Diode (epo) Patents (Class 257/E21.053)
  • Patent number: 8513680
    Abstract: A light-emitting device package including a lead frame formed of a metal and on which a light-emitting device chip is mounted; and a mold frame coupled to the lead frame by injection molding. The lead frame includes: a mounting portion on which the light-emitting device chip is mounted; and first and second connection portions that are disposed on two sides of the mounting portion in a first direction and connected to the light-emitting device chip by wire bonding, wherein the first connection portion is stepped with respect to the mounting portion, and a stepped amount is less than a material thickness of the lead frame.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daniel Kim, Jae-sung You, Jong-kil Park
  • Patent number: 8502291
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8497536
    Abstract: Embodiments of the invention relate to a camera assembly including a rear-facing camera and a front-facing camera operatively coupled together (e.g., bonded, stacked on a common substrate). In some embodiments of the invention, a system having an array of frontside illuminated (FSI) imaging pixels is bonded to a system having an array of backside illuminated (BSI) imaging pixels, creating a camera assembly with a minimal size (e.g., a reduced thickness compared to prior art solutions). An FSI image sensor wafer may be used as a handle wafer for a BSI image sensor wafer when it is thinned, thereby decreasing the thickness of the overall camera module. According to other embodiments of the invention, two package dies, one a BSI image sensor, the other an FSI image sensor, are stacked on a common substrate such as a printed circuit board, and are operatively coupled together via redistribution layers.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 30, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Ashish Shah, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
  • Publication number: 20130171781
    Abstract: A method of manufacturing a graphene electronic device may include forming a metal compound layer and a catalyst layer on a substrate, the catalyst layer including a metal element in the metal compound layer, growing a graphene layer on the catalyst layer, and converting the catalyst layer into a portion of the metal compound layer.
    Type: Application
    Filed: May 23, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang Seung Lee, Sang Wook Kim, Seong Jun Park, David Seo, Young Jun Yun, Yung Hee Lee
  • Patent number: 8476645
    Abstract: Thermal management solutions for higher power LEDs. In accordance with embodiments, a heat sink, preferably copper, is connected directly to the thermal pad of an LED. Directly connecting the LED thermal pad to the copper heat sink reduces the thermal resistance between the LED package and the heat sink, and more efficiently conducts heat away from the LED through the copper heat sink. In embodiments, the copper heat sink is directly soldered to the LED thermal pad.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 2, 2013
    Assignee: Uni-Light LLC
    Inventors: Gary A. McDaniel, Chip Akins
  • Patent number: 8476646
    Abstract: Provided is a light emitting device, which includes a second conductive type semiconductor layer, an active layer, a first conductive type semiconductor layer, and a intermediate refraction layer. The active layer is disposed on the second conductive type semiconductor layer. The first conductive type semiconductor layer is disposed on the active layer. The intermediate refraction layer is disposed on the first conductive type semiconductor layer. The intermediate refraction layer has a refractivity that is smaller than that of the first conductive type semiconductor layer and is greater than that of air.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 2, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hyo Kun Son
  • Patent number: 8470649
    Abstract: An object is to provide a highly reliable transistor and a semiconductor device including the transistor. A semiconductor device including a gate electrode; a gate insulating film over the gate electrode; an oxide semiconductor film over the gate insulating film; and a source electrode and a drain electrode over the oxide semiconductor film, in which activation energy of the oxide semiconductor film obtained from temperature dependence of a current (on-state current) flowing between the source electrode and the drain electrode when a voltage greater than or equal to a threshold voltage is applied to the gate electrode is greater than or equal to 0 meV and less than or equal to 25 meV, is provided.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 25, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takahiro Tsuji, Teruaki Ochiai, Koji Kusunoki, Hidekazu Miyairi
  • Patent number: 8445919
    Abstract: A wafer-level package structure of a light emitting diode and a manufacturing method thereof, and the package structure includes: a die including a first side and a second side opposite to the first side; a first insulating layer on the first side of the die; at least two wires which are arranged on the insulating layer and electrically isolated from each other; bumps which are arranged on the wires and adapted to be electrically connected correspondingly with electrodes of a bare chip of the light emitting diode; at least two discrete lead areas on the second side of the die; and leads in the lead areas, electrically isolated from each other and electrically connected correspondingly with the wires.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: May 21, 2013
    Assignee: China Wafer Level CSP Ltd
    Inventors: Junjie Li, Wenbin Wang, Qiuhong Zou, Guoqing Yu, Wei Wang
  • Patent number: 8441027
    Abstract: Disclosed are a light emitting device and a light emitting device package. The light emitting device includes a substrate including a plurality of patterns, each pattern including three protrusion parts, a plurality of spaces formed between the patterns, and a light emitting device structure over the patterns and the spaces. Each space includes a medium having a refractive index different from a refractive index of the light emitting device structure.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 14, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Chang Bae Lee
  • Patent number: 8426287
    Abstract: A method of manufacturing a semiconductor device includes the steps of forming a gate electrode of a transistor on an insulator layer on a surface of a semiconductor substrate, forming an isolation region by performing ion implantation of an impurity of a first conductivity type into the semiconductor substrate, forming a lightly doped drain region by performing, after forming a mask pattern including an opening portion narrower than a width of the gate electrode on an upper layer of the gate electrode of the transistor, ion implantation of an impurity of a second conductivity type near the surface of the semiconductor substrate with the mask pattern as a mask, and forming a source region and a drain region of the transistor by performing ion implantation of an impurity of the second conductivity type into the semiconductor substrate after forming the gate electrode of the transistor.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 23, 2013
    Assignee: Sony Corporation
    Inventor: Masashi Yanagita
  • Patent number: 8421095
    Abstract: A method of fabricating a light emitting diode array, comprising: providing a temporary substrate; forming a first light emitting stack and a second light emitting stack on the temporary substrate; forming a first insulating layer covering partial of the first light emitting stack; forming a wire on the first insulating layer and electrically connecting to the first light emitting stack and the second light emitting stack; forming a second insulating layer fully covering the first light emitting stack, the wire and partial of the second light emitting stack; forming a metal connecting layer on the second insulating layer and electrically connecting to the second light emitting stack; forming a conductive substrate on the metal connecting layer; removing the temporary substrate; and forming a first electrode connecting to the first light emitting stack.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: April 16, 2013
    Assignee: Epistar Corporation
    Inventor: Chao-Hsing Chen
  • Patent number: 8420439
    Abstract: A method of producing a radiation-emitting thin film component includes providing a substrate, growing nanorods on the substrate, growing a semiconductor layer sequence with at least one active layer epitaxially on the nanorods, applying a carrier to the semiconductor layer sequence, and detaching the semiconductor layer sequence and the carrier from the substrate by at least partial destruction of the nanorods.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 16, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hans-Jürgen Lugauer, Klaus Streubel, Martin Strassburg, Reiner Windisch, Karl Engl
  • Patent number: 8415685
    Abstract: A light-emitting element has a cathode, an anode, a light-emitting portion interposed between the cathode and the anode and having a light-emitting layer that emits light on energization between the cathode and the anode, and a hole-injection layer interposed between and in direct contact with the anode and the light-emitting layer and having a capability of receiving holes, and the hole-injection layer is mainly composed of a benzidine derivative.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 9, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Tetsuji Fujita, Hidetoshi Yamamoto, Shinichi Iwata, Koji Yasukawa
  • Patent number: 8409887
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 2, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee
  • Patent number: 8404509
    Abstract: A method for fabricating an organic electroluminescent display device is provided. The organic electroluminescent display device includes a light-emitting cell having a cathode electrode, an anode electrode and an organic layer interposed therebetween; wherein the cathode electrode is electrically connected to a contact electrode via a contact hole; wherein the contact electrode has acid-resistance with respect to an etchant used in patterning the cathode electrode.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: March 26, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: Dong-Sik Park
  • Patent number: 8399269
    Abstract: A light-emitting device (LED) package component includes an LED chip having a first active bond pad and a second active bond pad. A carrier chip is bonded onto the LED chip through flip-chip bonding. The carrier chip includes a first active through-substrate via (TSV) and a second active TSV connected to the first and the second active bond pads, respectively. The carrier chip further includes a dummy TSV therein, which is electrically coupled to the first active bond pad, and is configured not to conduct any current when a current flows through the LED chip.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: March 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chung-Yu Wang
  • Patent number: 8399948
    Abstract: Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a first conductive type semiconductor layer; an active layer including a barrier layer and a well layer alternately disposed on the first conductive type semiconductor layer; and a second conductive type semiconductor layer on the active layer. At least one well layer includes an indium cluster having a density of 1E11/cm2 or more.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 19, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Ho Sang Yoon, Sang Kyun Shim
  • Patent number: 8395144
    Abstract: Provided are a novel anthracene derivative and an organic light-emitting device using the same, and more particularly, an anthracene derivative having a core (e.g., an indenoanthracene core) where an anthracene moiety with excellent device characteristics is fused with a fluorene moiety or the like with excellent fluorescent properties, wherein an aryl group is introduced at the core, and an organic light-emitting device using the anthracene derivative, which is enhanced in efficiency, operating voltage, lifetime, etc.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 12, 2013
    Assignee: Doosan Corporation
    Inventors: Eunjung Lee, Jung-Sub Lee, Tae-Hyung Kim, Kyoung-Soo Kim
  • Patent number: 8367432
    Abstract: To provide a manufacturing method of a semiconductor device capable of placing a larger number of alignment marks for lithography and PCM and at the same time, preventing information leakage from the PCM. In a portion of a first scribe region sandwiched between first semiconductor chip regions, a first region and a second region are placed in parallel to each other. The first region is equipped with at least one monitor selected from a first monitor for electrically evaluating at least either one of an active element (such as transistor) and a passive element (such as resistor or capacitor), a second monitor for dimensional control, and a third monitor for measuring film thickness. In the second region, an alignment mark for lithography is placed. In the cutting step, the first region is cut off.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: February 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Shinkawata
  • Publication number: 20130029459
    Abstract: A method for making a Schottky barrier diode includes the following steps. A first metal layer, a second metal layer and a carbon nanotube composite material are provided. The carbon nanotube composite material is applied on the first metal layer and the second metal layer to form a semiconductor layer. The carbon nanotube composite material includes an insulated polymer and a number of carbon nanotubes dispersed in the insulated polymer. The semiconductor layer is in Schottky contact with the first metal layer and in ohmic contact with the second metal layer.
    Type: Application
    Filed: December 26, 2011
    Publication date: January 31, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHUN-HUA HU, CHANG-HONG LIU, SHOU-SHAN FAN
  • Patent number: 8344395
    Abstract: A method for manufacturing a light-emitting diode includes the steps of: growing a light-emitting diode structure-forming semiconductor layer of a compound semiconductor having a zincblende crystal structure on a first substrate formed of a compound semiconductor having a zincblende crystal structure and that has a principal surface tilted in a [110] direction with respect to a (001) plane; bonding the first substrate to a second substrate on the side of the semiconductor layer; removing the first substrate so as to expose the semiconductor layer; forming an etching mask on the exposed surface of the semiconductor layer in a rectangular planar shape so that a longer side extends in a [110] or [?1-10] direction, and that a shorter side extends in a [?110] or [1-10] direction; and patterning the semiconductor layer by wet etching using the etching mask.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: January 1, 2013
    Assignee: Sony Corporation
    Inventor: Kensuke Kojima
  • Patent number: 8324633
    Abstract: A light emitting module comprises a light emitting device (LED) mounted on a high thermal dissipation sub-mount, which performs the traditionally function of heat spread and the first part of the heat sinking. The sub-mount is a grown metal that is formed by an electroplating, electroforming, electrodeposition or electroless plating process, thereby minimizing thermal resistance at this stage. An electrically insulating and thermally conducting layer is at least partially disposed across the interface between the grown semiconductor layers of the light emitting device and the formed metal layers of the sub-mount to further improve the electrical isolation of the light emitting device from the grown sub-mount. The top surface of the LED is protected from electroplating or electroforming by a wax or polymer or other removable material on a temporary substrate, mold or mandrel, which can be removed after plating, thereby releasing the LED module for subsequent processing.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: December 4, 2012
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Patent number: 8314422
    Abstract: A light emitting device is provided. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, a first dielectric layer over a cavity where a part of the light emitting structure is removed, a second electrode layer over the first dielectric layer, a second dielectric layer over the light emitting structure above the cavity, and a first electrode over the second dielectric layer.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 20, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sung Min Hwang
  • Patent number: 8269317
    Abstract: Compounds comprising a ligand having a quinoline or isoquinoline moiety and a phenyl moiety, e.g., (iso)pq ligands. In particular, the ligand is further substituted with electron donating groups. The compounds may be used in organic light emitting devices, particularly devices with emission in the deep red part of the visible spectrum, to provide devices having improved properties.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: September 18, 2012
    Assignee: Universal Display Corporation
    Inventors: Bert Alleyne, Raymond Kwong
  • Patent number: 8269224
    Abstract: Disclosed are a light emitting device and a method for manufacturing the same. The light emitting device includes a substrate having a lead frame, a light emitting diode mounted on the substrate, a mold member formed on the substrate and the light emitting diode, and a reflecting member having an opening portion at one side thereof and being inclined at an outer portion of the mold member.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 18, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bo Geun Park
  • Patent number: 8258559
    Abstract: The present invention relates to a technology for reducing dark current noise by discharging electrons accumulated on a surface of an image sensor photodiode. In an N-type or P-type photodiode, a channel is formed between the photodiode and a power voltage terminal, so that electrons (or holes) accumulated on a surface of the photodiode are discharged to the power voltage terminal through the channel.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 4, 2012
    Assignee: Siliconfile Technologies Inc.
    Inventor: Byoung-Su Lee
  • Patent number: 8237174
    Abstract: The present invention discloses an LED structure, wherein an N-type current spreading layer is interposed between N-type semiconductor layers to uniformly distribute current flowing through the N-type semiconductor layer. The N-type current spreading layer includes at least three sub-layers stacked in a sequence of from a lower band gap to a higher band gap, wherein the sub-layer having the lower band gap is near the substrate, and the sub-layer having the higher band gap is near the light emitting layer. Each sub-layer of the N-type current spreading layer is expressed by a general formula InxAlyGa(1-x-y)N, wherein 0?x?1, 0?y?1, and 0?x+y?1.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 7, 2012
    Assignee: National Central University
    Inventors: Peng-Ren Chen, Hsueh-Hsing Liu, Jen-Inn Chyi
  • Patent number: 8237192
    Abstract: A light emitting diode chip includes a device for protection against overvoltages, e.g., an ESD protection device. The ESD protection device is integrated into a carrier, on which the semiconductor layer sequence of the light emitting diode chip is situated, and is based on a specific doping of specific regions of said carrier. By way of example, the ESD protection device is embodied as a Zener diode that is connected to the semiconductor layer sequence by means of an electrical conductor structure.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 7, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Joerg Erich Sorg, Stefan Gruber, Georg Bogner
  • Patent number: 8222651
    Abstract: A semiconductor device in which the wiring resistance and parasitic inductance of a semiconductor package configuring a power semiconductor module is reduced. In the semiconductor device, a semiconductor chip with an IGBT formed therein and a diode chip are mounted over the upper surface of a die pad. An emitter pad of the semiconductor chip and an anode pad of the diode chip are coupled with a lead by an Al wire. One end of the lead is located in a higher position than the upper surface of the die pad in order to shorten the length of the Al wire for coupling the emitter pad and the lead.
    Type: Grant
    Filed: May 8, 2010
    Date of Patent: July 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Takamitsu Kanazawa, Toshiyuki Hata
  • Patent number: 8212266
    Abstract: A light emitting device may include a plurality of nano-structures having a strip shape, each including a first nano-structure and a second nano-structure, the first nano-structures being the same height on the buffer layer.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: July 3, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-moon Lee, Young-soo Park
  • Patent number: 8207599
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 26, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 8202793
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 19, 2012
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 8193022
    Abstract: A back side illumination image sensor according to an embodiment includes: a photosensitive device and a readout circuit on the front side of a first substrate; an interlayer dielectric layer on the front side of the first substrate; a metal line on the interlayer dielectric layer; a pad having a step on the interlayer dielectric layer; and a second substrate bonded with the front side of the first substrate over the interlayer dielectric layer, metal line, and pad.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 5, 2012
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Mun Hwan Kim
  • Patent number: 8188490
    Abstract: The present invention discloses an organic light emitting diode and a manufacturing method thereof. The OLED comprises a first electrode, a first hole-transporting layer disposed on the first electrode, a second hole-transporting layer disposed on the first hole-transporting layer, a first light-emitting layer disposed on the second hole-transporting layer, an electron-transporting layer disposed on the first light-emitting layer, an electron injection layer disposed on the electron-transporting layer and a second electrode disposed on the electron injection layer. The energy level of the first light-emitting layer in the lowest unoccupied molecular orbital is lower than that of the second hole-transporting layer, and the thickness of the first hole-transporting layer is larger than that of the second hole-transporting layer.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 29, 2012
    Assignee: National Tsing Hua University
    Inventors: Jwo-Huei Jou, Kuo-Yen Tsend
  • Patent number: 8134194
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode including metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 13, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8133768
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 13, 2012
    Assignees: NthDegree Technologies Worldwide Inc, The United States of America as represented by the Unites States National Aeronautics and Space Administration
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 8101490
    Abstract: A method for manufacturing a semiconductor device includes: irradiating a growth substrate with laser light to focus the laser light into a prescribed position inside a crystal for a semiconductor device or inside the growth substrate, the crystal for the semiconductor device being formed on a first major surface of the growth substrate; moving the laser light in a direction parallel to the first major surface; and peeling off a thin layer including the crystal for the semiconductor device from the growth substrate, a wavelength of the laser light being longer than an absorption end wavelength of the crystal for the semiconductor device or the growth substrate, the laser light being irradiated inside a crystal for the semiconductor device or inside the growth substrate.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masanobu Ando, Toru Gotoda, Toru Kita
  • Patent number: 8067277
    Abstract: An active matrix pixel device is provided, for example an electroluminescent display device, the device comprising circuitry supported by a substrate and including a polysilicon TFT (10) and an amorphous silicon thin film PIN diode (12). Polysilicon islands are formed before an amorphous silicon layer is deposited for the PIN diode. This avoids the exposure of the amorphous silicon to high temperature processing. The TFT comprises doped source/drain regions (16a,17a), one of which (17a) may also provide the n-type or p-type doped region for the diode. Advantageously, the requirement to provide a separate doped region for the photodiode is removed, thereby saving processing costs. A second TFT (10b) having a doped source/drain region (16b,17b) of the opposite conductivity type may provide the other doped region (16b) for the diode, wherein the intrinsic region (25) is disposed laterally between the two TFTs, overlying each of the respective polysilicon islands.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: November 29, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Steven C. Deane
  • Patent number: 8053376
    Abstract: In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: November 8, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, Xudong Wang, Jenny R. Morber, Jin Liu
  • Patent number: 8034716
    Abstract: Semiconductor structures and methods of making a vertical diode structure are provided. The vertical diode structure may have associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer may be formed over the interior surface of the diode opening and contacting the active region. The diode opening may initially be filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that may be heavily doped with a first type dopant and a bottom portion that may be lightly doped with a second type dopant. The top portion may be bounded by the bottom portion so as not to contact the titanium silicide layer. In one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung T. Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Publication number: 20110140064
    Abstract: A carbon/tunneling-barrier/carbon diode and method for forming the same are disclosed. The carbon/tunneling-barrier/carbon may be used as a steering element in a memory array. Each memory cell in the memory array may include a reversible resistivity-switching element and a carbon/tunneling-barrier/carbon diode as the steering element. The tunneling-barrier may include a semiconductor or an insulator. Thus, the diode may be a carbon/semiconductor/carbon diode. The semiconductor in the diode may be intrinsic or doped. The semiconductor may be depleted when the diode is under equilibrium conditions. For example, the semiconductor may be lightly doped such that the depletion region extends from one end of the semiconductor region to the other end. The diode may be a carbon/insulator/carbon diode.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Inventors: Abhijit Bandyopadhyay, Franz Kreupl, Andrei Mihnea, Li Xiao
  • Patent number: 7932589
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: April 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato, Takaaki Koen, Yuto Yakubo, Makoto Yanagisawa, Hisashi Ohtani, Eiji Sugiyama, Nozomi Horikoshi
  • Patent number: 7910479
    Abstract: A method for manufacturing a photodiode array includes providing a semiconductor substrate having first and second main surfaces opposite to each other. The semiconductor substrate has a first layer of a first conductivity proximate the first main surface and a second layer of a second conductivity proximate the second main surface. A via is formed in the substrate which extends to a first depth position relative to the first main surface. The via has a first aspect ratio. Generally simultaneously with forming the via, an isolation trench is formed in the substrate spaced apart from the via which extends to a second depth position relative to the first main surface. The isolation trench has a second aspect ratio different from the first aspect ratio.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 22, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara
  • Patent number: 7910407
    Abstract: A non-volatile memory device includes a first electrode, a diode steering element, at least three resistivity switching storage elements, and a second electrode. The diode steering element electrically contacts the first electrode and the at least three resistivity switching storage elements. The second electrode electrically contacts only one of the at least three resistivity switching storage elements.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: March 22, 2011
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 7910395
    Abstract: An LED structure includes a first substrate; an adhering layer formed on the first substrate; first ohmic contact layers formed on the adhering layer; epi-layers formed on the first ohmic contact layers; a first isolation layer covering the first ohmic contact layers and the epi-layers at exposed surfaces thereof; and first electrically conducting plates and second electrically conducting plates, both formed in the first isolation layer and electrically connected to the first ohmic contact layers and the epi-layers, respectively. The trenches allow the LED structure to facilitate complex serial/parallel connection so as to achieve easy and various applications of the LED structure in the form of single structures under a high-voltage environment.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: March 22, 2011
    Assignee: Helio Optoelectronics Corporation
    Inventors: Shih-Chang Shei, Ming-Hung Chen, Shih-Yi Wen, Chun-Che Lee
  • Patent number: 7902642
    Abstract: A resin composition for sealing a light-emitting device of the present invention includes a silsesquioxane resin including two or more oxetanyl groups, an aliphatic hydrocarbon including one or more epoxy groups and a cationic polymerization initiator. Furthermore, a lamp of the present invention includes a package equipped with a cup-shaped sealing member, an electrode exposed in the bottom portion of the sealing member, and a light-emitting device arranged on the bottom portion and electrically connected with the electrode, wherein the light-emitting device is sealed with the above-described resin composition for sealing a light-emitting device filled in the sealing member.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: March 8, 2011
    Assignee: Showa Denko K.K.
    Inventors: Tomoyuki Takei, Yuko Sakata
  • Patent number: 7902577
    Abstract: Provided is an image sensor having a heterojunction bipolar transistor (HBT) and a method of fabricating the same. The image sensor is fabricated by SiGe BiCMOS technology. In the image sensor, a PD employs a floating-base-type SiGe HBT. A floating base of the SiGe HBT produces a positive voltage with respect to a collector during an exposure process, and the HBT performs a reverse bipolar operation due to the positive voltage so that the collector and an emitter exchange functions. The SiGe HBT can sense an optical current signal and also amplify the optical current signal. The image sensor requires only three transistors in a pixel so that the degree of integration can increase. The image sensor has an improved sensitivity of signals in the short wavelength region and a sensing signal has excellent linearity such that both a sensing mechanism and control circuit are very simple.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 8, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Yeong Kang, Sang Heung Lee, Jin Gun Koo
  • Patent number: 7897490
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 1, 2011
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 7897471
    Abstract: A structure to diminish high voltage instability in a high voltage device when under stress includes an amorphous silicon layer over a field oxide on the high voltage device.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: March 1, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jifa Hao
  • Patent number: 7892878
    Abstract: Provided are a method of manufacturing an organic light emitting device. The method includes forming an electron injection layer by vacuum co-depositing an organic semiconductor material having an electron mobility of about 1×10?6 cm2/V·s or more in an electric field of about 1×106 V/m and a metal azide.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-woo Lee, Tae-yong Noh, Haa-jin Yang, Byoung-ki Choi, Myeong-suk Kim, Dong-woo Shin