the second substrate has a conductive connection structure coating the walls of the chamber, and the first substrate incorporates an electrically conductive region, which forms, together with the conductive layer and the grid or mesh structure, a Faraday cage.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 8, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Mark Andrew Shaw, Gianmarco Antonio Camillo
  • Patent number: 8552540
    Abstract: Wafer level packaging (WLP) packages semiconductor dies onto a wafer structure. After the wafer level package is complete, individual packages are obtained by singulating the wafer level package. The resulting package has a small form factor suitable for miniaturization. Unfortunately conventional WLP have poor heat dissipation. An interposer with a thermal pad can be attached to the semiconductor die to facilitate improved heat dissipation. In one embodiment, the interposer can also provide a wafer substrate for the wafer level package. Furthermore, the interposer can be constructed using well established and inexpensive processes. The thermal pad attached to the interposer can be coupled to the ground plane of a system where heat drawn from the semiconductor die can be dissipated.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 8, 2013
    Assignee: Conexant Systems, Inc.
    Inventors: Robert W. Warren, Nic Rossi
  • Patent number: 8541874
    Abstract: The semiconductor device 100 comprises a first semiconductor element 113 provided on a face on one side of a flat plate shaped interconnect component 101, an insulating resin 119 covering a face of a side where the first semiconductor element 113 of the interconnect component 101 is provided and a side face of the first semiconductor element 113, and a second semiconductor element 111 provided on a face on the other side of the interconnect component 101. The interconnect component 101 has a constitution where an interconnect layer 103, a silicon layer 105 and an insulating film 107 are sequentially formed. The interconnect layer 103 has a constitution where the interconnect layer 103 has a flat plate shaped insulating component and a conductive component extending through the insulating component. The first semiconductor element 113 is electrically connected with the second semiconductor element 111 through the conductive component.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 24, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yoichiro Kurita
  • Patent number: 8531015
    Abstract: A semiconductor device has a conductive via in a first surface of a substrate. A first interconnect structure is formed over the first surface of the substrate. A first bump is formed over the first interconnect structure. The first bump is formed over or offset from the conductive via. An encapsulant is deposited over the first bump and first interconnect structure. A portion of the encapsulant is removed to expose the first bump. A portion of a second surface of the substrate is removed to expose the conductive via. The encapsulant provides structural support and eliminates the need for a separate carrier wafer when thinning the substrate. A second interconnect structure is formed over the second surface of the substrate. A second bump is formed over the first bump. A plurality of semiconductor devices can be stacked and electrically connected through the conductive via.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: September 10, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Pandi C. Marimuthu, Shuangwu Huang, Nathapong Suthiwongsunthorn
  • Patent number: 8525316
    Abstract: A disclosed semiconductor fabrication process includes forming a first bonding structure on a first surface of a cap wafer, forming a second bonding structure on a first surface of a device wafer, and forming a device structure on the device wafer. One or more eutectic flow containment structures are formed on the cap wafer, the device wafer, or both. The flow containment structures may include flow containment micro-cavities (FCMCs) and flow containment micro-levee (FCMLs). The FCMLs may be elongated ridges overlying the first surface of the device wafer and extending substantially parallel to the bonding structure. The FCMLs may include interior FCMLs lying within a perimeter of the bonding structure, exterior FCMLs lying outside of the bonding structure perimeter, or both. When the two wafers are bonded, the FCMLs and FCMCs confine flow of the eutectic material to the region of the bonding structure.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 3, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lisa H. Karlin, Hemant D. Desai
  • Patent number: 8519542
    Abstract: A silicon substrate has a conductive via extending from a first surface of the silicon substrate through the silicon substrate to a second surface of the silicon substrate. A dielectric via extends from the second surface of the silicon substrate toward the first surface of the silicon substrate.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 27, 2013
    Assignee: Xilinx, Inc.
    Inventors: Namhoon Kim, Dong W. Kim, Paul Y. Wu
  • Patent number: 8514579
    Abstract: The invention relates to a power semiconductor module including a module underside, a module housing, and at least two substrates spaced from each other. Each substrate has a topside facing an interior of the module housing and an underside facing away from the interior of the module housing. The underside of each substrate includes at least one portion simultaneously forming a portion of the module underside. At least one mounting means disposed between two adjacent substrates enables the power semiconductor module to be secured to a heatsink.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 20, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thilo Stolze, Olaf Hohlfeld, Peter Kanschat
  • Patent number: 8513043
    Abstract: The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 20, 2013
    Assignee: Cavendish Kinetics Inc.
    Inventors: Mickael Renault, Joseph Damian Gordon Lacey, Vikram Joshi, Thomas L. Maguire
  • Patent number: 8508028
    Abstract: According to an embodiment, a chip package is provided, which includes: a substrate having a first surface and a second surface; a device region formed in the substrate; a passivation layer formed overlying the first surface of the substrate; at least a polymer planarization layer formed overlying the passivation layer; a package substrate disposed overlying the first surface of the substrate; and a spacer layer disposed between the package substrate and the passivation layer, wherein the spacer layer and the package substrate surround a cavity overlying the substrate, wherein the polymer planar layer does not extends to an outer edge of the spacer layer.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: August 13, 2013
    Inventors: Yu-Lung Huang, Yu-Ting Huang
  • Patent number: 8508022
    Abstract: An ultra thin package for an electric acoustic sensor chip of a micro electro mechanical system is provided. A substrate has a first substrate surface and a second substrate surface opposite to the first substrate surface. At least one conductor bump is formed on the second substrate surface. An electric acoustic sensor chip having a first chip surface and a second chip surface opposite to the first chip surface is provided. The first chip surface is electrically connected to the conductor bump. The conductor bump is positioned between the second substrate surface and the first chip surface to create a space. The conductor bump is used for transferring a signal from the sensor chip to the substrate. An acoustic opening passing through the substrate is formed.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: August 13, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Tzong-Che Ho, Jason Pan, Pin Chang, Chin-Horng Wang, Jung-Tai Chen, Hsin-Li Lee, Kai-Hsiang Yen
  • Patent number: 8497575
    Abstract: A method of manufacture of a semiconductor packaging system includes: providing a base substrate having edges; mounting an electrical interconnect on the base substrate; and applying an encapsulant having a reference marker and an opening over the electrical interconnect, the reference marker around the electrical interconnect based on physical locations of the edges.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: July 30, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: In Sang Yoon, JoHyun Bae, DeokKyung Yang
  • Patent number: 8497159
    Abstract: A method of manufacturing a leadless integrated circuit (IC) package comprising an IC chip mounted on a metal leadframe and a plurality of electrical contacts electrically coupled to the IC chip. The IC chip, the electrical contacts, and a portion of the metal leadframe are covered with an encapsulation compound, with portions of the electrical contacts exposed on a bottom surface of the encapsulation compound. The electrical contacts of the IC package having metal traces connecting bonding areas on a top surface thereof and contact areas on a bottom surface thereof, wherein at least some of the bonding areas are laterally disposed from the contact areas connected thereto.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: July 30, 2013
    Assignee: Kaixin, Inc.
    Inventor: Tung Lok Li
  • Patent number: 8487428
    Abstract: A semiconductor assembly is provided that includes a substrate. A first set of non-conductive hedges is disposed on and protrudes from a first surface of the substrate. A chip is coupled to and spaced apart from the substrate. The chip has a second surface facing the first surface of the substrate. A second set of non-conductive hedges is disposed on and protrudes from the second surface of the chip. The first set of hedges is configured and positioned to engage the second set of hedges to restrict movement of the substrate with respect to the chip. The second set of hedges is configured and positioned to engage the first set of hedges to restrict movement of the chip with respect to the substrate.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Limited
    Inventor: Michael G. Lee
  • Patent number: 8487400
    Abstract: The present invention extends the above referenced continuation-in-part application by in addition creating high quality electrical components, such as inductors, capacitors or resistors, on a layer of passivation or on the surface of a thick layer of polymer. In addition, the process of the invention provides a method for mounting discrete electrical components at a significant distance removed from the underlying silicon surface.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 16, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Patent number: 8482109
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a peripheral lead having a peripheral contact layer surrounding the peripheral lead with a non-horizontal side exposed from the peripheral contact layer; forming an inner lead and a paddle non-planar with the peripheral lead; mounting an integrated circuit to the paddle; and forming an encapsulation covering the integrated circuit and exposing the inner lead, the paddle, and the non-horizontal side.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 9, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Patent number: 8476737
    Abstract: An environment-resistant module which provides both thermal and vibration isolation for a packaged micromachined or MEMS device is disclosed. A microplatform and a support structure for the microplatform provide the thermal and vibration isolation. The package is both hermetic and vacuum compatible and provides vertical feedthroughs for signal transfer. A micromachined or MEMS device transfer method is also disclosed that can handle a wide variety of individual micromachined or MEMS dies or wafers, in either a hybrid or integrated fashion. The module simultaneously provides both thermal and vibration isolation for the MEMS device using the microplatform and the support structure which may be fabricated from a thin glass wafer that is patterned to create crab-leg shaped suspension tethers or beams.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: July 2, 2013
    Assignee: The Regents of the University of Michigan
    Inventors: Khalil Najafi, Sang-Hyun Lee, Sang Woo Lee
  • Patent number: 8471379
    Abstract: A semiconductor device includes a semiconductor chip with first and second low noise amplifier for amplifying an inputted signal. The chip is mounted over a wiring substrate which includes first and second electrodes and first, second and third GND electrodes. The wiring substrate includes first and second conductor patterns, wherein the first conductor pattern electrically connects the first and second GND electrodes and surrounds the first and second electrodes in a plan view. The second conductor pattern electrically connects the first conductor pattern and the third GND electrode to each other and is arranged between the first and second electrodes in the plan view. The first conductor pattern extends toward an inside of the semiconductor chip from the first and second GND electrodes in the plan view.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 25, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Tadatoshi Danno, Toru Nagamine, Hiroshi Mori, Tsukasa Ichinose