Via (interconnection Hole) Shape Patents (Class 257/774)
  • Patent number: 11972979
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a first interlayer dielectric (ILD), a plurality of source/drain (S/D) contacts in the first ILD, a plurality of gate contacts in the first ILD, wherein the gate contacts and the S/D contacts are arranged in an alternating pattern, and wherein top surfaces of the gate contacts are below top surfaces of the S/D contacts so that a channel defined by sidewall surfaces of the first ILD is positioned over each of the gate contacts, mask layer partially filling a first channel over a first gate contact, and a fill metal filling a second channel over a second gate contact that is adjacent to the first gate contact.
    Type: Grant
    Filed: June 7, 2023
    Date of Patent: April 30, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Michael Harper, Suzanne S. Rich, Charles H. Wallace, Curtis Ward, Richard E. Schenker, Paul Nyhus, Mohit K. Haran, Reken Patel, Swaminathan Sivakumar
  • Patent number: 11973040
    Abstract: A method is provided for forming an integrated circuit (IC) chip package structure. The method includes providing a substrate for an interposer, and forming a conductive interconnect structure in and on the substrate for connecting a group of selected IC dies. The method includes forming warpage-reducing trenches in non-routing regions of the interposer, wherein the warpage-reducing trenches are sized and positioned based on a warpage characteristic to reduce the warpage of the chip package structure. The method also includes depositing a warpage-relief material in the warpage-reducing trenches according to the warpage characteristic to reduce the warpage of the chip package structure, and bonding the group of selected IC dies to the interposer to form a chip package structure.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yang Hsieh, Chien-Chang Lee, Chia-Ping Lai, Wen-Chung Lu, Cheng-Kang Huang, Mei-Shih Kuo, Alice Huang
  • Patent number: 11967556
    Abstract: Methods for forming microelectronic devices include forming a staircase structure in a stack structure having a vertically alternating sequence of insulative and conductive materials arranged in tiers. Steps are at lateral ends of the tiers. Contact openings of different aspect ratios are formed in fill material adjacent the staircase structure, with some openings terminating in the fill material and others exposing portions of the conductive material of upper tiers of the stack structure. Additional conductive material is selectively formed on the exposed portions of the conductive material. The contact openings initially terminating in the fill material are extended to expose portions of the conductive material of lower elevations. Contacts are formed, with some extending to the additional conductive material and others extending to conductive material of the tiers of the lower elevations. Microelectronic devices and systems incorporating such staircase structures and contacts are also disclosed.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: April 23, 2024
    Inventors: Biow Hiem Ong, David A. Daycock, Chieh Hsien Quek, Chii Wean Calvin Chen, Christian George Emor, Wing Yu Lo
  • Patent number: 11951972
    Abstract: Methods and a system are provided for shaping a torque profile for a motor of a hybrid vehicle. In one example, the method includes during a vehicle launch, an off condition of an engine, and upon receiving an engine start request, predicting a time of engine engagement, predicting a driver requested torque at the engine engagement; and reducing the driver requested torque until the predicted time of engine engagement based on the predicted driver requested torque at the engine engagement. The predicting of at least one of the time of engine engagement and the driver requested torque at the engine engagement may be based on a current position of an accelerator pedal and a driver profile. The method may further include controlling motor torque profile based on the reduced driver request torque.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Joshua Nicholas DeWalt, Fazal Urrahman Syed, Sassan Farahmand, Minku Lee, Justin Panhans, Andrew Burt
  • Patent number: 11955377
    Abstract: Approaches based on differential hardmasks for modulation of electrobucket sensitivity for semiconductor structure fabrication, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for an integrated circuit includes forming a hardmask layer above an inter-layer dielectric (ILD) layer formed above a substrate. A plurality of dielectric spacers is formed on the hardmask layer. The hardmask layer is patterned to form a plurality of first hardmask portions. A plurality of second hardmask portions is formed alternating with the first hardmask portions. A plurality of electrobuckets is formed on the alternating first and second hardmask portions and in openings between the plurality of dielectric spacers. Select ones of the plurality of electrobuckets are exposed to a lithographic exposure and removed to define a set of via locations.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Robert L Bristol, James M. Blackwell, Rami Hourani, Marie Krysak
  • Patent number: 11955165
    Abstract: A memory system includes dynamic random-access memory (DRAM) components that include interconnected and redundant component data interfaces. The redundant interfaces facilitate memory interconnect topologies that accommodate considerably more DRAM components per memory channel than do traditional memory systems, and thus offer considerably more memory capacity per channel, without concomitant reductions in signaling speeds. Each DRAM component includes multiplexers that allow either of the data interfaces to write data to or read data from a common set of memory banks, and to selectively relay write and read data to and from other components, bypassing the local banks. Delay elements can impose selected read/write delays to align read and write transactions from and to disparate DRAM components.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: April 9, 2024
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Ely K. Tsern, John E. Linstadt, Thomas A. Giovannini, Scott C. Best, Kenneth L Wright
  • Patent number: 11948961
    Abstract: A solid-state imaging device including a first substrate on which a pixel unit is formed, and a first semiconductor substrate and a first multi-layered wiring layer are stacked, a second substrate on which a circuit having a predetermined function is formed, and a second semiconductor substrate and a second multi-layered wiring layer are stacked, and a third substrate on which a circuit having a predetermined function is formed, and a third semiconductor substrate and a third multi-layered wiring layer are stacked. The first substrate, the second substrate, and the third substrate are stacked in this order. A first coupling structure for electrically coupling a circuit of the first substrate and the circuit of the second substrate to each other does not include a coupling structure formed from the first substrate as a base over bonding surfaces of the first substrate and the second substrate.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: April 2, 2024
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hideto Hashiguchi, Reijiroh Shohji, Hiroshi Horikoshi, Ikue Mitsuhashi, Tadashi Iijima, Takatoshi Kameshima, Minoru Ishida, Masaki Haneda
  • Patent number: 11942427
    Abstract: A semiconductor device includes a first interlayer insulating film disposed on a substrate and having a first trench. A first lower conductive pattern fills the first trench and includes first and second valley areas that are spaced apart from each other in a first direction parallel to an upper surface of the substrate. The first and second valley areas are recessed toward the substrate. A second interlayer insulating film is disposed on the first interlayer insulating film and includes a second trench that exposes at least a portion of the first lower conductive pattern. An upper conductive pattern fills the second trench and includes an upper barrier film and an upper filling film disposed on the upper barrier film. The upper conductive pattern at least partially fills the first valley area.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: March 26, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung Yong Yoo, Jong Jin Lee, Rak Hwan Kim, Eun-Ji Jung, Won Hyuk Hong
  • Patent number: 11942396
    Abstract: A heterogeneous integration semiconductor package structure including a heat dissipation assembly, multiple chips, a package assembly, multiple connectors and a circuit substrate is provided. The heat dissipation assembly has a connection surface and includes a two-phase flow heat dissipation device and a first redistribution structure layer embedded in the connection surface. The chips are disposed on the connection surface of the heat dissipation assembly and electrically connected to the first redistribution structure layer. The package assembly surrounds the chips and includes a second redistribution structure layer disposed on a lower surface and multiple conductive vias electrically connected to the first redistribution structure layer and the second redistribution structure layer. The connectors are disposed on the package assembly and electrically connected to the second redistribution structure layer.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: March 26, 2024
    Assignee: Industrial Technology Research Institute
    Inventors: Heng-Chieh Chien, Shu-Jung Yang, Yu-Min Lin, Chih-Yao Wang, Yu-Lin Chao
  • Patent number: 11942436
    Abstract: A method of forming a semiconductor device includes: forming first electrical components in a substrate in a first device region of the semiconductor device; forming a first interconnect structure over and electrically coupled to the first electrical components; forming a first passivation layer over the first interconnect structure, the first passivation layer extending from the first device region to a scribe line region adjacent to the first device region; after forming the first passivation layer, removing the first passivation layer from the scribe line region while keeping a remaining portion of the first passivation layer in the first device region; and dicing along the scribe line region after removing the first passivation layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Ying-Ju Chen, Ming-Fa Chen
  • Patent number: 11942425
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate, a contact structure, a first conductive element, and a first dielectric spacer structure. The semiconductor substrate includes an active region and an isolation structure. The contact structure is on the active region of the semiconductor substrate. The first conductive element is on the isolation structure of the semiconductor substrate. The first dielectric spacer structure is between the contact structure and the first to conductive element. The first dielectric spacer structure has a first concave surface facing the first conductive element.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: March 26, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih-Ying Tsai, Jui-Seng Wang, Yi-Yi Chen
  • Patent number: 11944016
    Abstract: A magnetoresistive random access memory, including a substrate, a conductive plug in the substrate, wherein the conductive plug has a notched portion on one side of the upper edge of the conductive plug, and a magnetic memory cell with a bottom electrode electrically connecting with the conductive plug, a magnetic tunnel junction on the bottom electrode and a top electrode on the magnetic tunnel junction, wherein the bottom surface of the magnetic memory cell and the top surface of the conductive plug completely align and overlap each other.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: March 26, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hung-Chan Lin, Yu-Ping Wang, Hung-Yueh Chen
  • Patent number: 11935802
    Abstract: A package and a method of forming the same are provided. The package includes: a die stack bonded to a carrier, the die stack including a first integrated circuit die, the first integrated circuit die being a farthest integrated circuit die of the die stack from the carrier, a front side of the first integrated circuit die facing the carrier; a die structure bonded to the die stack, the die structure including a second integrated circuit die, a backside of the first integrated circuit die being in physical contact with a backside of the second integrated circuit die, the backside of the first integrated circuit die being opposite the front side of the first integrated circuit die; a heat dissipation structure bonded to the die structure adjacent the die stack; and an encapsulant extending along sidewalls of the die stack and sidewalls of the heat dissipation structure.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Ming-Fa Chen, Chen-Hua Yu
  • Patent number: 11937514
    Abstract: A semiconductor structure forms two or more tightly pitched memory devices using a dielectric material for a gap fill material. The approach includes providing two adjacent bottom electrodes in a layer of an insulating material and above a metal layer. Two adjacent pillars are each above one of the two adjacent bottom electrodes where each pillar of the two adjacent pillars is composed of a stack of materials for a memory device. A spacer is around the vertical sides each of the two adjacent pillars. The dielectric material is on the spacer around the vertical sides each of the two adjacent pillars, on the layer of the insulating material between the two adjacent bottom electrodes. The dielectric material fills at least a first portion of a gap between the two adjacent pillars. A low k material covers the dielectric material and exposed portions of the layer of the insulating material.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 19, 2024
    Assignee: International Business Machines Corporation
    Inventors: Theodorus E. Standaert, Daniel Charles Edelstein, Chih-Chao Yang
  • Patent number: 11929563
    Abstract: A substrate-integrated dielectric resonator contains a substrate layer with a first dielectric constant, a plurality of dielectric vias, and a plurality of second vias. Each dielectric via includes a first via-hole extending through the substrate layer, and a dielectric material with a second dielectric constant contained within the first via-hole. Each second via has a second via-hole extending through the substrate layer and filled with gas. A dielectric resonator antenna containing a substrate-integrated dielectric resonator and a method of fabricating the same is also disclosed. By skillfully arranging second vias inside the DRA, the resonant frequencies of different modes can be controlled, and a wide impedance band-width with stable radiation performance can be achieved.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: March 12, 2024
    Assignee: City University of Hong Kong
    Inventors: Kwok Wa Leung, Hauke Ingolf Kremer, Wai Ki Lee
  • Patent number: 11923342
    Abstract: A package-on-package type package includes a lower semiconductor package and an upper semiconductor package. The lower semiconductor package includes a first semiconductor device including a through electrode, a second semiconductor device disposed on the first semiconductor device and including a second through electrode electrically connected to the first through electrode, a first molding member covering a sidewall of at least one of the first semiconductor device and the second semiconductor device, a second molding member covering a sidewall of the first molding member, and an upper redistribution layer disposed on the second semiconductor device and electrically connected to the second through electrode.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: March 5, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sanguk Han, Chajea Jo, Hyoeun Kim, Sunkyoung Seo
  • Patent number: 11911839
    Abstract: A semiconductor device includes a first die, the first die including a first dielectric layer and a plurality of first bond pads formed within apertures in the first dielectric layer, and a second die bonded to the first die, the second die including a second dielectric layer and a plurality of second bond pads protruding from the second dielectric layer. The first die is bonded to the second die such that the plurality of second bond pads protrude into the apertures in the first dielectric layer to establish respective metallurgical bonds with the plurality of first bond pads. A reduction in the distance between the respective bond pads of the dies results in a lower temperature for establishing a hybrid bond.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 27, 2024
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Priyal Shah, Rahul Agarwal, Raja Swaminathan, Brett P. Wilkerson
  • Patent number: 11908798
    Abstract: An integrated circuit device includes a substrate and a first electrically insulating layer on the substrate. An electrically conductive contact plug is provided, which extends at least partially through the first electrically insulating layer. The contact plug includes a protrusion having a top surface that is spaced farther from the substrate relative to a top surface of a portion of the first electrically insulating layer extending adjacent the contact plug. An electrically conductive line is provided with a terminal end, which extends on a first portion of the protrusion. A second electrically insulating layer is provided, which extends on a second portion of the protrusion and on the first electrically insulating layer. The second electrically insulating layer has a sidewall, which extends opposite a sidewall of the terminal end of the electrically conductive line.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: February 20, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won Kyu Han, Myeongsoo Lee, Rakhwan Kim, Woojin Jang
  • Patent number: 11910599
    Abstract: Embodiments of contact structures of a three-dimensional memory device and fabrication method thereof are disclosed. The three-dimensional memory structure includes a film stack disposed on a substrate, wherein the film stack includes a plurality of conductive and dielectric layer pairs, each conductive and dielectric layer pair having a conductive layer and a first dielectric layer. The three-dimensional memory structure also includes a staircase structure formed in the film stack, wherein the staircase structure includes a plurality of steps, each staircase step having two or more conductive and dielectric layer pairs. The three-dimensional memory structure further includes a plurality of coaxial contact structures formed in a first insulating layer over the staircase structure, wherein each coaxial contact structure includes one or more conductive and insulating ring pairs and a conductive core, each conductive and insulating ring pair having a conductive ring and an insulating ring.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: February 20, 2024
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Zhongwang Sun, Guangji Li, Kun Zhang, Ming Hu, Jiwei Cheng, Shijin Luo, Kun Bao, Zhiliang Xia
  • Patent number: 11910611
    Abstract: A nonvolatile memory device includes a substrate including a cell region and a peripheral circuit region, a stacked structure on the cell region, the stacked structure including a plurality of gate patterns separated from each other and stacked sequentially, a semiconductor pattern connected to the substrate through the stacked structure, a peripheral circuit element on the peripheral circuit region, a first interlayer insulating film on the cell region and the peripheral circuit region, the first interlayer insulating film covering the peripheral circuit element, and a lower contact connected to the peripheral circuit element through the first interlayer insulating film, a height of a top surface of the lower contact being lower than or equal to a height of a bottom surface of a lowermost gate pattern of the plurality of gate patterns on the first interlayer insulating film.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: February 20, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Hoon Jang, Woo Sung Yang, Joon Sung Lim, Sung Min Hwang
  • Patent number: 11908791
    Abstract: A semiconductor device includes an upper section of a supervia formed via subtractive etching and a lower section of the supervia formed via damascene processing. The supervia connects non-adjacent interconnect wiring. The lower section and the upper section of the supervia each define a generally cone-shaped configuration. A distal end of the lower section of the supervia is non-obtuse. Moreover, the lower section of the supervia is formed in a V0 level and the upper section of the supervia is formed in a M1/V1 metallization level.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: February 20, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sagarika Mukesh, Nicholas Anthony Lanzillo
  • Patent number: 11901303
    Abstract: An integrated fan-out package including an integrated circuit, an insulating encapsulation, and a redistribution circuit structure is provided. The integrated circuit includes an antenna region. The insulating encapsulation encapsulates the integrated circuit. The redistribution circuit structure is disposed on the integrated circuit and the insulating encapsulation. The redistribution circuit structure is electrically connected to the integrated circuit, and the redistribution circuit structure includes a redistribution region and a dummy region including a plurality of dummy patterns embedded therein, wherein the antenna region includes an inductor and a wiring-free dielectric portion, and the wiring-free dielectric portion of the antenna region is between the inductor and the dummy region.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yen Chiu, Ching-Fu Chang, Hsin-Chieh Huang
  • Patent number: 11901336
    Abstract: A semiconductor package includes a first semiconductor chip including a first wiring layer including a first wiring structure and providing a first rear surface, and a first through via for first through via for power electrically connected to the first wiring structure; and a second semiconductor chip including a second wiring layer including a second wiring structure and providing a second rear surface, and a second through via for second through via for power electrically connected to the second wiring structure, wherein the first and second semiconductor chips have different widths, wherein the first semiconductor chip receives power through the first wiring structure and the first through via for first through via for power, wherein the second semiconductor chip receives power through the second wiring structure and the second through via for second through via for power.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 13, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyuekjae Lee, Dae-woo Kim, Eunseok Song
  • Patent number: 11901318
    Abstract: An integrated circuit structure includes a substrate with a circuit region thereon and a copper interconnect structure disposed on the substrate. The copper interconnect structure includes an uppermost copper layer covered by a dielectric layer. An aluminum pad layer is provided on the dielectric layer. A metal layer is provided on the circuit region and is located between the uppermost copper layer and the aluminum pad layer.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: February 13, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Aaron Chen, Chi Ren, Yi Hsin Liu
  • Patent number: 11901644
    Abstract: A ground plane, at least one composite antenna, and a power feeding line configured to supply power to the at least one composite antenna are provided in or on a substrate. The composite antenna includes a power feeding element configuring a patch antenna together with the ground plane, and at least one linear antenna configured to flow an electric current having a component in a vertical direction with respect to the ground plane. The power feeding line includes a main line connected to the power feeding element, and a branch line branched from the main line and connected to the linear antenna.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 13, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hideki Ueda
  • Patent number: 11901322
    Abstract: A semiconductor chip packaging method includes forming a bump on a wafer, forming a coating film covering the bump, laser grooving the wafer, plasma etching the wafer on which the laser grooving is performed, exposing the bump by removing the coating film covering the bump, fabricating a semiconductor die by performing mechanical sawing of the wafer, and packaging the semiconductor die.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: February 13, 2024
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jin Won Jeong, Jae Sik Choi, Byeung Soo Song
  • Patent number: 11901252
    Abstract: A semiconductor device package includes a first substrate, a second substrate, and a first electronic component between the first substrate and the second substrate. The first electronic component has a first surface facing the first substrate and a second surface facing the second substrate. The semiconductor device package also includes a first electrical contact disposed on the first surface of the first electronic component and electrically connecting the first surface of the first electronic component with the first substrate. The semiconductor device package also includes a second electrical contact disposed on the second surface of the first electronic component and electrically connecting the second surface of the first electronic component with the second substrate. A method of manufacturing a semiconductor device package is also disclosed.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: February 13, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Ming-Han Wang, Ian Hu
  • Patent number: 11894311
    Abstract: A microelectronic device is formed to include an embedded die substrate on an interposer; where the embedded die substrate is formed with no more than a single layer of transverse routing traces. In the device, all additional routing may be allocated to the interposer to which the embedded die substrate is attached. The embedded die substrate may be formed with a planarized dielectric formed over an initial metallization layer supporting the embedded die.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Islam A. Salama, Sri Ranga Sai Boyapati, Sheng Li, Kristof Darmawikarta, Robert L. Sankman, Amruthavalli Pallavi Alur
  • Patent number: 11894293
    Abstract: A circuit structure and an electronic structure are provided. The circuit structure includes a low-density conductive structure, a high-density conductive structure and an electrical connection structure. The high-density conductive structure is disposed on the low-density conductive structure. The electrical connection structure extends through the high-density conductive structure and is electrically connected to the low-density conductive structure. The electrical connection structure includes a shoulder portion.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: February 6, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Wen Hung Huang
  • Patent number: 11887914
    Abstract: An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: January 30, 2024
    Inventors: Jung-Ho Do, Tae-Joong Song, Seung-Young Lee, Jong-Hoon Jung
  • Patent number: 11887932
    Abstract: An apparatus is provided which comprises: a substrate, the substrate comprising crystalline material, a first set of one or more contacts on a first substrate surface, a second set of one or more contacts on a second substrate surface, the second substrate surface opposite the first substrate surface, a first via through the substrate coupled with a first one of the first set of contacts and with a first one of the second set of contacts; a second via through the substrate coupled with a second one of the first set of contacts and with a second one of the second set of contacts, a trench in the substrate from the first substrate surface toward the second substrate surface, wherein the trench is apart from, and between, the first via and the second via, and dielectric material filling the trench. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Kemal Aygun, Zhiguo Qian, Jianyong Xie
  • Patent number: 11887960
    Abstract: This member connection method includes a printing step. In the printing step, a coating film-formed region in which the coating film is formed, and a coating film non-formed region in which the coating film is not formed are formed in the print pattern, and the coating film-formed region is divided into a plurality of concentric regions and a plurality of radial regions by means of a plurality of line-shaped regions provided so as to connect various points, which are separated apart from one another in the marginal part of the connection region.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: January 30, 2024
    Assignee: RESONAC CORPORATION
    Inventors: Motohiro Negishi, Hideo Nakako, Yuki Kawana, Dai Ishikawa, Chie Sugama, Yoshinori Ejiri
  • Patent number: 11887919
    Abstract: A semiconductor package includes an upper substrate having a first surface and a second surface which are opposite to each other, a semiconductor chip on the first surface of the upper substrate, a buffer layer on the second surface of the upper substrate, a mold layer between the second surface of the upper substrate and the buffer layer, a plurality of through-electrodes penetrating the upper substrate and the mold layer, an interconnection layer between the first surface of the upper substrate and the semiconductor chip and configured to electrically connect the semiconductor chip to the plurality of through-electrodes, and a plurality of bumps disposed on the buffer layer, spaced apart from the mold layer, and electrically connected to the plurality of through-electrodes. The mold layer includes an insulating material of which a coefficient of thermal expansion is greater than that of the upper substrate.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: January 30, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Yun Seok Choi
  • Patent number: 11887964
    Abstract: A wafer-level heterogeneous dies integration structure and method are provided. The integration structure includes a wafer substrate, a silicon interposer, heterogeneous dies, and a configuration substrate. A standard integration module is defined by the heterogeneous dies connected to the silicon interposer. The standard integration module is connected to an upper surface of the wafer substrate, and the configuration substrate is connected to a lower surface of the wafer substrate. The wafer substrate is connected to the configuration substrate via Through Silicon Vias on lower surface of the wafer substrate. And the upper surface of the wafer substrate is provided with Re-distributed Layers and a standardized micro bump array to form standard integration zone connected to the standard integration module.
    Type: Grant
    Filed: April 11, 2023
    Date of Patent: January 30, 2024
    Assignee: ZHEJIANG LAB
    Inventors: Shunbin Li, Weihao Wang, Ruyun Zhang, Qinrang Liu, Zhiquan Wan, Jianliang Shen
  • Patent number: 11887908
    Abstract: An electronic structure includes offset three-dimensional stacked chips; and a two-piece lid structure configured to extract heat from the bottom and top of the stacked chips.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: January 30, 2024
    Assignee: International Business Machines Corporation
    Inventors: Kamal K. Sikka, Katsuyuki Sakuma, Hilton T. Toy, Shidong Li, Ravi K Bonam
  • Patent number: 11881451
    Abstract: The present disclosure provides a semiconductor device with an interconnect part and a method for preparing the semiconductor device. The semiconductor device comprises a device substrate and an interconnect part disposed over the device substrate. The interconnect part includes a lower redistribution layer electrically connected to the backside contact, and an upper redistribution layer disposed over the lower redistribution layer. The interconnect part also includes an interconnect frame disposed between and electrically connected to the lower redistribution layer and the upper redistribution layer. The interconnect part further includes a passivation structure surrounding the interconnect frame.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: January 23, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Ching-Cheng Chuang
  • Patent number: 11876037
    Abstract: A chip stacking and packaging structure includes a substrate, a first chip stacked on the substrate, a heat dissipation module, and a second chip stacked on the heat dissipation module. First bonding pads and second bonding pads are arranged on the substrate. First welding pins are arranged on the first chip. The first welding pins one-to-one cover and are one-to-one electrically connected to the first bonding pads. The heat dissipation module includes a first groove, a cooling liquid cavity, a liquid inlet, a liquid outlet, and first conductive columns. The first chip is embedded in the first groove. A side wall and a bottom wall of the first groove extend into the cooling liquid cavity. Each of the first conductive columns is electrically connected with a corresponding second bonding pad. Each of second welding pins of the second chip is electrically connected to a corresponding first conductive column.
    Type: Grant
    Filed: June 25, 2023
    Date of Patent: January 16, 2024
    Assignee: HOSIN GLOBAL ELECTRONICS CO., LTD
    Inventors: Chen-Nan Lai, Qingshui Liu
  • Patent number: 11876063
    Abstract: A semiconductor package structure includes a first semiconductor wafer including a first bonding pad. The semiconductor package structure also includes a second semiconductor wafer including a second bonding pad and a third bonding pad. The second bonding pad and the third bonding pad are bonded to the first bonding pad of the first semiconductor wafer. The semiconductor package structure further includes a first via penetrating through the second semiconductor wafer to physically contact the first bonding pad of the first semiconductor wafer. A portion of the first via is disposed between the second bonding pad and the third bonding pad.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 16, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Shing-Yih Shih
  • Patent number: 11869808
    Abstract: An approach providing a semiconductor wiring structure with a self-aligned top via on a first metal line and under a second metal line. The semiconductor wiring structure includes a plurality of first metal lines in a bottom portion of a first dielectric material. The semiconductor wiring structure includes a top via in a top portion of the first dielectric material, where the top via is over a first metal line of the plurality of first metal lines. The semiconductor wiring structure includes a second dielectric material above each of the plurality of first metal lines except the first metal line of the plurality of first metal lines. Furthermore, the semiconductor wiring structure includes a second metal line above the top via, wherein the second metal line is in a third dielectric material and a hardmask layer that is under the third dielectric material.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Brent Anderson, Nicholas Anthony Lanzillo, Christopher J. Penny, Kisik Choi, Robert Robison
  • Patent number: 11869877
    Abstract: A bonded assembly includes a first semiconductor die and a second semiconductor die that are bonded to each other by dielectric-to-dielectric bonding. First conductive via structures vertically extend through the second semiconductor die and a respective subset of the first dielectric material layers in the first semiconductor die, and contact a respective first metal interconnect structure in the first semiconductor die. Second conductive via structures vertically extend through a second substrate and a respective subset of the second dielectric material layers in the second semiconductor die, and contacting a respective second metal interconnect structure in the second semiconductor die. Redistribution metal interconnect structures located over a backside surface of the second substrate electrically connect the first conductive via structures and the second conductive via structures, and provide electrical interconnection between the first semiconductor die and the second semiconductor die.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 9, 2024
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Lin Hou, Peter Rabkin, Yangyin Chen, Masaaki Higashitani
  • Patent number: 11869836
    Abstract: A semiconductor device including an interlayer insulating layer on a substrate; a conductive line on the interlayer insulating layer; and a contact plug penetrating the interlayer insulating layer, the contact plug being connected to the conductive line, wherein the contact plug includes an upper pattern penetrating an upper region of the interlayer insulating layer, the upper pattern protruding upwardly from a top surface of the interlayer insulating layer, the upper pattern includes a first portion penetrating the upper region of the interlayer insulating layer; and a second portion protruding upwardly from the top surface of the interlayer insulating layer, and a width of a lower region of the second portion in a direction parallel to a top surface of the substrate is greater than a width of an upper region of the second portion in the direction parallel to the top surface of the substrate.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: January 9, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Donghee Seo, Heonbok Lee, Tae-Yeol Kim, Daeyong Kim, Dohyun Lee
  • Patent number: 11862556
    Abstract: A semiconductor device includes a first substrate, circuit devices disposed on the first substrate, a first interconnection structure electrically connected to the circuit devices, a second substrate disposed on an upper portion of the first interconnection structure, gate electrodes spaced apart from each other and stacked on the second substrate in a direction perpendicular to an upper surface of the second substrate, and channel structures penetrating the gate electrodes, extending perpendicularly to the second substrate, and including a channel layer. The semiconductor device also includes a ground interconnection structure connecting the first substrate and the second substrate, and including an upper via integrated with the second substrate and extending from a lower surface of the second substrate towards the first substrate.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: January 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Taemok Gwon, Junhyoung Kim, Chadong Yeo, Youngbum Woo
  • Patent number: 11862604
    Abstract: An integrated circuit and a method for designing an IC wherein the base or host chip is bonded to smaller chiplets via DBI technology. The bonding of chip to chiplet creates an uneven or multi-level surface of the overall chip requiring a releveling for future bonding. The uneven surface is built up with plating of bumps and subsequently releveled with various methods including planarization.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: January 2, 2024
    Assignee: Adeia Semiconductor Inc.
    Inventors: Javier A. Delacruz, Belgacem Haba, Cyprian Emeka Uzoh, Rajesh Katkar, Ilyas Mohammed
  • Patent number: 11862503
    Abstract: A method for producing a 3D semiconductor device including: providing a first level including a first single crystal layer; forming a first metal layer on top of first level; forming a second metal layer on top of the first metal layer; forming at least one second level above the second metal layer; performing a first lithography step on the second level; forming a third level on top of the second level; performing a second lithography step on the third level; perform processing steps to form first memory cells within the second level and second memory cells within the third level, where first memory cells include at least one second transistor, and the second memory cells include at least one third transistor; and deposit a gate electrode for the second and the third transistors simultaneously.
    Type: Grant
    Filed: February 7, 2023
    Date of Patent: January 2, 2024
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Deepak C. Sekar
  • Patent number: 11860550
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 11864320
    Abstract: An image display and a combined-type circuit carrying and controlling module thereof are provided. The combined-type circuit carrying and controlling module includes a first circuit substrate structure, a control substrate structure, a second circuit substrate structure, an insulative connection structure and a conductive connection structure. The first circuit substrate structure includes a first carrier substrate, a first circuit layout layer and a plurality of first conductive penetration bodies. The control substrate structure includes a circuit substrate and a circuit control chip. The second circuit substrate structure includes a second carrier substrate and a second circuit layout layer. The insulative connection structure is connected between the first carrier substrate and the second carrier substrate. The conductive connection structure is electrically connected between the first circuit layout layer and the second circuit layout layer.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: January 2, 2024
    Assignee: ASTI GLOBAL INC., TAIWAN
    Inventor: Chien-Shou Liao
  • Patent number: 11851320
    Abstract: The present invention is directed to the synthesis of metallic nickel-molybdenum-tungsten films and coatings with direct current sputter deposition, which results in fully-dense crystallographically textured films that are filled with nano-scale faults and twins. The as-deposited films exhibit linear-elastic mechanical behavior and tensile strengths above 2.5 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultra-high strength is attributed to a combination of solid solution strengthening and the presence of the dense nano-scale faults and twins. These films also possess excellent thermal and mechanical stability, high density, low CTE, and electrical properties that are attractive for next generation metal MEMS applications. Deposited as coatings these films provide protection against friction and wear.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: December 26, 2023
    Assignee: The Johns Hopkins University
    Inventors: Gi-Dong Sim, Jessica Krogstad, Timothy P. Weihs, Kevin J. Hemker, Gianna Valentino
  • Patent number: 11855042
    Abstract: A method of manufacturing a semiconductor structure includes following operations. A substrate is provided. A first die is disposed over the substrate. A second die is provided. The second die includes a via extended within the second die. The second die is disposed over the substrate. A molding is formed around the first die and second die. An interconnect structure is formed. The interconnect structure includes a dielectric layer and a conductive member. The dielectric layer is disposed over the molding, the first die and the second die. The conductive member is surrounded by the dielectric layer. The via is formed by removing a portion of the second die to form a recess extended within the second die and disposing a conductive material into the recess.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming-Fa Chen, Wen-Chih Chiou, Sung-Feng Yeh
  • Patent number: 11854963
    Abstract: An interconnect structure includes a dielectric layer, a first conductive feature, a hard mask layer, a conductive layer, and a capping layer. The first conductive feature is disposed in the dielectric layer. The hard mask layer is disposed on the first conductive feature. The conductive layer includes a first portion and a second portion, the first portion of the conductive layer is disposed over at least a first portion of the hard mask layer, and the second portion of the conductive layer is disposed over the dielectric layer. The hard mask layer and the conductive layer are formed by different materials. The capping layer is disposed on the dielectric layer and the conductive layer.
    Type: Grant
    Filed: June 12, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Kuan Lee, Kuang-Wei Yang, Cherng-Shiaw Tsai, Cheng-Chin Lee, Ting-Ya Lo, Chi-Lin Teng, Hsin-Yen Huang, Hsiao-Kang Chang, Shau-Lin Shue
  • Patent number: 11854976
    Abstract: A semiconductor device is provided. The semiconductor device includes a first-direction plurality of wirings extending in a first direction, and a second-direction plurality of wiring extending in a second direction intersecting the first direction. The first-direction plurality of wirings that extend in the first direction includes gate wirings spaced apart from each other in the second direction by a gate pitch, first wirings above the gate wirings spaced apart from each other in the second direction by a first pitch, second wirings above the first wirings spaced apart from each other in the second direction by a second pitch, and third wirings above the second wirings spaced apart from each other in the second direction by a third pitch. A ratio between the gate pitch and the second pitch is 6:5.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: December 26, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sanghoon Baek, Seung Young Lee