Using An External Electrical Current, I.e., Electro-deposition (epo) Patents (Class 257/E21.175)
  • Patent number: 11913129
    Abstract: It is determined whether an imaginary component at a predetermined frequency of an alternating current impedance is equal to or more than a preliminarily set film-formable value or not. The metallic coating is formed in a state where the substrate is pressed by the solid electrolyte membrane when the imaginary component is equal to or more than the film-formable value in the determining. The metallic coating is formed in a state where the pressing of the substrate by the solid electrolyte membrane is released to separate the solid electrolyte membrane from the substrate, the solid electrolyte membrane is re-tensioned with a constant tensile force, and subsequently, the substrate is pressed by the re-tensioned solid electrolyte membrane when the imaginary component is smaller than the film-formable value in the determining.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: February 27, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruki Kondoh, Akira Kato, Kazuaki Okamoto, Keiji Kuroda
  • Patent number: 11854942
    Abstract: A semiconductor arrangement includes a first dielectric feature passing through a semiconductive layer and a first dielectric layer over a substrate. The semiconductor arrangement includes a conductive feature passing through the semiconductive layer and the first dielectric layer and electrically coupled to the substrate. The conductive feature is adjacent the first dielectric feature and electrically isolated from the semiconductive layer by the first dielectric feature.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Josh Lin, Chung-Jen Huang, Yun-Chi Wu, Tsung-Yu Yang
  • Patent number: 11835927
    Abstract: Process recipe data associated a process to be performed for a substrate at a process chamber is provided as input to a trained machine learning model. A set of process recipe settings for the process that minimizes scratching on one or more surfaces of the substrate is determined based on one or more outputs of the machine learning model. The process is performed for the substrate at the process chamber in accordance with the determined set of process recipe settings.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: December 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik B Shah, Satish Radhakrishnan, Karthik Ramanathan, Karthikeyan Balaraman, Adolph Miller Allen, Xinyuan Chong, Mitrabhanu Sahu, Wenjing Xu, Michael Sterling Jackson, Weize Hu, Feng Chen
  • Patent number: 11791295
    Abstract: Disclosed is a semiconductor package comprising a redistribution substrate, and a semiconductor chip on a top surface of the redistribution substrate. The redistribution substrate includes an under-bump pattern, a lower dielectric layer that covers a sidewall of the under-bump pattern, and a first redistribution pattern on the lower dielectric layer. The first redistribution pattern includes a first line part. A width at a top surface of the under-bump pattern is greater than a width at a bottom surface of the under-bump pattern. A thickness of the under-bump pattern is greater than a thickness of the first line part.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: October 17, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Gwangjae Jeon, Dongkyu Kim, Jung-Ho Park, Yeonho Jang
  • Patent number: 11742307
    Abstract: A front-end method of fabricating nickel plated caps over copper bond pads used in a memory device. The method provides protection of the bond pads from an oxidizing atmosphere without exposing sensitive structures in the memory device to the copper during fabrication.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: August 29, 2023
    Assignee: Ovonyx Memory Technology, LLC
    Inventors: John Moore, Joseph F. Brooks
  • Patent number: 11613824
    Abstract: An electroplating copper layer includes bamboo-like copper crystal particles having a highly preferred orientation. The bamboo-like copper crystal particles have a long axis direction and a short axis direction, and the bamboo-like copper crystal particles have a length of 20 nm to 5 ?m in the long axis direction and a length of 20 nm to 2 ?m in the short axis direction. The bamboo-like copper crystal particles have a uniform particle size, and the electroplating copper layer has a major diffraction peak at a 2? angle of about 44°.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: March 28, 2023
    Assignee: SUZHOU SHINHAO MATERIALS LLC
    Inventors: Yun Zhang, Jing Wang, Zifang Zhu, Tao Ma, Luming Chen
  • Patent number: 11549189
    Abstract: The present disclosure provides an electroplating method, comprising providing an electroplating solution, wherein the electroplating solution includes an effective microorganisms aqueous solution and metal chloride; disposing a workpiece, wherein at least a part of the workpiece is in contact with the electroplating solution; and performing an electroplating process to electroplate metal of the metal chloride onto the workpiece.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: January 10, 2023
    Assignee: Ming Chi University of Technology
    Inventors: Kun-Cheng Peng, Wei-Chuan Shih, Cheng-Rong He, Ting-Han Chen, Dong-Qing Su, Jian-Rong Chen
  • Patent number: 11488899
    Abstract: The present disclosure provides a package device including a conductive pad, a protecting block, and a redistribution layer. The protecting block is disposed on the conductive pad. The redistribution layer is disposed on the protecting block, and the conductive pad is electrically connected to the redistribution layer through the protecting block.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 1, 2022
    Assignee: InnoLux Corporation
    Inventors: Hsueh-Hsuan Chou, Chia-Chieh Fan, Kuan-Jen Wang, Cheng-Chi Wang, Yi-Hung Lin, Li-Wei Sung
  • Patent number: 11427924
    Abstract: An electrochemical plating apparatus for depositing a conductive material on a wafer includes a cell chamber. The plating solution is provided from a bottom of the cell chamber into the cell chamber. A plurality of openings passes through a sidewall of the cell chamber. A flow regulator is arranged with each of the plurality of openings configured to regulate an overflow amount of the plating solution flowing out through the each of the plurality of openings. The electrochemical plating apparatus further comprises a controller to control the flow regulator such that overflow amounts of the plating solution flowing out through the plurality of openings are substantially equal to each other.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 30, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Lung Hou, Ming-Hsien Lin, Tsung-Cheng Wu
  • Patent number: 11430753
    Abstract: Disclosed herein are interconnects and methods of fabricating a plurality of interconnects. The method includes depositing a conformal layer of a plating base in each of a plurality of vias, and depositing a photoresist on two portions of a surface of the plating base outside and above the plurality of vias. The method also includes depositing a plating metal over the plating base in each of the plurality of vias, the depositing resulting in each of the plurality of vias being completely filled or incompletely filled, performing a chemical mechanical planarization (CMP), and performing metrology to determine if any of the plurality of vias is incompletely filled following the depositing the plating metal. A second iteration of the depositing the plating metal over the plating base is performed in each of the plurality of vias based on determining that at least one of the plurality of vias is incompletely filled.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: August 30, 2022
    Assignee: RAYTHEON COMPANY
    Inventors: Eric R. Miller, Sean P. Kilcoyne, Michael V. Liguori, Michael J. Rondon
  • Patent number: 11251127
    Abstract: An embodiment includes a method. The method includes: forming a first conductive line over a substrate; depositing a first dielectric layer over the first conductive line; depositing a second dielectric layer over the first dielectric layer, the second dielectric layer including a different dielectric material than the first dielectric layer; patterning a via opening in the first dielectric layer and the second dielectric layer, where the first dielectric layer is patterned using first etching process parameters, and the second dielectric layer is patterned using the first etching process parameters; patterning a trench opening in the second dielectric layer; depositing a diffusion barrier layer over a bottom and along sidewalls of the via opening, and over a bottom and along sidewalls of the trench opening; and filling the via opening and the trench opening with a conductive material.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Te Ho, Ming-Chung Liang, Chien-Chih Chiu, Chien-Han Chen
  • Patent number: 11239241
    Abstract: A fabricating method of a semiconductive element includes providing a substrate, wherein an amorphous silicon layer covers the substrate. Then, a titanium nitride layer is provided to cover and contact the amorphous silicon layer. Later, a titanium layer is formed to cover the titanium nitride layer. Finally, a thermal process is performed to transform the titanium nitride layer into a nitrogen-containing titanium silicide layer.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 1, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Chih-Chieh Tsai, Tzu-Chieh Chen, Tsun-Min Cheng, Chi-Mao Hsu
  • Patent number: 11158520
    Abstract: A process for assembling microelectronic or semiconductor chips, comprising: providing a semiconductor chip having an active face with a connection pad; coating the active face of the semiconductor chip with a conformal dielectric material layer, such that the connection pad is completely coated by the conformal dielectric material layer; temporarily adhering the active face of the semiconductor chip to a carrier wafer; temporarily adhering the carrier wafer to a wafer-with-a-through-cavity such that the semiconductor chip extends into the through-cavity; assembling the semiconductor chip to the wafer-with-the-through-cavity by filling the through-cavity with a heat spreader material; releasing the assembled semiconductor chip and wafer-with-the-through-cavity from the carrier wafer; removing the conformal dielectric material layer from at least a portion of the connection pad; and forming an electrical connection to said at least a portion of the connection pad.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: October 26, 2021
    Assignee: HRL Laboratories, LLC
    Inventor: Florian G. Herrault
  • Patent number: 11101196
    Abstract: A semiconductor device and a method of manufacturing the semiconductor device are disclosed. The semiconductor device includes a substrate, a first through substrate via configured to penetrate at least partially through the substrate, the first through substrate via having a first aspect ratio, and a second through substrate via configured to penetrate at least partially through the substrate. The second through substrate via has a second aspect ratio greater than the first aspect ratio, and each of the first through substrate via and the second through substrate via includes a first conductive layer and a second conductive layer. A thickness in a vertical direction of the first conductive layer of the first through substrate via is less than a thickness in the vertical direction of the first conductive layer of the second through substrate via.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 24, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myungjoo Park, Jaewon Hwang, Kwangjin Moon, Kunsang Park
  • Patent number: 10950519
    Abstract: In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Sung Huang, Ming Hung Tseng, Yen-Liang Lin, Hao-Yi Tsai, Chi-Ming Tsai, Chung-Shi Liu, Chih-Wei Lin, Ming-Che Ho
  • Patent number: 10757820
    Abstract: A single-layer circuit board, multi-layer circuit board, and manufacturing methods therefor. The method for manufacturing the single-layer circuit board (10) comprises the following steps: drilling a hole on a substrate (11), the hole comprising a blind hole and/or a through hole (S1); on a surface (12) of the substrate, forming a photoresist layer having a circuit negative image (S2); forming a conductive seed layer on the surface (12) of the substrate and a hole wall (19) of the hole (S3); removing the photoresist layer, and forming a circuit pattern on the surface (12) of the substrate (S4), wherein Step S3 comprises implanting a conductive material below the surface (12) of the substrate and below the hole wall (19) of the hole via ion implantation, and forming an ion implantation layer as at least part of the conductive seed layer.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: August 25, 2020
    Assignee: RICHVIEW ELECTRONICS CO., LTD.
    Inventors: Siping Bai, Xianglan Wu, Zhijian Wang, Zhigang Yang, Jinqiang Zhang
  • Patent number: 10749278
    Abstract: A method of electroplating a metal into a recessed feature is provided, which includes: contacting a surface of the recessed feature with an electroplating solution comprising metal ions, an accelerator additive, a suppressor additive and a leveler additive, in which the recessed feature has at least two elongated regions and a cross region laterally between the two elongated regions, and a molar concentration ratio of the accelerator additive: the suppressor additive: the leveler additive is (8-15):(1.5-3):(0.5-2); and electroplating the metal to form an electroplating layer in the recessed feature. An electroplating layer in a recessed feature is also provided.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jun-Nan Nian, Jyun-Ru Wu, Shiu-Ko Jangjian, Yu-Ren Peng, Chi-Cheng Hung, Yu-Sheng Wang
  • Patent number: 10636758
    Abstract: A microelectronic device has a bump bond structure including an electrically conductive pillar with an expanded head, and solder on the expanded head. The electrically conductive pillar includes a column extending from an I/O pad to the expanded head. The expanded head extends laterally past the column on at least one side of the electrically conductive pillar. In one aspect, the expanded head may have a rounded side profile with a radius approximately equal to a thickness of the expanded head, and a flat top surface. In another aspect, the expanded head may extend past the column by different lateral distances in different lateral directions. In a further aspect, the expanded head may have two connection areas for making electrical connections to two separate nodes. Methods for forming the microelectronic device are disclosed.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: April 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sreenivasan K Koduri
  • Patent number: 10629525
    Abstract: Embodiments of the present disclosure describe removing seams and voids in metal interconnects and associated techniques and configurations. In one embodiment, a method includes conformally depositing a metal into a recess disposed in a dielectric material to form an interconnect, wherein conformally depositing the metal creates a seam or void in the deposited metal within or directly adjacent to the recess and heating the metal in the presence of a reactive gas to remove the seam or void, wherein the metal has a melting point that is greater than a melting point of copper. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 21, 2020
    Assignee: Intel Corporation
    Inventors: Ramanan V. Chebiam, Christopher J. Jezewski, Tejaswi K. Indukuri, James S. Clarke, John J. Plombon
  • Patent number: 10566271
    Abstract: A method for fabricating a carrier-free semiconductor package includes: half-etching a metal carrier to form a plurality of recess grooves and a plurality of metal studs each serving in position as a solder pad or a die pad; filing each of the recess grooves with a first encapsulant; forming on the metal studs an antioxidant layer such as a silver plating layer or an organic solderable protection layer; and performing die-bonding, wire-bonding and molding processes respectively to form a second encapsulant encapsulating the chip. The recess grooves are filled with the first encapsulant to enhance the adhesion between the first encapsulant and the metal carrier, thereby solving the conventional problem of having a weak and pliable copper plate and avoiding transportation difficulty. The invention eliminates the use of costly metals as an etching resist layer to reduce fabrication cost, and further allows conductive traces to be flexibly disposed on the metal carrier to enhance electrical connection quality.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: February 18, 2020
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 10301735
    Abstract: A method of forming a metal coating includes: disposing a solid electrolyte membrane (13) between an anode (11) and a substrate (B) which forms a cathode; bringing a solution (L) containing metal ions into contact with an anode-side portion of the solid electrolyte membrane (13); and causing, in a state where the solid electrolyte membrane (13) is in contact with the substrate (B), a current to flow from the anode (11) to the cathode so as to form a metal coating formed of the metal on the surface of the substrate (B). The metal coating is formed by repeating a current-flowing period (T) in which a current flows from the anode (11) to the cathode and a non-current-flowing period (N) in which a current does not flow between the anode (11) and the cathode.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: May 28, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Yanagimoto, Motoki Hiraoka, Yuki Sato, Yoshitaka Shinmei
  • Patent number: 10153202
    Abstract: A method of forming an interconnect that in one embodiment includes forming an opening in a dielectric layer, and treating a dielectric surface of the opening in the dielectric layer with a nitridation treatment to convert the dielectric surface to a nitrided surface. The method may further include depositing a tantalum containing layer on the nitrided surface. In some embodiments, the method further includes depositing a metal fill material on the tantalum containing layer. The interconnect formed may include a nitrided dielectric surface, a tantalum and nitrogen alloyed interface that is present on the nitrided dielectric surface, a tantalum layer on the tantalum and nitrogen alloy interface, and a copper fill.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: December 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 10121757
    Abstract: A pillar structure is disposed on a substrate. The pillar structure includes a pad, a metal wire bump, a metal wire, and a metal plating layer. The pad is disposed on the substrate. The metal wire bump is disposed on the pad. The metal wire is connected to the metal wire bump. The metal wire extends in a first extension direction, the substrate extends in a second extension direction, and the first extension direction is perpendicular to the second extension direction. The metal plating layer covers the pad and completely encapsulates the metal wire bump and the metal wire.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: November 6, 2018
    Assignee: Unimicron Technology Corp.
    Inventor: Cheng-Jui Chang
  • Patent number: 10103029
    Abstract: A process for metalizing a through silicon via feature in a semiconductor integrated circuit device, the process including, during the filling cycle, reversing the polarity of circuit for an interval to generate an anodic potential at said metalizing substrate and desorb leveler from the copper surface within the via, followed by resuming copper deposition by re-establishing the surface of the copper within the via as the cathode in the circuit, thereby yielding a copper filled via feature.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: October 16, 2018
    Assignee: MacDermid Enthone Inc.
    Inventors: Thomas B. Richardson, Joseph A. Abys, Wenbo Shao, Chen Wang, Vincent Paneccasio, Cai Wang, Sean Xuan Lin, Theodore Antonellis
  • Patent number: 10074608
    Abstract: A method for manufacturing metal structures for the electrical connection of components comprises the following steps: depositing an auxiliary layer on a substrate; structuring the auxiliary layer in a manner such that the substrate is exposed at least one environment which is envisaged for the metal structures; depositing a galvanic starting layer on the structured auxiliary layer; depositing a lithography layer on the galvanic starting layer and structuring the lithography layer in a manner such that the galvanic starting layer is exposed at least one location envisaged for the metal structure; galvanically depositing the at least one metal structure at the at least one exposed location; removing the structured auxiliary layer. An electronic component is also described.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: September 11, 2018
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Technische Universität Berlin
    Inventors: Martin Wilke, Kai Zoschke, Markus Wöhrmann, Thomas Fritzsch, Hermann Oppermann, Oswin Ehrmann
  • Patent number: 10006144
    Abstract: Methods, apparatus, and systems for depositing copper and other metals are provided. In some implementations, a wafer substrate is provided to an apparatus. The wafer substrate has a surface with field regions and a feature. A copper layer is plated onto the surface of the wafer substrate. The copper layer is annealed to redistribute copper from regions of the wafer substrate to the feature. Implementations of the disclosed methods, apparatus, and systems allow for void-free bottom-up fill of features in a wafer substrate.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 26, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Huanfeng Zhu
  • Patent number: 9931820
    Abstract: This document discusses, among other things, a microelectronic system including a mold compound having a base layer and a surface layer on the base layer, and a seed layer deposited on the surface layer of the mold compound. The mold compound includes a monomer epoxy resin, a hardener, a filler material, and a polymer interphase material, wherein the polymer interphase material forms the surface layer of the mold compound having an adhesion strength to the seed layer greater than the monomer epoxy resin and hardener alone.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Patent number: 9837356
    Abstract: Interconnect structures are provided that include an intermetallic compound as either a cap or liner material. The intermetallic compound is a thermal reaction product of a metal or metal alloy of an interconnect metallic region with a metal of either a metal cap or a metal layer. In some embodiments, the metal cap may include a metal nitride and thus a nitride-containing intermetallic compound can be formed. The formation of the intermetallic compound can improve the electromigration resistance of the interconnect structures and widen the process window for fabricating interconnect structures.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: December 5, 2017
    Assignee: International Business Machines Corporation
    Inventor: Chih-Chao Yang
  • Patent number: 9520375
    Abstract: A method of forming a solder bump on a substrate includes: forming a conductive layer(s) on the substrate having a surface on which an electrode pad is prepared; forming a resist layer on the conductive layer(s) having an opening over the electrode pad; forming a metal pillar in the opening of the resist layer, wherein the metal pillar includes a first conductive material; forming a space between sidewalls of the resist layer and the metal pillar; forming a metal barrier layer in the space and on a top surface of the metal pillar, the metal barrier layer including a second conductive material that is different from the first conductive material of the metal pillar; forming a solder layer on the metal barrier layer over the top surface of the metal pillar; removing the resist layer; removing the conductive layer(s); and forming the solder bump by reflowing the solder layer.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: December 13, 2016
    Assignee: International Business Machines Corporation
    Inventors: Toyohiro Aoki, Hiroyuki Mori, Yasumitsu K. Orii, Kazushige Toriyama, Shintaro Yamamichi
  • Patent number: 9257401
    Abstract: A method of forming a semiconductor device includes forming an under-bump metallurgy (UBM) layer overlying a portion of a metal pad region within an opening of an encapsulating layer over a semiconductor substrate, and forming a bump layer overlying the UBM layer to fill the opening of the encapsulating layer. A removal process is initiated on an upper surface of the encapsulating layer and a coplanar top surface of the bump layer to remove the upper surface of the encapsulating layer until a top portion of the bump layer protrudes from the encapsulating layer.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: February 9, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Lei Hsu, Ming-Che Ho, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8883655
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 11, 2014
    Assignees: Intermoecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik
  • Patent number: 8877546
    Abstract: Methods and apparatus provide for a transistor, including: a semiconductor layer including molecules, protons, and/or ions, etc. diffused therein from a photoactive material; a channel disposed on or in the semiconductor layer; a source disposed on or in the semiconductor layer; a drain disposed on or in the semiconductor layer; and a gate electrically coupled to the semiconductor layer.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 4, 2014
    Assignee: Corning Incorporated
    Inventors: Hon Hang Fong, Mingqian He
  • Patent number: 8697464
    Abstract: A method of manufacturing an optical semiconductor device includes: forming first and second optical semiconductor elements separated from each other by a separation groove on a semiconductor substrate; forming first and second electrodes containing Pt on top surfaces of the first and second optical semiconductor elements, respectively; forming a third electrode electrically connected to the first and second electrodes and preventing the third electrode from being formed in the separation groove; forming first and second Au plated layers on the first and second electrodes, respectively, by electrolytic plating, using the third electrode as a power supply layer; forming a resist covering the first and second Au plated layers by photolithography; and etching the third electrode, using the resist as a mask, to electrically separate the first electrode from the second electrode.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 15, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Keisuke Matsumoto
  • Patent number: 8691597
    Abstract: An automatic analyzer detects voltage applied across electrodes, and judges whether voltage value falls within set voltage range. When the detected voltage value is lower than minimum value of set voltage range, the analyzer calculates the deficient amount of base solution based on the detected voltage value, controls a valve to supply the deficient amount of base solution, then, performs operation control of the valve so as to keep the prescribed amount of plating solution in plating solution tank, and discharges plating solution. When the detected voltage value is higher than maximum value of set voltage range, the analyzer calculates the excess amount of base solution based on the detected voltage value, controls a valve, and supplies pure water into the tank so that the base solution concentration falls within prescribed range to dilute plating solution, then controls a valve, and discharges plating solution so as to keep prescribed amount.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: April 8, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Taku Kanaoka
  • Patent number: 8680682
    Abstract: A system and a method for protecting vias is disclosed. An embodiment comprises forming an opening in a substrate. A barrier layer disposed in the opening including along the sidewalls of the opening. The barrier layer may include a metal component and an alloying material. A conductive material is formed on the barrier layer and fills the opening. The conductive material to form a via (e.g., TSV).
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Weng-Jin Wu
  • Patent number: 8546275
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack having a metal oxide buffer layer disposed on or over a metal oxide bulk layer. The metal oxide bulk layer contains a metal-rich oxide material and the metal oxide buffer layer contains a metal-poor oxide material. The metal oxide bulk layer is less electrically resistive than the metal oxide buffer layer since the metal oxide bulk layer is less oxidized or more metallic than the metal oxide buffer layer. In one example, the metal oxide bulk layer contains a metal-rich hafnium oxide material and the metal oxide buffer layer contains a metal-poor zirconium oxide material.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: October 1, 2013
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Tony Chiang
  • Patent number: 8518826
    Abstract: One aspect of the present invention is a method of processing a substrate. In one embodiment, the method comprises forming an electrical conductor on or in the substrate by providing a mixture comprising metal particles and an electroless deposition solution and electrolessly depositing a metal matrix and co-depositing the metal particles. In another embodiment, the method comprises forming an electrical conductor on or in the substrate by providing a mixture comprising metal particles and an electrochemical plating solution and electrochemically plating a metal matrix and co-depositing the metal particles. Another aspect of the present invention is a mixture for the formation of an electrical conductor on or in a substrate. Another aspect of the present invention is an electronic device.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: August 27, 2013
    Assignee: Lam Research Corporation
    Inventors: Artur Kolics, Fritz Redeker
  • Patent number: 8513750
    Abstract: Methods and associated structures of forming microelectronic devices are described. Those methods may include forming a first layer of magnetic material and at least one via structure disposed in a first dielectric layer, forming a second dielectric layer disposed on the first magnetic layer, forming at least one conductive structure disposed in the second dielectric layer, forming a third layer of dielectric material disposed on the conductive structure, forming a second layer of magnetic material disposed in the third layer of dielectric material and in the second layer of dielectric material, wherein the first and second layers of the magnetic material are coupled to one another.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 20, 2013
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Gerhard Schrom, Peter Hazucha, Fabrice Paillet, Tanay Karnik
  • Patent number: 8492216
    Abstract: The invention relates to a semiconductor structure and a manufacturing method of the same. The semiconductor structure includes a semiconductor substrate, an isolation layer, a first metal layer, and a second metal layer. The semiconductor substrate includes an upper substrate surface and a semiconductor device below the upper substrate surface. The isolation layer has opposite a first side wall and a second side wall. The first metal layer is disposed on the upper substrate surface. The first metal layer and the second metal layer are disposed on the first side wall and the second side wall, respectively. A lower surface of the second metal layer is below the upper substrate surface.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: July 23, 2013
    Assignee: Macronix International Co., Ltd.
    Inventor: Shih-Hung Chen
  • Patent number: 8344513
    Abstract: A system and a method for protecting through-silicon vias (TSVs) is disclosed. An embodiment comprises forming an opening in a substrate. A liner is formed in the opening and a barrier layer comprising carbon or fluorine is formed along the sidewalls and bottom of the opening. A seed layer is formed over the barrier layer, and the TSV opening is filled with a conductive filler. Another embodiment includes a barrier layer formed using atomic layer deposition.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Weng-Jin Wu
  • Patent number: 8318534
    Abstract: Non-volatile resistive-switching memories formed using anodization are described. A method for forming a resistive-switching memory element using anodization includes forming a metal containing layer, anodizing the metal containing layer at least partially to form a resistive switching metal oxide, and forming a first electrode over the resistive switching metal oxide. In some examples, an unanodized portion of the metal containing layer may be a second electrode of the memory element.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: November 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Alexander Gorer, Prashant Phatak, Tony Chiang, Igor Ivanov
  • Patent number: 8298936
    Abstract: Metal seed layers are deposited on a semiconductor substrate having recessed features by a method that involves at least three operations. In this method, a first layer of metal is deposited onto the substrate to cover at least the bottom portions of the recessed features. The first layer of metal is subsequently redistributed to improve sidewall coverage of the recessed features. Next, a second layer of metal is deposited on at least the field region of the substrate and on the bottom portions of the recessed features. The method can be implemented using a PVD apparatus that allows deposition and resputtering operations. This sequence of operations can afford seed layers with improved step coverage. It also leads to decreased formation of voids in interconnects, and to improved resistance characteristics of formed IC devices.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 30, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Robert Rozbicki, Bart van Schravendijk, Thomas Mountsier, Wen Wu
  • Patent number: 8288297
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 16, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Tony Chiag
  • Patent number: 8247905
    Abstract: The present invention is related to a method for forming vertical conductive structures by electroplating. Specifically, a template structure is first formed, which includes a substrate, a discrete metal contact pad located on the substrate surface, an inter-level dielectric (ILD) layer over both the discrete metal contact pad and the substrate, and a metal via structure extending through the ILD layer onto the discrete metal contact pad. Next, a vertical via is formed in the template structure, which extends through the ILD layer onto the discrete metal contact pad. A vertical conductive structure is then formed in the vertical via by electroplating, which is conducted by applying an electroplating current to the discrete metal contact pad through the metal via structure. Preferably, the template structure comprises multiple discrete metal contact pads, multiple metal via structures, and multiple vertical vias for formation of multiple vertical conductive structures.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Qiang Huang, John P. Hummel, Lubomyr T. Romankiw, Mary B. Rothwell
  • Patent number: 8129745
    Abstract: The instant pulse filter according to the present invention, which may cause a malfunction or a short life span of a semiconductor device, is made using an aluminum anodic oxidation, comprising—a first step for forming an aluminum thin film layer on an upper side of an insulator substrate; a second step for forming an aluminum oxide thin film layer having a pore by oxidizing the aluminum thin film layer by means of an anodic oxidation; a third step for depositing a metallic material on an upper side of the aluminum thin film layer for filling the pore; a fourth step for forming a nano rod in the interior of the aluminum oxide thin film layer by eliminating the metallic material deposited except in the pore; a fifth step for forming an internal electrode on an upper side of the aluminum oxide thin film layer having the nano rod; a sixth step for forming a protective film layer on an upper side of the same in order to protect the aluminum oxide thin film layer and the internal electrode from the external enviro
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 6, 2012
    Assignee: Nextron Corporation
    Inventors: Hak Beom Moon, Jin Hyung Cho, Suc Hyun Bang, Cheol Hwan Kim, Yoon Hyung Jang
  • Publication number: 20120018878
    Abstract: A method of forming a device includes providing a substrate, and forming a solder bump over the substrate. A minor element is introduced to a region adjacent a top surface of the solder bump. A re-flow process is then performed to the solder bump to drive the minor element into the solder bump.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Da Cheng, MIng-Che Ho, Chung-Shi Liu, Chien Ling Hwang, Cheng-Chung Lin, Hui-Jung Tsai, Zheng-Yi Lim
  • Patent number: 8076786
    Abstract: A wire bonding structure includes a chip and a bonding wire. The chip includes a base material, at least one first metallic pad, a re-distribution layer and at least one second metallic pad. The first metallic pad is disposed on the base material. The re-distribution layer has a first end and a second end, and the first end is electrically connected to the first metallic pad. The second metallic pad is electrically connected to the second end of the re-distribution layer. The bonding wire is bonded to the second metallic pad.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: December 13, 2011
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chang Ying Hung, Hsiao Chuan Chang, Tsung Yueh Tsai, Yi Shao Lai, Jian Cheng Chen, Wei Chi Yih, Ho Ming Tong
  • Patent number: 8076241
    Abstract: Methods are provided for multi-step Cu metal plating on a continuous Ru metal film in recessed features found in advanced integrated circuits. The use of a continuous Ru metal film prevents formation of undesirable micro-voids during Cu metal filling of high-aspect-ratio recessed features, such as trenches and vias, and enables formation of large Cu metal grains that include a continuous Cu metal layer plated onto the continuous Ru metal film. The large Cu grains lower the electrical resistivity of the Cu filled recessed features and increase the reliability of the integrated circuit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 13, 2011
    Assignees: Tokyo Electron Limited, Novellus Systems, Inc.
    Inventors: Frank M. Cerio, Jr., Shigeru Mizuno, Jonathan Reid, Thomas Ponnuswamy
  • Publication number: 20110256713
    Abstract: A method of forming low dielectric contrast structures by imprinting a silsesquioxane based polymerizable composition. The imprinting composition including: one or more polyhedral silsesquioxane oligomers each having one or more polymerizable groups, wherein each of the one or more polymerizable group is bound to a different silicon atom of the one or more polyhedral silsesquioxane oligomers; and one or more polymerizable diluents, the diluents constituting at least 50% by weight of the composition.
    Type: Application
    Filed: June 28, 2011
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert David Allen, Richard Anthony DiPietro, Geraud Jean-Michel Dubois, Mark Whitney Hart, Robert Dennis Miller, Ratnam Sooriyakumaran
  • Patent number: RE49202
    Abstract: An electrolytic plating method and composition for electrolytically plating Cu onto a semiconductor integrated circuit substrate having submicron-sized interconnect features. The composition comprises a source of Cu ions and a suppressor compound comprising polyether groups. The method involves superfilling by rapid bottom-up deposition at a superfill speed by which Cu deposition in a vertical direction from the bottoms of the features to the top openings of the features is substantially greater than Cu deposition on the side walls.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 6, 2022
    Assignee: MacDermid Enthone Inc.
    Inventors: Vincent Paneccasio, Jr., Xuan Lin, Paul Figura, Richard Hurtubise