For High Frequency (e.g., Microwave) Device Patents (Class 257/728)
  • Patent number: 9673117
    Abstract: A semiconductor module includes a plurality of insulating circuit boards including semiconductor chips, each of the plurality of insulating circuit boards including a first outer edge among outer edges of the insulating circuit board facing an adjacent insulating circuit board of the plurality of insulating circuit boards, and a second outer edge among the outer edges excluding the first outer edge; a resin frame body having a crosspiece abutting against the first outer edges, and a frame element abutting against the second outer edges; a conductive component striding over the crosspiece to electrically connect the insulating circuit boards to each other; and an upper lid having a lid element covering an opening disposed at an upper part of the resin frame body and a partition protruding from a face of the lid element facing the insulating circuit boards to abut against a part of the crosspiece.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: June 6, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Rikihiro Maruyama, Takahito Harada
  • Patent number: 9633951
    Abstract: A semiconductor package that includes a semiconductor die, an insulation around the die, and a conforming conductive pad coupled to an electrode of the die.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: April 25, 2017
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Mark Pavier, Andrew N. Sawle, Martin Standing
  • Patent number: 9583811
    Abstract: A microwave device includes a semiconductor package comprising a microwave semiconductor chip and a waveguide part associated with the semiconductor package. The waveguide part is configured to transfer a microwave waveguide signal. It includes one or more pieces. The microwave device further includes a transformer element configured to transform a microwave signal from the microwave semiconductor chip into the microwave waveguide signal or to transform the microwave waveguide signal into a microwave signal for the microwave semiconductor chip.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: February 28, 2017
    Assignee: Infineon Technologies AG
    Inventors: Ernst Seler, Maciej Wojnowski, Walter Hartner, Josef Boeck
  • Patent number: 9577308
    Abstract: An interconnecting structure for electrically connecting a first electronic device with a second electronic device is provided. The first electronic device has two first bond-pads, and the second electronic device has two second bond-pads electrically connected to the two first bond-pads respectively. The interconnecting structure includes a signal transmission structure electrically connected to the two first bond-pads and the two second bond-pads; and a ground device disposed between the first electronic device and the second electronic device so that the first electronic device and the second electronic device have a same ground potential.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: February 21, 2017
    Assignee: NATIONAL CHAIO TUNG UNIVERSITY
    Inventors: Chun-Hsing Li, Chien-Nan Kuo, Chun-Lin Ko
  • Patent number: 9544057
    Abstract: The present invention relates to an interconnect structure for coupling at least one electronic unit for outputting and/or receiving electric signals, and at least one optical unit for converting said electric signals into optical signals and/or vice versa, to a further electronic component. The interconnect structure comprises an electrically insulating substrate (102) and a plurality of signal lead pairs (104, 120) to be coupled between said electronic unit (108, 116) and a front end contact region (106) for electrically contacting said interconnect structure by said further electronic component.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: January 10, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Andrei Kaikkonen, Lennart Lundquist, Lars-Goete Svensson, Robert Smith
  • Patent number: 9520373
    Abstract: Provided is a semiconductor package including a semiconductor chip having one surface on which chip pads are formed, and a redistribution structure formed on the one surface of the semiconductor chip. The redistribution structure includes a redistribution layer connected to the chip pads and a redistribution insulating layer interposed between the semiconductor chip and the redistribution layer. The redistribution insulating layer includes a first insulating portion having a first dielectric constant and a second insulating portion having a second dielectric constant that is different from the first dielectric constant. The first insulating portion and the second insulating portion are connected to each other in a horizontal direction.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: December 13, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-hoon Kim, Keung-beum Kim
  • Patent number: 9455157
    Abstract: A packaged IC has a package with a die paddle, a signal lead, and a ground lead. The packaged IC also has a die, secured to the package, with a ground pad and a signal pad. The signal pad is electrically connected to the signal lead, and the ground pad is electrically connected to both the die paddle and the ground lead.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 27, 2016
    Assignee: Anokiwave, Inc.
    Inventors: Vipul Jain, Noyan Kinayman, Amir Esmaili, Guarav Menon, Nitin Jain
  • Patent number: 9412687
    Abstract: A wiring substrate includes a first wiring layer including a first wiring part having a first wiring interval and a second wiring part having a second wiring interval wider than the first wiring interval, a metal plane layer formed on a portion of a first insulation layer formed on the first wiring layer, the first wiring part being located below the portion, a second insulation layer formed on the first insulation layer and the metal plane layer and having a first via hole and a second via hole, a second wiring layer formed on the second insulation layer and connected to the first wiring layer via a first via conductor formed in the first via hole, and a third wiring layer formed on the second insulation layer and connected to the metal plane layer via a second via conductor formed in the second via hole.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: August 9, 2016
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Yuji Kunimoto, Jun Furuichi, Noriyoshi Shimizu, Naoyuki Koizumi
  • Patent number: 9406582
    Abstract: A method and apparatus to minimize thermal impedance using copper on the die or chip backside. Some embodiments use deposited copper having a thickness chosen to complement a given chip thickness, in order to reduce or minimize wafer warpage. In some embodiments, the wafer, having a plurality of chips (e.g., silicon), is thinned (e.g., by chemical-mechanical polishing) before deposition of the copper layer, to reduce the thermal resistance of the chip. Some embodiments further deposit copper in a pattern of bumps, raised areas, or pads, e.g., in a checkerboard pattern, to thicken and add copper while reducing or minimizing wafer warpage and chip stress.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: August 2, 2016
    Assignee: Intel Corporation
    Inventors: Fay Hua, Gregory M. Chrysler, James G. Maveety, Kramadhati V. Ravi
  • Patent number: 9368457
    Abstract: A high-frequency package includes an MMIC including a signal source and a conductor pattern that is connected to the signal source, a substrate having a signal line and a GND formed thereon and the MMIC mounted thereon, a metal bump for signaling that is formed between the MMIC and the substrate, and connects the conductor pattern of the MMIC and the signal line of the substrate, and a plurality of metal bumps for shielding that are formed between the MMIC and the substrate so as to surround the signal source and the conductor pattern with the metal bump for signaling, where a space between a pair of adjacent metal bumps among the metal bump for signaling and the plurality of metal bumps for shielding is equal to or less than half of a wavelength of an electromagnetic wave generated from the signal source.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: June 14, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kosuke Yasooka
  • Patent number: 9351395
    Abstract: A method of manufacturing a printed circuit board includes the steps of providing a first layer stack including a first electrically-conductive layer and a first electrically-insulating layer and providing a second layer stack including a second electrically-insulating layer. The first electrically-conductive layer is disposed on the first surface of the first electrically-insulating layer. The second electrically-insulating layer includes one or more electrically-conductive traces disposed on a first surface thereof. The method also includes mounting a device on the first surface of the second electrically-insulating layer such that the device is electrically-coupled to at least one of the one or more electrically-conductive traces, and providing the first layer stack with a cut-out area defining a void that extends from the second surface of the first electrically-insulating layer to the first surface of the first electrically-conductive layer.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: May 24, 2016
    Assignee: Covidien LP
    Inventors: Wayne L. Moul, Robert J. Behnke, II, Scott E. M. Frushour, Jeffrey L. Jensen
  • Patent number: 9349612
    Abstract: A lead frame includes a plurality of unit lead frames arranged in a matrix. Leads of adjacent ones of the unit lead frames are connected via a connecting bar, in which a longitudinal connecting bar and a transverse connecting bar are crossed at a crossing part. The lead frame further includes a dicing part including the connecting bar and a part of the leads, to be cut along a dicing line, a half-etching part formed along the dicing part, and being smaller in width than the dicing part, and a strength retention part formed in the half-etching part and extended from the crossing part of the connecting bar at least to an end lead located closest to the crossing part among the leads of the unit lead frame adjacent to the crossing part.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: May 24, 2016
    Assignee: MITSUI HIGH-TEC, INC.
    Inventor: Takahiro Ishibashi
  • Patent number: 9293439
    Abstract: An improved electronic module assembly and method of fabrication is disclosed. A patterned array of adhesive is deposited on a laminate, to which a chip is attached. Each region of adhesive is referred to as a lid tie. A lid is placed on the laminate, and is in contact with the lid ties. The lid ties serve to add stability to the laminate and reduce flexing during thermal processing and mechanical stress.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Edmund Blackshear, Elaine Cyr, Benjamin Vito Fasano, Paul Francis Fortier, Marcus E. Interrante, Roger Lam, Shidong Li, Thomas Edward Lombardi, Hilton T. Toy, Thomas Weiss
  • Patent number: 9252767
    Abstract: An integrated RF switch module including a package customized to include at least one trace. The trace includes one or more of at least one connection pad and at least one landing pad. At least one switching die is connected to the at least one connection pad. At least one device is connected to the at least one landing pad, the at least one device configured to enhance the performance of the switching die.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 2, 2016
    Assignee: HITTITE MICROWAVE CORPORATION
    Inventors: Kasim Ayyildiz, Michael Clark, Peter Katzin
  • Patent number: 9177881
    Abstract: Certain embodiments provide a high-frequency semiconductor package including: a base which is made of metal and is a grounding portion; a multi-layer wiring resin substrate; a first internal conductor film; and a lid. The multi-layer wiring resin substrate is provided on a top surface of the base, and has a frame shape in which a first cavity from which the top surface of the base is exposed is formed. The first internal conductor film covers surfaces which form a top surface of the multi-layer wiring resin substrate and an inner wall surface of the first cavity, and is electrically connected with the base. The lid is attached onto the multi-layer wiring resin substrate, and seals and covers the first cavity.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: November 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiyuki Ikuma, Masatoshi Suzuki
  • Patent number: 9142620
    Abstract: The present disclosure provides a power device and power device packaging. Generally, the power device of the present disclosure includes a die backside and a die frontside. A semi-insulating substrate with epitaxial layers disposed thereon is sandwiched between the die backside and the die frontside. Pads on the die frontside are coupled to the die backside with patterned backmetals that are disposed within vias that pass through the semi-insulating substrate and epitaxial layers from the die backside to the die frontside.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: September 22, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Andrew P. Ritenour, Paul Partyka
  • Patent number: 9142429
    Abstract: A method for forming an integrated circuit includes transforming at least a portion of a first substrate layer to form a conductive region within the first substrate layer. An integrated circuit device is provided proximate an outer surface of the first substrate layer. The integrated circuit device transmits or receives electrical signals through the conductive region. A second substrate layer is disposed proximate to the outer surface of the first substrate layer to enclose the integrated circuit device in a hermetic environment.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: September 22, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: Premjeet Chahal, Francis J. Morris
  • Patent number: 9084342
    Abstract: A manufacturing method of a circuit board is provided. Providing a substrate, where a first laser resistant structure is disposed on a first dielectric layer and at the periphery of a pre-removing area, a second dielectric layer covers the first laser resistant structure, a circuit layer is disposed on the second dielectric layer, a second laser resistant structure is disposed on the second dielectric layer and at the periphery of the pre-removing area, a third dielectric layer covers the circuit layer and the second laser resistant structure. There are gaps between the second laser resistant structure and the circuit layer, and the vertical projection of the gaps on the first dielectric layer overlaps the first laser resistant structure. A laser machining process is performed to etch the third dielectric layer at the periphery of the pre-removing area. The portion of the third dielectric layer within the pre-removing area is removed.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 14, 2015
    Assignee: Unimicron Technology Corp.
    Inventor: Chen-Chuan Chang
  • Patent number: 9070961
    Abstract: Shielding of high-frequency circuits is achieved using a simple and inexpensive configuration not using any lid. A high-frequency circuit mounting substrate (20) is disposed, on an underside surface layer of which are disposed high-frequency circuits (21 and 22) and is formed a first grounding conductor that has same electric potential as grounding conductors of the high-frequency circuits and that surrounds the high-frequency circuits. A mother control substrate (3) is disposed, on which the high-frequency circuit mounting substrate (20) is mounted in such a way that the high-frequency circuits are sandwiched therebetween and on which a second grounding conductor is formed in a region facing the high-frequency circuits. Plural first lands are formed on the first grounding conductor of the high-frequency circuit mounting substrate (20) to surround the high-frequency circuits.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: June 30, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takuya Suzuki
  • Patent number: 9059083
    Abstract: A semiconductor device is disclosed. One embodiment includes a carrier, a semiconductor chip attached to the carrier, a first conducting line having a first thickness and being deposited over the semiconductor chip and the carrier and a second conducting line having a second thickness and being deposited over the semiconductor chip and the carrier. The first thickness is smaller than the second thickness.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: June 16, 2015
    Assignee: Infineon Technologies AG
    Inventors: Henrik Ewe, Joachim Mahler, Manfred Mengel, Reimund Engl, Josef Hoeglauer, Jochen Dangelmaier
  • Patent number: 9041169
    Abstract: A semiconductor packaging container allowing to use in millimeter band is provided at a low cost. The inner SIG pads and the inner GND pads, capable of a direct connection with a signal terminal of a semiconductor chip 10 are provided on the bottomed cylindrical dielectric case formed of the liquid crystal polymer. Further, the external SIG pads integrally formed with the inner SIG pads 201, 202 and the external GND pad 303 integrally formed with the inner GND pad are provided on the back of the bottom surface of the dielectric case as the external terminal. The inner GND pads and are to form the coplanar waveguide with the inner SIG pads and. Also, the inner GND pads and are to add capacitive reactance for canceling the inductance caused by the space at the semiconductor chip portion to the coplanar waveguide.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: May 26, 2015
    Assignee: YOKOWO CO., LTD.
    Inventors: Shoichi Koshikawa, Junichiro Nikaido, Shintaro Takase, Yoshio Aoki
  • Patent number: 9035194
    Abstract: Embodiments of the present disclosure are directed towards a circuit board having integrated passive devices such as inductors, capacitors, resistors and associated techniques and configurations. In one embodiment, an apparatus includes a circuit board having a first surface and a second surface opposite to the first surface and a passive device integral to the circuit board, the passive device having an input terminal configured to couple with electrical power of a die, an output terminal electrically coupled with the input terminal, and electrical routing features disposed between the first surface and the second surface of the circuit board and coupled with the input terminal and the output terminal to route the electrical power between the input terminal and the output terminal, wherein the input terminal includes a surface configured to receive a solder ball connection of a package assembly including the die. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 19, 2015
    Assignee: Intel Corporation
    Inventors: M D Altaf Hossain, Jin Zhao, John T. Vu
  • Patent number: 9000583
    Abstract: A microelectronic package includes a subassembly including a first substrate and first and second microelectronic elements having contact-bearing faces facing towards oppositely-facing first and second surfaces of the first substrate and each having contacts electrically connected with the first substrate. The contact-bearing faces of the first and second microelectronic elements at least partially overlie one another. Leads electrically connect the subassembly with a second substrate, at least portions of the leads being aligned with an aperture in the second substrate. The leads can include wire bonds extending through an aperture in the first substrate and joined to contacts of the first microelectronic element aligned with the first substrate aperture. In one example, the subassembly can be electrically connected with the second substrate using electrically conductive spacer elements.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 7, 2015
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Wael Zohni, Richard Dewitt Crisp
  • Patent number: 8987878
    Abstract: A substrate-less composite power semiconductor device may include a thin substrate and a top metal layer located on a top surface of the substrate. A total thickness of the substrate and the epitaxial layer may be less than 25 microns. Solder bumps are formed on top of the top metal layer and molding compound surrounds the solder bumps and leaves the solder bumps at least partly exposed.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 24, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Tao Feng, Zhiqiang Niu, Yuping Gong, Ruisheng Wu, Ping Huang, Lei Shi, Yueh-Se Ho
  • Patent number: 8987061
    Abstract: Methods for antenna switch modules are disclosed. In certain implementations, a method of making an antenna switch module is provided. The method includes providing a package substrate implemented to receive one or more electrical components, attaching a silicon on insulator (SOI) die to the package substrate, and providing an integrated filter. The SOI die includes a capacitor and a switch coupled to a plurality of radio frequency (RF) signal paths. The integrated filter filters an RF signal received on a first RF signal path of the plurality of RF signal paths, and includes the capacitor of the SOI die and an inductor.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: March 24, 2015
    Assignee: Skyworks Soultions, Inc.
    Inventors: Jong-Hoon Lee, Chuming Shih
  • Patent number: 8981881
    Abstract: A stacked module includes a first multilayer substrate including an opening having a stepwise wall face, and a first transmission line including a first grounding conductor layer, a second multilayer substrate supported on a stepped portion of the stepwise wall face and including a second transmission line including a second grounding conductor layer, a first chip mounted on a bottom of the opening and coupled to a third transmission line provided on the first multilayer substrate, and a second chip mounted on the front face of the second multilayer substrate and coupled to the second transmission line. A face to which the second grounding conductor layer or a fourth grounding conductor layer coupled thereto is exposed is joined to the stepped portion to which the first grounding conductor layer or a third grounding conductor layer coupled thereto is exposed, and the first and second grounding conductor layers are coupled.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Limited
    Inventor: Satoshi Masuda
  • Patent number: 8969132
    Abstract: Disclosed and claimed herein is a microwave assembly having a substrate comprising a microwave device; said device having a die, a first layer having a dielectric constant between about 1.00 and about 1.45 and a thickness between about 0.05 and about 2 mm along with one or more layers chosen from an absorbing layer, an EMI blocking layer, a layer comprising conductive material or a metal cover.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Nuvotronics, LLC
    Inventors: David William Sherrer, James MacDonald
  • Patent number: 8964400
    Abstract: A circuitry arrangement includes several electronic parts mounted to a circuit board, at least one conductor section extending between the electronic parts within a first conductor layer, and a closed conductor loop comprising at least one loop section running in parallel to the at least one conductor section within a second conductor layer neighboring the first conductor layer. The closed conductor loop is configured to reduce a tendency towards oscillations of a current flowing through the conductor section in operation of the circuitry arrangement. The conductor loop is closed via at least one electronic component mounted to an outer surface of the circuit board.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: February 24, 2015
    Assignee: SMA Solar Technology AG
    Inventor: Regine Mallwitz
  • Patent number: 8963658
    Abstract: A structure having a coplanar waveguide transistor; and a microwave section, coupled to the transistor, having: a strip conductor coplanar with the electrodes of the coplanar waveguide transistor and a ground plane conductor disposed under the strip conductor.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: February 24, 2015
    Assignee: Raytheon Company
    Inventors: James J. Chen, Nicholas J. Kolias, Francois Y. Colomb
  • Patent number: 8952540
    Abstract: A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 10, 2015
    Assignee: Intel Corporation
    Inventors: Mihir K. Roy, Mathew J. Manusharow
  • Patent number: 8952521
    Abstract: In one embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A chip is disposed in the substrate. The chip includes a plurality of contact pads at the first major surface. A first antenna structure is disposed at the first major surface. A reflector is disposed at the second major surface.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: February 10, 2015
    Assignee: Infineon Technologies AG
    Inventors: Maciej Wojnowski, Walter Hartner, Ottmar Geitner, Gottfried Beer, Klaus Pressel, Mehran Pour Mousavi
  • Patent number: 8946894
    Abstract: Methods and apparatuses for forming a package for high-power semiconductor devices are disclosed herein. A package may include a plurality of distinct thermal spreader layers disposed between a die and a metal carrier. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: February 3, 2015
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Tarak A. Railkar, Deep C. Dumka
  • Patent number: 8928139
    Abstract: Embodiments described herein provide enhanced integrated circuit (IC) devices. In an embodiment, an IC device includes a substrate, an IC die coupled to a surface of the substrate, a first wirelessly enabled functional block located, on the IC die, the first wirelessly enabled functional block being configured to wirelessly communicate with a second wirelessly enabled functional block located on the substrate, and a ground ring configured to provide electromagnetic shielding for the first and second wirelessly enabled functional blocks.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 6, 2015
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Michael Boers, Ahmadreza Rofougaran, Arya Behzad, Jesus Castaneda
  • Patent number: 8912634
    Abstract: A mmWave electronics package constructed from common Printed Circuit Board (PCB) technology and a metal cover. Assembly of the package uses standard pick and place technology and heat is dissipated directly to a pad on the package. Input/output of mmWave signal(s) is achieved through a rectangular waveguide. Mounting of the electronic package to an electrical printed circuit board (PCB) is performed using conventional reflow soldering processes and includes a waveguide I/O connected to an mmWave antenna. The electronic package provides for transmission of low frequency, dc and ground signals from the semiconductor chip inside the package to the PCB it is mounted on. An impedance matching scheme matches the chip to high frequency board transition by altering the ground plane within the chip. A ground plane on the high frequency board encircles the high frequency signal bump to confine the electromagnetic fields to the bump region reducing radiation loss.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Elad Danny, Kaminski Noam, Okamoto Keishi, Shumaker Evgeny, Toriyama Kazushige
  • Patent number: 8912647
    Abstract: According to one embodiment, provided is a semiconductor device includes: a high frequency semiconductor chip; an input matching circuit disposed at the input side of the high frequency semiconductor chip; an output matching circuit disposed at the output side of the high frequency semiconductor chip; a high frequency input terminal connected to the input matching circuit; a high frequency output terminal connected to the output matching circuit, and a smoothing capacitor terminal connected to the high frequency semiconductor chip. The high frequency semiconductor chip, the input matching circuit and the output matching circuit are housed by one package.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 8902123
    Abstract: To provide a semiconductor device in which wireless communication is performed between devices formed over different substrates and connection defects of wirings are reduced. A first device having a first antenna is provided over a first substrate, a second device having a second antenna which can communicate with the first antenna is provided over a second substrate, and the first substrate and the second substrate are bonded to each other to manufacture a semiconductor device. The first substrate and the second substrate are bonded to each other by bonding with a bonding layer interposed therebetween, anodic bonding, or surface activated bonding.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Konami Izumi
  • Patent number: 8890297
    Abstract: A light emitting device package according to embodiments comprises: a package body; a lead frame on the package body; a light emitting device supported by the package body and electrically connected with the lead frame; a filling material surrounding the light emitting device; and a phosphor layer comprising phosphors on the filling material.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 18, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Yu Ho Won, Geun Ho Kim
  • Patent number: 8890303
    Abstract: A three-dimensional integrated circuit, including a first adhesive bonding layer, a first chip, a second chip, and an inter-stratum thermal pad, is provided. The first adhesive bonding layer has a first surface and a second surface opposite to each other. The first chip is disposed on the first surface of the first adhesive bonding layer. The first chip includes a hot zone. The second chip is disposed on the second surface of the first adhesive bonding layer. The inter-stratum thermal pad is embedded in the first adhesive bonding layer and faces to the hot zone.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 18, 2014
    Assignee: National Chiao Tung University
    Inventors: An-Nan Tan, Hung-Ming Chen
  • Patent number: 8884428
    Abstract: Embodiments described herein provide enhanced integrated circuit (IC) devices. In an embodiment, an IC device includes a substrate, an IC die coupled to a surface of the substrate, a first wirelessly enabled functional block located, on the IC die, the first wirelessly enabled functional block being configured to wirelessly communicate with a second wirelessly enabled functional block located on the substrate, and a ground ring configured to provide electromagnetic shielding for the first and second wirelessly enabled functional blocks.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 11, 2014
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Michael Boers, Ahmadreza Rofougaran, Arya Behzad, Jesus Castaneda
  • Patent number: 8872328
    Abstract: An integrated power module includes a substantially planar insulated metal substrate having at least one cut-out region; at least one substantially planar ceramic substrate disposed within the cut-out region, wherein the ceramic substrate is framed on at least two sides by the insulated metal substrate, the ceramic substrate including a first metal layer on a first side and a second metal layer on a second side; at least one power semiconductor device coupled to the first side of the ceramic substrate; at least one control device coupled to a first surface of the insulated metal substrate; a power overlay electrically connecting the at least one semiconductor power device and the at least one control device; and a cooling fluid reservoir operatively connected to the second metal layer of the at least one ceramic substrate, wherein a plurality of cooling fluid passages are provided in the cooling fluid reservoir.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Eladio Clemente Delgado, John Stanley Glaser, Brian Lynn Rowden
  • Patent number: 8872333
    Abstract: A millimeter wave integrated waveguide interface package device may comprise: (1) a package comprising a printed wiring board (PWB) and a monolithic microwave integrate circuit (MMIC), wherein the MMIC is in communication with the PWB; and (2) a waveguide interface integrated with the package. The package may be adapted to operate at high frequency and high power, where high frequency includes frequencies greater than about 5 GHz, and high power includes power greater than about 0.5 W.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 28, 2014
    Assignee: ViaSat, Inc.
    Inventors: Noel A Lopez, Michael R Lyons, Dave Laidig, Kenneth V Buer
  • Patent number: 8866291
    Abstract: A microstrip MMIC chip flip-chip mounted to a printed circuit board with conductive vias passing through the chip to electrical connect a ground plane of the microstrip MMIC chip to a ground conductor of the printed circuit board.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Raytheon Company
    Inventor: Roberto W. Alm
  • Patent number: 8866289
    Abstract: A sealing and bonding material structure for joining semiconductor wafers having monolithically integrated components. The sealing and bonding material are provided in strips forming closed loops. There are provided at least two concentric sealing strips on one wafer. The strips are laid out so as to surround the component(s) on the wafers to be sealed off when wafers are bonded together. The material in the strips is a material bonding the semiconductor wafers together and sealing off the monolithically integrated components when subjected to force and optionally heating. A monolithically integrated electrical and/or mechanical and/or fluidic and/or optical device including a first substrate and a second substrate, bonded together with the sealing and bonding structure, and a method of providing a sealing and bonding material structure on at least one of two wafers and applying a force and optionally heat to the wafers to join them are described.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Silex Microsystems AB
    Inventors: Thorbjorn Ebefors, Edward Kalvesten, Niklas Svedin, Anders Eriksson
  • Patent number: 8866292
    Abstract: In accordance with an embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A first chip is disposed in the substrate. The first chip includes a plurality of contact pads at the first major surface. A via bar is disposed in the substrate. An antenna structure is disposed within the via bar.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies AG
    Inventors: Gottfried Beer, Maciej Wojnowski, Mehran Pour Mousavi
  • Patent number: 8853547
    Abstract: A flexible printed circuit board, in particular for the spatial connection of electronic components, includes a carrier foil (1), several bonding surfaces (10) arranged on a solder side (4) of the carrier foil (1), and several soldering surfaces (2) arranged on a bonding side (12) of the carrier foil (1) opposite the solder side. The soldering surfaces (2) are connected to the bonding surfaces (10) via electrical strip conductors, and a stiffening plate (3) is inseparably connected to the carrier foil (1) on the solder side thereof.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: October 7, 2014
    Assignees: Conti Temic microelectronic GmbH, Carl Freudenberg KG
    Inventors: Andreas Voegerl, Tilo Liebl, Gerhard Bauer, Marion Gebhardt, Alexander Wenk, Matthias Wieczorek, Juergen Henniger, Karl-Heinz Baumann
  • Patent number: 8847383
    Abstract: An integrated circuit package strip employs a stiffener layer that houses a passive electronic component to maintain mechanical properties when a thinner substrate is used. The use of either a retention wall or a stiffener allows for the manufacture of these integrated circuit package using strip, matrix, or array technology where a larger board with a plurality of integrated circuit packages is produced industrially and then cut to individual units.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 30, 2014
    Assignee: ATI Technologies ULC
    Inventors: Neil R. McLellan, Vincent K. Chan, Roden R. Topacio, III
  • Patent number: 8824974
    Abstract: The present invention provides a semiconductor integrated circuit device and a radio frequency module realizing reduction in high-order harmonic distortion or IMD. For example, a so-called antenna switch having a plurality of transistors between an antenna terminal and a plurality of signal terminals is provided with a voltage supply circuit. The voltage supply circuit is a circuit for supplying voltage from a voltage supply terminal to at least two signal terminals in the plurality of signal terminals via resistive elements. With the configuration, antenna voltage dropped due to a leakage or the like can be boosted and, for example, transistors in an off state can be set to a deep off state.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 2, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Akishige Nakajima, Yasushi Shigeno, Takashi Ogawa, Shinnichirou Takatani, Shinya Osakabe, Tomoyuki Ishikawa
  • Patent number: 8816497
    Abstract: An electronic component includes a III-N transistor and a III-N rectifying device both encased in a single package. A gate electrode of the III-N transistor is electrically connected to a first lead of the single package or to a conductive structural portion of the single package, a drain electrode of the III-N transistor is electrically connected to a second lead of the single package and to a first electrode of the III-N rectifying device, and a second electrode of the III-N rectifying device is electrically connected to a third lead of the single package.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 26, 2014
    Assignee: Transphorm Inc.
    Inventor: Yifeng Wu
  • Patent number: 8811027
    Abstract: A DC-DC converter includes an insulating substrate with an inductor provided on the top surface thereof, a switching control IC provided therein, and a ground electrode pattern provided on the bottom surface thereof. The ground electrode pattern includes a first pattern and a second pattern separated from each other and a bridge pattern that connects the first and second patterns to each other. A capacitor and the switching control IC is connected to each of the first and second patterns. The bridge pattern faces the inductor and has a smaller width than that of the first and second patterns.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Noboru Kato
  • Patent number: 8810030
    Abstract: A MEMS device (20) with stress isolation includes elements (28, 30, 32) formed in a first structural layer (24) and elements (68, 70) formed in a second structural layer (26), with the layer (26) being spaced apart from the first structural layer (24). Fabrication methodology (80) entails forming (92, 94, 104) junctions (72, 74) between the layers (24, 26). The junctions (72, 74) connect corresponding elements (30, 32) of the first layer (24) with elements (68, 70) of the second layer (26). The fabrication methodology (80) further entails releasing the structural layers (24, 26) from an underlying substrate (22) so that all of the elements (30, 32, 68, 70) are suspended above the substrate (22) of the MEMS device (20), wherein attachment of the elements (30, 32, 68, 70) with the substrate (22) occurs only at a central area (46) of the substrate (22).
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: August 19, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Aaron A. Geisberger