With Contoured External Surface (e.g., Dome Shape To Facilitate Light Emission) Patents (Class 257/95)
  • Patent number: 9337387
    Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The set of large roughness components can include a series of truncated shapes. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 10, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9324925
    Abstract: To provide a method of manufacturing at low cost a light emitting device that converts the wavelength of light radiated by a light emitting element and emits, the method includes: forming a phosphor layer on a translucent substrate; arranging a plurality of light emitting elements with a predetermined spacing, the light emitting elements having an electrode formed face provided with positive and negative electrodes respectively and arranged with the electrode formed faces on the top; embedding a resin containing phosphor particles so that an upper face of the embedded resin does not bulge over a plane containing the electrode formed faces; and curing the resin, and then cutting and dividing the cured resin, the phosphor layer and the translucent substrate into a plurality of light emitting devices each including one or more of the light emitting elements.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: April 26, 2016
    Assignee: NICHIA CORPORATION
    Inventors: Akinori Yoneda, Shinji Nakamura, Yoshiyuki Aihara, Hirokazu Sasa
  • Patent number: 9287336
    Abstract: An electronic device may be provided with a display such as an organic light-emitting diode display. The display may include an array of display pixels formed on a polymer substrate layer. The polymer substrate layer may include an contiguous layer of polyimide that forms a substrate layer in additional structures such as a polymer film and a flexible printed circuit. A first transition region may be interposed between the display and the polymer film, and a second transition region may be interposed between the polymer film and the flexible printed circuit. Metal traces may be formed on the polymer film and on the flexible printed circuit. A display driver integrated circuit may be mounted to the traces on the polymer film. The polymer film may form a U-shaped bend. The flexible printed circuit may be coupled to a printed circuit board in the device using hot bar solder connections.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: March 15, 2016
    Assignee: Apple Inc.
    Inventors: Wey-Jiun Lin, Sang Youn, Sang Ha Kim
  • Patent number: 9276170
    Abstract: A semiconductor light emitting element includes a laminated semiconductor layer including a light emitting layer that emits light by passing a current, the laminated semiconductor layer has a lower semiconductor bottom surface, a semiconductor side surface that rises from an edge of the lower semiconductor bottom surface upwardly and outwardly of the laminated semiconductor layer, and a lower semiconductor top surface that faces upward by extending inwardly of the laminated semiconductor layer from an upper edge of the semiconductor side surface, an edge of the lower semiconductor top surface includes first and second linear portions extending linearly and plural connecting portions connecting the first and second linear portions, and, when viewed from a direction perpendicular to the lower semiconductor top surface, each connecting portion is positioned inside a point of intersection of extended lines of the first and second linear portions connected to the connecting portion.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: March 1, 2016
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Honglin Wang, Eisuke Yokoyama
  • Patent number: 9263288
    Abstract: A method for lithography is disclosed. The method includes obtaining a self-organizing block-copolymer layer on a neutral layer overlying a substrate, the self-organizing block-copolymer layer comprising at least two polymer components having mutually different etching resistances, the self-organizing block-copolymer layer furthermore comprising a copolymer pattern structure formed by micro-phase separation of the at least two polymer components. Further, the method includes etching selectively a first polymer component of the self-organizing block-copolymer layer, thereby remaining a second polymer component. Still further, the method includes applying a plasma etching to the neutral layer using the second polymer component as a mask, wherein the plasma etching comprises an inert gas and H2.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: February 16, 2016
    Assignees: IMEC, Tokyo Electron Limited
    Inventors: Boon Teik Chan, Shigeru Tahara
  • Patent number: 9209350
    Abstract: When a belt-like nitride semiconductor stacking structure 110 having a principal plane of an m-plane is broken along a linear groove 104, two or more side surfaces may be formed on the lateral side thereof. This decreases the fabrication efficiency of the triangular prismatic m-plane nitride semiconductor light-emitting diode. To solve this problem, Angle X of not less than 75 degrees and not more than 105 degrees is formed between the linear groove 104 and one cleavage axis selected from the group consisting of an a-axis and a c-axis. Then, the belt-like nitride semiconductor stacking structure 110 was broken along the linear groove 104 to form a quadratic prismatic nitride semiconductor stacking structure 120. Subsequently, the quadratic prismatic nitride semiconductor stacking structure 120 is broken along another linear groove 106 to obtain a triangular prismatic m-plane nitride semiconductor light-emitting diode 130.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: December 8, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Mitsuaki Oya, Toshiya Yokogawa
  • Patent number: 9190590
    Abstract: A light-emitting element includes a first conductivity type semiconductor base, a plurality of first conductivity type protrusion-shaped semiconductors formed on the semiconductor base, and a second conductivity type semiconductor layer that covers the protrusion-shaped semiconductors.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 17, 2015
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Akihide Shibata, Tetsu Negishi, Kenji Komiya, Yoshifumi Yaoi, Takeshi Shiomi, Hiroshi Iwata, Akira Takahashi
  • Patent number: 9184344
    Abstract: A light emitting device has a nanostructured layer with nanovoids. The nanostructured layer can be provided below and adjacent to active region or on a substrate or a template below an n-type layer for the active region, so as to reduce strain between epitaxial layers in the light emitting device. A method of manufacturing the same is provided.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: November 10, 2015
    Assignee: INVENLUX LIMITED
    Inventors: Jianping Zhang, Hongmei Wang, Chunhui Yan, Wen Wang, Ying Liu
  • Patent number: 9184348
    Abstract: An LED structure includes a substrate, an emitting multilayer structure, a plurality of microstructures and a transparent conductive layer. The emitting multilayer structure is formed on the substrate. The microstructures are spaced apart from each other on the light emitting multilayer structure, and an upper surface of each microstructure has a concave-convex surface. The transparent conductive layer is conformably covered over the light emitting multilayer structure and the microstructures. The transparent conductive layer has similar concave-convex surfaces due to the concave-convex surface of each microstructure. The light emitted from the emitting multilayer structure is changed due to the concave-convex surface of the transparent conductive layer, so that the phenomenon of total internal reflection can be reduced so as to increase the light transmittance.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 10, 2015
    Assignee: Lextar Electronics Corporation
    Inventor: Shiou-Yi Kuo
  • Patent number: 9147808
    Abstract: An III-nitride quantum well structure includes a GaN base, an InGaN layer and an InGaN covering layer. The GaN base includes a GaN buffering layer, a GaN post extending from the GaN buffering layer, and a GaN pyramid gradually expanding from the GaN post to form a mounting surface. The InGaN layer includes first and second coupling faces. The first coupling face is coupled with the mounting surface. The GaN covering layer includes first and second coupling faces. The first coupling face of the GaN covering layer is coupled with the second coupling face of the InGaN layer.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: September 29, 2015
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: I-Kai Lo, Yu-Chi Hsu, Cheng-Hung Shih, Wen-Yuan Pang, Ming-Chi Chou
  • Patent number: 9130134
    Abstract: According to one embodiment, a semiconductor light emitting device includes: a stacked body and an insulative optical path control section. The stacked body includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type; and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first semiconductor layer, the second semiconductor layer, and the light emitting layer are stacked along a stacking direction. The insulative optical path control section penetrates through the second semiconductor layer and the light emitting layer, has a refractive index lower than refractive index of the first semiconductor layer, refractive index of the second semiconductor layer, and refractive index of the light emitting layer. The insulative optical path control section is configured to change traveling direction of light emitted from the light emitting layer.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 8, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Mitsugi, Shinya Nunoue
  • Patent number: 9117972
    Abstract: The light-emitting device has a semiconductor layer including a p-layer, a light-emitting layer, and an n-layer, which are formed of a Group III nitride semiconductor, and an n-electrode on the n-layer. The device also has a device isolation trench which runs along the outer periphery of the semiconductor layer and which provides the semiconductor layer with a mesa shape; and an insulation film continuously provided on first to third regions, the first region being an outer peripheral region of the n-layer, the second region being the side surface of the trench, and the third region being the bottom surface of the device isolation trench. The n-electrode consists of two pad portions and a wire trace portion. The outer peripheral wire trace portion is formed as a frame completely contouring the periphery of the device.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: August 25, 2015
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Koichi Mizutani, Ryohei Inazawa, Yuhei Ikemoto, Tomoyuki Tainaka
  • Patent number: 9070841
    Abstract: According to one embodiment, a semiconductor light emitting device includes: a stacked body, a wavelength conversion layer, a first metal layer, and a first insulating section. The stacked body includes: a first and a second semiconductor layers; and a first light emitting layer provided between the first and the second semiconductor layers. The wavelength conversion layer is configured to convert wavelength of light emitted from the first light emitting layer. The first semiconductor layer is placed between the first light emitting layer and the wavelength conversion layer. The first metal layer is electrically connected to the second semiconductor layer. The first insulating section is provided between a first side surface and a first side surface portion of the first metal layer and between the wavelength conversion layer and the first side surface portion.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: June 30, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Yamada, Hiroshi Katsuno, Satoshi Mitsugi, Shinya Nunoue
  • Patent number: 9054259
    Abstract: The present application relates to a light-emitting device and method of manufacturing the same. The device includes a lower portion, and vertical light-emitting structures disposed on the lower portion. A conductive member partially surrounds the vertical light-emitting structures, and reflective members are disposed between the vertical light-emitting structures. The reflective members reflect light that is emitted in a lateral direction from the vertical light-emitting structures to minimize the number of times that light emitted in a lateral direction from the vertical light-emitting structure is transmitted through the light-absorbing member, thereby increasing a luminous efficiency.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 9, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung-wook Hwang, Cheol-Soo Sone, Geon-wook Yoo, Dong-hoon Lee, Nam-goo Cha, Jae-hyeok Heo
  • Patent number: 9029885
    Abstract: There is provided an electrode foil, which can show superior light scattering, while preventing short circuit between electrodes. The electrode foil of the present invention comprises a metal foil having a thickness of from 1 ?m to 250 ?m, wherein the electrode foil comprises, on at least one outermost surface thereof, a light-scattering surface having a Pv/Pp ratio of 2.0 or higher, wherein the Pv/Pp ratio is a ratio of a maximum profile valley depth Pv of a profile curve to a maximum profile peak height Pp of the profile curve as measured in a rectangular area of 181 ?m×136 ?m in accordance with JIS B 0601-2001.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: May 12, 2015
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yoshinori Matsuura, Nozomu Kitajima, Toshimi Nakamura, Masaharu Myoi
  • Patent number: 9029886
    Abstract: An organic light emitting diode (OLED) display includes: a display layer including a front display layer configured to display an image at a front of the OLED display and a bending display layer bent at an end of the front display layer, and a thin film encapsulation layer covering the display layer. The thin film encapsulation layer includes a front encapsulation layer disposed on the front display layer and a bending encapsulation layer disposed on the bending display layer and having a plurality of pores.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 12, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jun Namkung, Soon Ryong Park
  • Patent number: 9029901
    Abstract: An electronic component has a housing body which comprises a semiconductor chip in a recess. The semiconductor chip in the recess is embedded in a casting compound made of a first plastic material having a first glass transition temperature. A cover element made of a second plastic material having a second glass transition temperature is arranged above the recess. The second glass transition temperature is lower than the first glass transition temperature.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 12, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Johann Ramchen, Christina Keith, Bert Braune
  • Patent number: 9029887
    Abstract: Solid state lighting (SSL) devices and methods of manufacturing SSL devices are disclosed herein. In one embodiment, an SSL device comprises a support having a surface and a solid state emitter (SSE) at the surface of the support. The SSE can emit a first light propagating along a plurality of first vectors. The SSL device can further include a converter material over at least a portion of the SSE. The converter material can emit a second light propagating along a plurality of second vectors. Additionally, the SSL device can include a lens over the SSE and the converter material. The lens can include a plurality of diffusion features that change the direction of the first light and the second light such that the first and second lights blend together as they exit the lens. The SSL device can emit a substantially uniform color of light.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: May 12, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Kevin Tetz
  • Patent number: 9029893
    Abstract: According to one embodiment, a semiconductor light emitting device includes a semiconductor layer, a p-side electrode, an n-side electrode, a fluorescent material layer and a reflection film. The semiconductor layer has a first surface and a second surface on an opposite side to the first surface and includes a light emitting layer. The p-side electrode and the n-side electrode are provided on the semiconductor layer on a side of the second surface. The fluorescent material layer is provided on a side of the first surface and includes a plurality of fluorescent materials and a bonding material. The bonding material integrates the fluorescent materials. The reflection film is partially provided on the fluorescent material layer and has a higher reflectance to the radiated light of the light emitting layer than to the radiated light of the fluorescent materials.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yosuke Akimoto, Akihiro Kojima, Miyoko Shimada, Hideyuki Tomizawa, Yoshiaki Sugizaki, Hideto Furuyama
  • Publication number: 20150123152
    Abstract: A light-emitting element includes a light-emitting stacked layer including an upper surface, wherein the upper surface includes a first flat region; a protective layer including a current blocking region on the first flat region; and a cap region on the upper surface, wherein the current blocking region is spatially separate from the cap region; and a first electrode covering the current blocking region.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: CHI-NAN LIN, CHIEN-FU SHEN, YU-CHEN YANG, Ching-Tung Tseng, Cheng-Hsiang Ho, Chun-Wei Chang, Chen Ou
  • Patent number: 9024343
    Abstract: A light emitting device includes a substrate, a light emitting element, an additional light emitting element, a light reflecting resin member, an electrically conductive wire, an additional electrically conductive wire, and a sealing member. The substrate is provided with a conductor wiring. The light emitting element is mounted on the substrate. The electrically conductive wire electrically connects the conductor wiring and the light emitting element with at least a part of the electrically conductive wire being embedded in the light reflecting resin member. The additional electrically conductive wire electrically connects the light emitting element and the additional light emitting element, with the additional electrically conductive wire not being in contact with the light reflecting resin member. The sealing member is disposed in a region surrounded by the light reflecting resin member to cover the light emitting element.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 5, 2015
    Assignee: Nichia Corporation
    Inventors: Motokazu Yamada, Mototaka Inobe
  • Patent number: 9018654
    Abstract: According to one embodiment, a semiconductor light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, a light emitting layer, a p-side electrode and an n-side electrode. The p-type semiconductor layer includes a nitride semiconductor and has a first major surface. The n-type semiconductor layer includes a nitride semiconductor and has a second major surface. The light emitting layer is provided between the n-type semiconductor layer and the p-type semiconductor layer. The p-side electrode contacts a part of the p-type semiconductor layer on the first major surface. The n-side electrode contacts a part of the n-type semiconductor layer on the second major surface. The n-side electrode is provided outside and around the p-side electrode in a plan view along a direction from the p-type semiconductor layer to the n-type semiconductor layer.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: April 28, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taisuke Sato, Shigeya Kimura, Kotaro Zaima, Koichi Tachibana, Shinya Nunoue
  • Patent number: 9018653
    Abstract: A light emitting device includes a light emitting element and a package. The package is made up of a molded article and a lead that is embedded in the molded article. The lead includes a mounting part on which the light emitting element is mounted, a terminal part that is linked to the mounting part, and an exposed part. The package has a front face that is a light emitting face, a rear face opposite the front face, and a bottom face contiguous with the front face and the rear face. The light emitting element is mounted on the front face side of the mounting part. The exposed part is linked to the rear face side of the mounting part, and is exposed from the molded article at the bottom face and the rear face. The terminal part is exposed from the molded article at the bottom face.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: April 28, 2015
    Assignee: Nichia Corporation
    Inventor: Ryohei Yamashita
  • Patent number: 9000467
    Abstract: A non-chip LED illumination device includes a retaining layer having one or more chambers for engaging with light emitting diode elements each of which include an outer surface and two terminals disposed on the outer surface of the light emitting diode element. A covering layer is engaged onto the retaining layer and the light emitting diode element and includes one or more openings aligned with the light emitting diode elements respectively. One or more fluorescent members of different colors are engaged into the openings of the covering layer for allowing the light generated by the light emitting diode elements to emit through the fluorescent members of different colors.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 7, 2015
    Inventor: Dong Yang Chiou
  • Patent number: 9000414
    Abstract: An object of the present invention is to provide a light emitting diode having a heterogeneous material structure and a method of manufacturing thereof, in which efficiency of extracting light to outside is improved by forming depressions and prominences configured of heterogeneous materials different from each other before or in the middle of forming a semiconductor material on a substrate in order to improve the light extraction efficiency.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 7, 2015
    Assignee: Korea Photonics Technology Institute
    Inventors: Sang-Mook Kim, Jong-Hyeob Baek
  • Patent number: 9000471
    Abstract: There is provided a manufacturing method of an LED module including: forming an insulating film on a substrate; forming a first ground pad and a second ground pad separated from each other on the insulating film; forming a first division film that fills a space between the first and second ground pads, a second division film deposited on a surface of the first ground pad, and a third division film deposited on a surface of the second ground pad; forming a first partition layer of a predetermined height on each of the division films; sputtering seed metal to the substrate on which the first partition layer is formed; forming a second partition layer of a predetermined height on the first partition layer; forming a first mirror connected with the first ground pad and a second mirror connected with the second ground pad by performing a metal plating process to the substrate on which the second partition layer is formed; removing the first and second partition layers; connecting a zener diode to the first mirror
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Daewon Innost Co., Ltd.
    Inventors: Won Sang Lee, Young Keun Kim
  • Patent number: 8994051
    Abstract: In a light emission module (40), a light wavelength conversion ceramic (52) is formed in a sheet shape which converts the wavelength of the light emitted from a semiconductor light emission element (48) when emitting the light. The light wavelength conversion ceramic (52) has a tapered plane (52a) which is inclined to approach the semiconductor light emission element (48) toward the brim portion. The light wavelength conversion ceramic (52) is transparent and is arranged so that the light emission wavelength band after the conversion has an all ray permeability of 40% or above.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 31, 2015
    Assignee: Koito Manufacturing Co., Ltd.
    Inventors: Hisayoshi Daicho, Tatsuya Matsuura, Yasuaki Tsutsumi, Masanobu Mizuno, Shogo Sugimori
  • Patent number: 8994055
    Abstract: A light source capable of solving a problem in which the etendue is increased when random polarization is converted into a specific polarization is provided. A relief structure that functions as surface plasmon excitation means for exciting a surface plasmon by a specific polarization component in a polarization direction perpendicular to a first direction in an interface between metal layer 15 and first cover layer 14 in light from emission layer 13 incident on the interface is formed at the interface. The relief structure is periodic in a second direction. Projections 21A of the relief structure are extended along the first direction.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 31, 2015
    Assignee: NEC Corporation
    Inventors: Shin Tominaga, Masao Imai, Masanao Natsumeda
  • Patent number: 8993998
    Abstract: An electro-optic device includes a first electrode, an active layer formed over and electrically connected with the first electrode, a buffer layer formed over and electrically connected with the active layer, and a second electrode formed directly on the buffer layer. The second electrode includes a plurality of nanowires interconnected into a network of nanowires. The buffer layer provides a physical barrier between the active layer and the plurality of nanowires to prevent damage to the active layer while the second electrode is formed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: The Regents of the University of California
    Inventors: Yang Yang, Rui Zhu, Chun Chao Chen, Letian Dou, Gang Li
  • Patent number: 8987766
    Abstract: An LED chip includes a substrate and an epitaxy structure formed on the substrate. The epitaxy structure includes a first semiconductor layer, a light emitting layer and a second semiconductor layer. A plurality of grooves are defined through the first semiconductor layer, the light emitting layer and the second semiconductor layer. The light emitting layer is exposed from the grooves. A transparent insulative layer is filled in the grooves. An electrode is further formed on the transparent insulative layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: March 24, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Chen Lai
  • Patent number: 8981397
    Abstract: A device includes a textured substrate, which further includes a plurality of trenches. Each of the plurality of trenches includes a first sidewall and a second sidewall opposite the first sidewall. A plurality of reflectors configured to reflect light is formed, with each of the plurality of reflectors being on one of the first sidewalls of the plurality of trenches. The second sidewalls of the plurality of trenches are substantially free from any reflector.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 17, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventor: Hsin-Chieh Huang
  • Patent number: 8981398
    Abstract: Certain embodiments provide a semiconductor light emitting device including: a first metal layer; a stack film including a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer; an n-electrode; a second metal layer; and a protection film protecting an outer circumferential region of the upper face of the n-type nitride semiconductor layer, side faces of the stack film, a region of an upper face of the second metal layer other than a region in contact with the p-type nitride semiconductor layer, and a region of an upper face of the first metal layer other than a region in contact with the second metal layer. Concavities and convexities are formed in a region of the upper face of the n-type nitride semiconductor layer, the region being outside the region in which the n-electrode is provided and being outside the regions covered with the protection film.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kotaro Zaima, Toru Gotoda, Toshiyuki Oka, Shinya Nunoue
  • Patent number: 8981387
    Abstract: A light emitting diode assembly includes a base, a light emitting chip mounted on the base, an elastic lens covering the light emitting chip, two rotation members rotatably arranged on the base, and two stopper poles fixed on the base. The two rotation members are capable of driving the elastic lens to rotate with respect to the two stopper poles. The stopper poles compress the elastic lens to cause the elastic lens to deform resiliently when the elastic lens is rotated by the rotation members to engage with the stopper poles.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 17, 2015
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Hou-Te Lin, Chao-Hsiung Chang
  • Patent number: 8981403
    Abstract: A patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers, is provided. The patterned surface can include a set of substantially flat top surfaces and a plurality of openings. Each substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the openings can have a characteristic size between approximately 0.1 micron and five microns.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 17, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S Shatalov, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Patent number: 8975646
    Abstract: An optoelectronic semiconductor component comprising at least one radiation emitting semiconductor chip disposed in a recess of a housing base body, wherein the recess is bounded laterally by a wall surrounding the semiconductor chip and is at least partially filled with an encapsulant that covers the semiconductor chip and is well transparent to an electromagnetic radiation emitted by the semiconductor chip An inner side of the wall, bounding the recess, is configured such that, as viewed looking down on the front side of the semiconductor component, a subarea of the inner side is formed which extends ring-like all the way around the semiconductor chip and which is in shadow as viewed from the radiation emitting semiconductor chip and which is at least partially covered by encapsulant all the way around the semiconductor chip. A housing base body for such a semiconductor component is also specified.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 10, 2015
    Assignee: Osram Opto Semiconductors GmbH
    Inventor: Karlheinz Arndt
  • Patent number: 8969900
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer stack having an active layer that generates radiation, and a radiation emission side, and a conversion layer disposed on the radiation emission side of the semiconductor layer stack, wherein the conversion layer converts at least a portion of the radiation, which is emitted by the active layer, into radiation of a different wavelength, the radiation emission side of the semiconductor layer stack has a first nanostructuring, and the conversion layer is disposed in this first nanostructuring.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: March 3, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Sabathil, Alexander Linkov, Christopher Kölper, Martin Straβburg, Norwin von Malm
  • Patent number: 8957430
    Abstract: A light emitting device is fabricated by providing a mounting substrate and an array of light emitting diode dies adjacent the mounting substrate to define gaps. A gel that is diluted in a solvent is applied on the substrate and on the array of light emitting dies. At least some of the solvent is evaporated so that the gel remains in the gaps, but does not completely cover the light emitting diode dies. For example, the gel substantially recedes from the substrate beyond the array of light emitting diode dies and also substantially recedes from an outer face of the light emitting diode dies. Related light emitting device structures are also described.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 17, 2015
    Assignee: Cree, Inc.
    Inventor: Matthew Donofrio
  • Patent number: 8957433
    Abstract: A sapphire substrate provided with a plurality of projections on a principal surface on which a nitride semiconductor is grown to form a nitride semiconductor light emitting element. The projections have a substantially triangular pyramidal-shape the projections having a plurality of side surfaces and a pointed top. The side surfaces have an inclination angle of between 53° and 59° from a bottom of the projections. The side surfaces are crystal-growth suppressed surfaces on which a growth of the nitride semiconductor is suppressed relative to a portion of the principal surface located between adjacent projections. A bottom of the projections has a substantially triangular shape having three outwardly curved arc-shaped sides, and each of the side surfaces has a substantially triangular shape having vertexes located at the top of the projection and at both ends of a respective side of the bottom of the projection.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 17, 2015
    Assignee: Nichia Corporation
    Inventors: Naoya Sako, Takashi Ohara, Yoshiki Inoue, Yuki Shibutani, Yoshihito Kawauchi, Kazuyuki Takeichi, Yasunori Nagahama
  • Patent number: 8952349
    Abstract: A switching device includes a substrate; a first electrode formed over the substrate; a second electrode formed over the first electrode; a switching medium disposed between the first and second electrode; and a nonlinear element disposed between the first and second electrodes and electrically coupled in series to the first electrode and the switching medium. The nonlinear element is configured to change from a first resistance state to a second resistance state on application of a voltage greater than a threshold.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: February 10, 2015
    Assignee: Crossbar, Inc.
    Inventors: Wei Lu, Sung Hyun Jo
  • Patent number: 8952400
    Abstract: A light emitting diode is disclosed. The disclosed light emitting diode includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer, active layer, and second-conductivity-type semiconductor layer are disposed to be adjacent to one another in a same direction. The active layer includes well and barrier layers alternately stacked at least one time. The well layer has a narrower energy bandgap than the barrier layer. The light emitting diode also includes a mask layer disposed in the first-conductivity-type semiconductor layer, a first electrode disposed on the first-conductivity-type semiconductor layer, and a second electrode disposed on the second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer is formed with at least one recess portion.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 10, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Myung Hoon Jung, Hyun chul Lim, Sul Hee Kim, Rak Jun Choi
  • Patent number: 8946747
    Abstract: A lighting device includes an electrically activated emitter, a first layer that contains a first encapsulant material, and a second layer that contains a second encapsulant material, with a textured interface between the first layer and the second layer. Additional layers including further encapsulant materials and/or lumiphoric materials may be provided. Multiple textured interfaces may be provided. Textured interfaces may be arranged as lenses, including Fresnel lenses.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 3, 2015
    Assignee: Cree, Inc.
    Inventor: Jesse Reiherzer
  • Patent number: 8946728
    Abstract: A semiconductor light emitting device includes: a light emission structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; and a wavelength conversion layer formed on at least a portion of a light emission surface of the light emission structure, made of a light-transmissive material including phosphor particles, and having a void therein. A semiconductor light emitting device includes: a light emission structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; and a wavelength conversion layer formed on at least a portion of a light emission surface of the light emission structure, made of a light-transmissive material including phosphor particles or quantum dots, and having a void therein.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyu Sang Kim
  • Patent number: 8946741
    Abstract: A light emitting device having a plurality of light extracting elements defined on an upper surface of a semiconductor layer of the device, wherein the light extracting elements are adapted to couple light out of the device and to modify the far field emission profile of the device. Each element comprises an elongate region having a length at least twice its width and also greater than the effective dominant wavelength of light generated in the device. The elongate region extends orthogonal to the upper surface but not into the light emitting region of the device and may be oriented at an angle of less than 45° relative to one of a pair of basis axis defining a plane parallel to the semiconductor layer. Each elongate region is spatially separated from neighboring elongate regions such that it perturbs light generated in the light emitting region independently of the neighboring regions.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: February 3, 2015
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Patent number: 8928016
    Abstract: A light emitting device includes a light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, and a light extraction structure that extracts light from the light emitting structure. The light extraction structure includes at least a first light extraction zone and a second light extraction zone, where a period and/or size of first concave and/or convex structures of the first light extraction zone is different from a period and/or size of second concave and/or convex structures of the second light extraction zone.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: January 6, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sun Kyung Kim
  • Patent number: 8928017
    Abstract: Example embodiments are directed to light-emitting devices (LEDs) and methods of manufacturing the same. The LED includes a first semiconductor layer; a second semiconductor layer; an active layer formed between the first and second semiconductor layers; and an emission pattern layer including a plurality of layers on the first semiconductor layer, the emission pattern including an emission pattern for externally emitting light generated from the active layer.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su-hee Chae, Young-soo Park, Bok-ki Min, Jun-youn Kim, Hyun-gi Hong
  • Patent number: 8928008
    Abstract: A light emitting device package is provided. The light emitting device package comprises a package body comprising a first cavity, and a second cavity connected to the first cavity; a first lead electrode, at least a portion of which is disposed within the second cavity; a second lead electrode, at least a portion of which is disposed within the first cavity; a light emitting device disposed within the second cavity; a first wire disposed within the second cavity, the first wire electrically connecting the light emitting device to the first lead electrode; and a second wire electrically connecting the light emitting device to the second lead electrode.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 6, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Wan Ho Kim, Jun Seok Park
  • Patent number: 8916857
    Abstract: A light-emitting element disclosed in the present invention includes a light-emitting layer and a first layer between a first electrode and a second electrode, in which the first layer is provided between the light-emitting layer and the first electrode. The present invention is characterized by the device structure in which the first layer comprising a hole-transporting material is doped with a hole-blocking material or an organic compound having a large dipole moment. This structure allows the formation of a high performance light-emitting element with high luminous efficiency and long lifetime. The device structure of the present invention facilitates the control of the rate of the carrier transport, and thus, leads to the formation of a light-emitting element with a well-controlled carrier balance, which contributes to the excellent characteristics of the light-emitting element of the present invention.
    Type: Grant
    Filed: November 24, 2012
    Date of Patent: December 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Satoshi Seo, Ryoji Nomura
  • Patent number: 8916904
    Abstract: In a semiconductor light emitting element having a sapphire substrate, and a lower semiconductor layer and an upper semiconductor layer laminated on the sapphire substrate, the sapphire substrate includes a substrate top surface, a substrate bottom surface, first substrate side surfaces and second substrate side surfaces; plural first cutouts and plural second cutouts are provided at border portions between the first substrate side surface and the substrate top surface and between the second substrate side surface and the substrate top surface; the lower semiconductor layer includes a lower semiconductor bottom surface, a lower semiconductor top surface, first lower semiconductor side surfaces and second lower semiconductor side surfaces; plural first projecting portions and plural first depressing portions are provided on the first lower semiconductor side surface; and plural second protruding portions and second flat portions are provided on the second lower semiconductor side surface.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: December 23, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hironao Shinohara, Kensuke Hirano
  • Patent number: 8911518
    Abstract: The present disclosure relates generally to semiconductor techniques. More specifically, embodiments of the present disclosure provide methods for efficiently dicing substrates containing gallium and nitrogen material. Additionally, the present disclosure provides techniques resulting in an optical device comprising a substrate having a dislocation bundle center being used as a conductive region for a contact.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 16, 2014
    Assignee: Soraa, Inc.
    Inventors: Arpan Chakraborty, Michael R. Krames, Tal Margalith, Rafael Aldaz
  • Patent number: 8912557
    Abstract: An LED includes a substrate, a first n-type GaN layer, a connecting layer, a second n-type GaN layer, a light emitting layer, and a p-type GaN layer. The first n-type GaN layer, the connecting layer, and the second n-type GaN layer are formed on the substrate in sequence. The connecting layer is etchable by alkaline solution, and a bottom surface of the second n-type GaN layer facing towards the connecting layer has a roughed exposed portion. The GaN on the bottom surface of the second n-type GaN layer is N-face GaN. A top surface of the second n-type GaN layer facing away from the connecting layer includes a first area and a second area. The light emitting layer and the p-type GaN layer are formed on the first area of the top surface of the second n-type GaN layer in sequence.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 16, 2014
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Tzu-Chien Hung, Chia-Hui Shen