Lithography, Isolation, Or Planarization-related Aspects Of Making Conductor-insulator-semiconductor Structure, E.g., Sub-lithography Lengths; To Solve Problems Arising At Crossing With Side Of Device Isolation (epo) Patents (Class 257/E21.206)
  • Patent number: 7855410
    Abstract: According to one embodiment, a semiconductor memory device can be generally characterized as including a gate insulating layer on a semiconductor substrate, a floating gate on the gate insulating layer and a word line disposed on one side of the floating gate. A first side of the floating gate facing the word line may include a projecting portion projecting toward the word line. A tip of the projecting portion may include a corner that extends substantially perpendicularly with respect to a top surface of the semiconductor substrate.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: December 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jin Yang, Jeong-Uk Han, Yong-Suk Choi, Hyok-Ki Kwon, Bae-Seong Kwon
  • Patent number: 7851316
    Abstract: A fabrication method of a semiconductor device includes: forming a gate insulating film and a gate electrode on an N type well; forming first source/drain regions by implanting a first element in regions of the N type well on both sides of the gate electrode, the first element being larger than silicon and exhibiting P type conductivity; forming second source/drain regions by implanting a second element in the regions of the N type well on the both sides of the gate electrode, the second element being smaller than silicon and exhibiting P type conductivity; and forming a metal silicide layer on the source/drain regions.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventor: Hiroyuki Kamada
  • Patent number: 7838416
    Abstract: A semiconductor device is disclosed. In one embodiment, the semiconductor device includes a memory cell, which in turn includes an electrode and a phase change material. The electrode may be disposed on a substrate and include a sublithographic lateral dimension parallel to the substrate. The phase change material may be coupled to the electrode and include a lateral dimension parallel to the substrate and greater than the sublithographic lateral dimension of the electrode. Various semiconductor devices and manufacturing methods are also provided.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: November 23, 2010
    Assignee: Round Rock Research, LLC
    Inventor: Russell C. Zahorik
  • Patent number: 7790619
    Abstract: A method for fabricating a semiconductor device including forming a gate insulation layer, a conductive layer for a gate electrode, and an insulation layer for a gate hard mask over a substrate, selectively etching the insulation layer for a gate hard mask and the conductive layer for a gate electrode to expose a first region of the substrate, thereby forming an initial gate line, forming a first insulation layer for an insulation over a resultant structure where the initial gate line is formed, performing a planarization process until the insulation layer for a gate hard mask is exposed, and selectively etching the insulation layer for a gate hard mask and the conductive layer for a gate electrode to expose a second region of the substrate, the second region being not overlapped with the first region, thereby forming a final gate line having a line width smaller than the initial gate line.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 7, 2010
    Assignee: Hynix Semiconductor Inc
    Inventor: Weon-Chul Jeon
  • Patent number: 7790542
    Abstract: Stress enhanced transistor devices and methods of fabricating the same are provided. In one embodiment, a transistor device comprises: a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the recessed regions undercut the dielectric spacers to form undercut areas of the channel region; and epitaxial source and drain regions disposed in the recessed regions of the semiconductor substrate and extending laterally underneath the dielectric spacers into the undercut areas of the channel region.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Thomas Walter Dyer, Haining Sam Yang
  • Patent number: 7786527
    Abstract: A semiconductor structure including at least one transistor located on a surface of a semiconductor substrate, wherein the at least one transistor has a sub-lithographic channel length, is provided. Also provided is a method to form such a semiconductor structure using self-assembling block copolymer that can be placed at a specific location using a pre-fabricated hard mask pattern.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Wai-Kin Li
  • Patent number: 7772637
    Abstract: Methods of forming a semiconductor device may include forming a tunnel oxide layer on a semiconductor substrate, forming a gate structure on the tunnel oxide layer, forming a leakage barrier oxide, and forming an insulating spacer. More particularly, the tunnel oxide layer may be between the gate structure and the substrate, and the gate structure may include a first gate electrode on the tunnel oxide layer, an inter-gate dielectric on the first gate electrode, and a second gate electrode on the inter-gate dielectric with the inter-gate dielectric between the first and second gate electrodes. The leakage barrier oxide may be formed on sidewalls of the second gate electrode. The insulating spacer may be formed on the leakage barrier oxide with the leakage barrier oxide between the insulating spacer and the sidewalls of the second gate electrode. In addition, the insulating spacer and the leakage barrier oxide may include different materials. Related structures are also discussed.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: August 10, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong-Hee Sohn, Chang-Won Lee, Sun-Pil Youn, Gil-Heyun Choi, Byung-Hak Lee, Jong-Ryeol Yoo, Hee-Sook Park
  • Patent number: 7749846
    Abstract: A method of forming a contact structure includes forming an isolation region defining active regions in a semiconductor substrate. Gate patterns extending to the isolation region while crossing the active regions are formed. A sacrificial layer is formed on the semiconductor substrate having the gate patterns. Sacrificial patterns remaining on the active regions are formed by patterning the sacrificial layer. Molding patterns are formed on the isolation region. Contact holes exposing the active regions at both sides of the gate patterns are formed by etching the sacrificial patterns using the molding patterns and the gate patterns as an etching mask. Contact patterns respectively filling the contact holes are formed. The disclosed method of forming a contact structure may be used in fabricating a semiconductor device.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: July 6, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Sun-Hoo Park, Soo-Ho Shin
  • Patent number: 7723178
    Abstract: A semiconductor structure fabrication method. The method includes providing a semiconductor structure which includes a first semiconductor layer and a dielectric bottom portion in the first semiconductor layer. A second semiconductor layer on the first semiconductor layer is formed. The first and second semiconductor layers include a semiconductor material. A dielectric top portion and a first STI (Shallow Trench Isolation) region are formed in the second semiconductor layer. The dielectric top portion is in direct physical contact with the dielectric bottom portion.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Andres Bryant, Anthony Kendall Stamper, Mickey H. Yu
  • Patent number: 7659173
    Abstract: A poly-silicon layer is deposited on a surface of a substrate after forming a gate insulating film in an element hole of a field insulating film 12, and thereon a silicon oxide layer is formed by a thermal oxidation process. After patterning the silicon oxide layer in accordance with a gate electrode pattern, the poly-silicon layer is patterned by dry-etching using a remaining resist layer as a mask. After removing the resist layer, a gate electrode layer 16a is formed by decreasing a width of the poly-silicon layer by isotropic etching using the silicon oxide layer 18A as a mask. N+-type source and drain regions 22 and 24 and n?-type source and drain regions 26 and 28 are formed by doping impurity ions via the gate insulating film 14 through the silicon oxide layer 18A. The silicon oxide layer 18A may be made of a layer of tungsten silicide.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: February 9, 2010
    Assignee: Yamaha Corporation
    Inventor: Syuusei Takami
  • Publication number: 20090302398
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may comprise forming a transistor comprising a metal gate disposed on a gate dielectric that is disposed on a substrate, and a source/drain region disposed adjacent a channel region of the transistor. The source/drain region comprises a source/drain extension comprising a vertex point, wherein a top surface of the channel region is substantially planar with the vertex point.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Inventors: Bernhard Sell, Rishabh Mehandru
  • Patent number: 7615837
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: November 10, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Glenn J Leedy
  • Patent number: 7601586
    Abstract: A method of forming buried bit line DRAM circuitry includes collectively forming a buried bit line forming trench, bit line vias extending from the bit line forming trench, and memory array storage node vias within a dielectric mass using only two masking steps. Conductive material is simultaneously deposited to within the buried bit line forming trench, the bit line vias, and the memory storage node vias within the dielectric mass. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: October 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Ann K. Liao, Michael J. Westphal
  • Patent number: 7563709
    Abstract: A pattern formation method includes the steps of forming a flowable film made of a material with flowability; forming at least one of a concave portion and a convex portion provided on a pressing face of a pressing member onto the flowable film by pressing the pressing member against the flowable film; forming a solidified film by solidifying the flowable film, onto which the at least one of a concave portion and a convex portion has been transferred, through annealing at a first temperature with the pressing member pressed against the flowable film; and forming a pattern made of the solidified film burnt by annealing at a second temperature higher than the first temperature.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: July 21, 2009
    Assignee: Panasonic Corporation
    Inventors: Hideo Nakagawa, Masaru Sasago, Yoshihiko Hirai
  • Patent number: 7547621
    Abstract: A gate hard mask is deposited on a gate structure using low pressure chemical vapor deposition (LPCVD). By doing so, the wet etch removal ratio (WERR) of the gate hard mask relative to the underlying polysilicon gate layer is increased when compared to prior art hard masks. The LPCVD gate hard mask will not only etch faster than prior art hard masks, but it will also reduce undercutting of the gate oxide. To provide additional control of the wet etch rate, the LPCVD hard mask can be annealed. The annealing can be tailored to achieve the desired etching rate.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Kanuri, Chorng-Ping Chang, Christopher Dennis Bencher, Hoiman Hung
  • Patent number: 7541286
    Abstract: A semiconductor device manufacturing method using a KrF light source is disclosed. Embodiments relate to a method for manufacturing a semiconductor device including forming an oxide film over a semiconductor substrate. A gate conductor may be formed over the oxide film. An antireflective film may be formed over the gate conductor. A photoresist film may be formed over the antireflective film. The photoresist film may be photo-etched, thereby forming a first photoresist film pattern having a first line width. The antireflective film may be etched, using the first photoresist film pattern as a mask, thereby forming an antireflective film pattern. The first photoresist film pattern may be simultaneously laterally etched, thereby forming a second photoresist film pattern having a second line width corresponding to a final design value for the gate conductor.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: June 2, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Chang-Myung Lee
  • Patent number: 7494922
    Abstract: A method of manufacturing a memory cell is disclosed. In one embodiment, the method includes forming an electrode including an outer surface that is substantially circular and an exposed surface that has a sublithographic dimension in a direction parallel to the exposed surface. Further, the method may also include forming a layer of phase change material coupled to the exposed surface of the electrode. Various semiconductor devices and additional methods of manufacturing memory cells are also provided.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: February 24, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Russell C. Zahorik
  • Patent number: 7482228
    Abstract: The width of the gate of a MOS transistor can be formed to have nanometer-width gate sizes, which are substantially less than the minimum feature size that can be photolithographically obtained with the method that is used to fabricate the MOS transistors, in a litho-less process by utilizing a conductive side wall spacer to form the gate of the MOS transistor.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: January 27, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Gobi R. Padmanabhan, Visvamohan Yegnashankaran
  • Patent number: 7439602
    Abstract: A semiconductor device including memory cells isolated by a trench that may be self aligned with a stacked film pattern (7) has been disclosed. The memory cells may be flash memory cells having an active gate film (2) that may be thinner than a gate oxide film (30). The active gate film (2) may be located in a central portion under of a gate electrode (3). The gate oxide film (30) may be located under end portions of the gate electrode (3). In this way, a distance between a shoulder portion of a trench (11) and a gate electrode (3) may be increased. Thus, an electric field concentration in the shoulder portion of the trench (11) may be decreased and memory cell characteristics may be improved.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: October 21, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Kohji Kanamori
  • Patent number: 7425496
    Abstract: A conducting layer is deposited on an insulating layer disposed on a substrate. A mask is formed on at least one area of the conducting layer, thus delineating in the conducting layer at least one complementary area not covered by the mask. The complementary areas of the conducting layer are rendered insulating by oxidation. Oxidation can comprise oxygen implantation and/or thermal oxidation. The material of the conducting layer and the oxygen can form a volatile oxide evaporating partly or totally. The conducting layer is preferably formed by first and second conducting layers. Thus, oxidation can be performed, after the mask has been removed, so that the surface of the second conducting layer is oxidized on the side walls and on the front face.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: September 16, 2008
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Simon Deleonibus
  • Patent number: 7425489
    Abstract: A method of making a semiconductor structure includes etching an isolation oxide. The isolation oxide is in a substrate, a gate layer is on the substrate, a patterned metallic layer is on the gate layer, and a first patterned etch-stop layer is on the metallic layer.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: September 16, 2008
    Assignee: Cypress Semiconductor Corporation
    Inventors: Geethakrishnan Narasimhan, Saurabh D. Chowdhury
  • Patent number: 7399649
    Abstract: An underlying layer ALY of GaN is formed on a sapphire substrate SSB; a transfer layer TLY of GaN with a bump and dip shaped surface is formed on the underlying layer ALY; a light absorption layer BLY is formed on the bump and dip shaped surface of the transfer layer TLY; and a grown layer 4 of a planarization layer CLY and a structured light-emitting layer DLY having at least an active layer are formed on the light absorption layer BLY. A support substrate 2 is provided on the grown layer 4. The backside of the sapphire substrate SSB is irradiated with light of the second harmonic of YAG laser (wavelength 532 nm) to decompose the light absorption layer BLY and delaminate the sapphire substrate SSB, thereby allowing the planarization layer CLY of a bump and dip shaped surface to be exposed as a light extraction face.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: July 15, 2008
    Assignee: Pioneer Corporation
    Inventors: Mamoru Miyachi, Hiroyuki Ota, Yoshinori Kimura, Kiyofumi Chikuma
  • Patent number: 7393789
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: July 1, 2008
    Assignee: MICRON Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar M. Subramanian
  • Patent number: 7394120
    Abstract: An MIS transistor includes a gate electrode located to intersect a device region of a semiconductor substrate isolated by a device isolation region, and source and drain regions formed in the semiconductor substrate at both sides of the gate electrode region and elevated source and drain located above the source and drain regions. A gate length of the gate electrode at a boundary between the device isolation region and the device region is longer than the gate length at a central portion of the device region.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: July 1, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Yamasaki, Hitoshi Ito
  • Patent number: 7386182
    Abstract: According to one embodiment of the invention, a method for enhancing multiple feature lithography is provided. The method includes generating a plurality of maps each associated with a particular one of a plurality of circuit features. Each map maps an illumination field comprising a plurality of point sources and indicates, in terms of a process metric and for each point source, a level of feature quality that will result from using the each point source to image the each circuit feature. The method also includes identifying, based on the maps, a group of one or more of the point sources that, if used to image the circuit features onto a target surface, will result in an overall feature quality level equal to or greater than a predetermined quality threshold.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: June 10, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Gary Guohong Zhang, Changan Wang
  • Patent number: 7355239
    Abstract: Improved methods of manufacturing semiconductor devices are provided to reduce dielectric loss in isolation trenches of the devices. In one example, a method of manufacturing a semiconductor device includes forming a plurality of shallow trench isolation (STI) trenches in a substrate. A tunnel oxide layer, a first conductive layer, a gate dielectric layer, and a second conductive layer are formed above the substrate. The layers are etched to delineate a plurality of stacked gate structures. In particular, the etching may include: performing a first etch of the second conductive layer, wherein at least a portion of the second conductive layer above the STI trenches remains following the first etch; and performing a second etch of the second conductive layer, wherein the remaining portion of the second conductive layer above the STI trenches and portions of the gate dielectric layer above the STI trenches are completely removed by the second etch.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 8, 2008
    Assignee: ProMOS Technologies Pte. Ltd.
    Inventors: Barbara Haselden, Yi Ding
  • Patent number: 7332405
    Abstract: A semiconductor integrated circuit is fabricated in a substrate having a semiconductor layer and an underlying insulator layer. The fabrication process includes a step of locally oxidizing the semiconductor layer to form a field oxide, during which step the semiconductor layer is protected by a nitride film. The nitride film has both openings to permit local oxidization in the integrated circuit area, and an opening defining an alignment mark adjacent to the circuit area. The alignment mark may be formed either in the semiconductor and insulator layers, or in a part of the nitride film left after the nitride film is removed from the circuit area. In either case, the edge height of the alignment mark is not limited by the thickness of the semiconductor layer. Using the nitride layer to define both the alignment mark and the field oxide reduces the necessary number of fabrication steps.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: February 19, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Sachiko Yabe, Takashi Taguchi, Minoru Watanabe
  • Patent number: 7316958
    Abstract: Masks for fabricating a semiconductor device and methods of forming mask patterns are provided which are capable of enhancing the breakdown voltage of the fabricated semiconductor device by accurately correcting a line width pattern error of a semiconductor substrate due to a mask error during a process for forming a well ion implantation mask pattern. A disclosed mask used to manufacture a semiconductor device having complementary N-well and P-well includes: a master mask for the complementary N-well and P-well; and a light-blocking pattern on the master mask, wherein a region of the master mask, which is not a portion of the master mask adjacent to the light-blocking pattern, is etched by a predetermined thickness to have a phase shifting function.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: January 8, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jun Seok Lee
  • Patent number: 7296245
    Abstract: Combined e-beam and optical exposure lithography for semiconductor fabrication is disclosed. E-beam direct writing to is employed to create critical dimension (CD) areas of a semiconductor design on a semiconductor wafer. Optical exposure lithography is employed to create non-CD areas of the semiconductor design on the semiconductor CD's of the semiconductor design can also be separated from non-CD's of the semiconductor design prior to employing e-beam direct writing and optical exposure lithography.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: November 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventor: Chin-Hsiang Lin
  • Patent number: 7291554
    Abstract: A method for forming a semiconductor device includes the steps of forming a flowable film made of an insulating material with flowability; forming a first concave portion in the flowable film through transfer of a convex portion of a pressing face of a pressing member by pressing the pressing member against the flowable film; forming a solidified film having the first concave portion by solidifying the flowable film through annealing at a first temperature with the pressing member pressed against the flowable film; forming a burnt film having the first concave portion by burning the solidified film through annealing at a second temperature higher than the first temperature; forming a second concave portion connected at least to the first concave portion in the burnt film by forming, on the burnt film, a mask having an opening for forming the second concave portion and etching the burnt film by using the mask; and forming a plug and a metal interconnect by filing the first concave portion and the second concav
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: November 6, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideo Nakagawa, Masaru Sasago, Yoshihiko Hirai
  • Patent number: 7265013
    Abstract: A structure fabrication method. The method comprises providing a structure which comprises (a) a to-be-etched layer, (b) a memory region, (c) a positioning region, (d) and a capping region on top of one another. Then, the positioning region is indented. Then, a conformal protective layer is formed on exposed-to-ambient surfaces of the structure. Then, portions of the conformal protective layer are removed so as to expose the capping region to the surrounding ambient without exposing the memory region to the surrounding ambient. Then, the capping region is removed so as to expose the positioning region to the surrounding ambient. Then, the positioning region is removed so as to expose the memory region to the surrounding ambient. Then, the memory region is directionally etched with remaining portions of the conformal protection layer serving as a blocking mask.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Kirk D. Peterson
  • Patent number: 7253105
    Abstract: The present invention relates to methods of improving the fabrication of interconnect structures of the single or dual damascene type, in which there is no problem of hard mask retention or of conductivity between the metal lines after fabrication. The methods of the present invention include at least steps of chemical mechanical polishing and UV exposure or chemical repair treatment which steps improve the reliability of the interconnect structure formed. The present invention also relates to an interconnect structure which include a porous ultra low k dielectric of the SiCOH type in which the surface layer thereof has been modified so as to form a gradient layer that has both a density gradient and a C content gradient.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Christos D. Dimitrakopoulos, Stephen M. Gates, Vincent J. McGahay, Sanjay C. Mehta
  • Patent number: 7247571
    Abstract: A method for planarizing a semiconductor structure is disclosed. A semiconductor substrate having a first area in which one or more trenches are formed in a first pattern density, and a second area in which one or more trenches are formed in a second pattern density lower than the first pattern density, is provided. A first dielectric layer is formed above the semiconductor for covering the trenches in the first and second areas. A first chemical mechanical polishing is performed on the first dielectric layer using a predetermined type of slurry for reducing a thickness thereof. The first dielectric layer is then rinsed. A second chemical mechanical polishing is performed on the first dielectric layer using the predetermined type of slurry for further removing the first dielectric layer outside the trenches, thereby reducing a step height variation between surfaces of the first and second areas.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: July 24, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Tsung Chen, Yung-Cheng Lu, Zhen-Cheng Wu, Pi-Tsung Chen
  • Patent number: 7163879
    Abstract: A transistor gate structure that is free from notches is formed by using a hard mask. The hard mask has a bilayer structure of a BARC (bottom antireflective coating) over a silicon dioxide layer. A photoresist layer is formed over a portion corresponding to the gates. A first etch forms the gate structure. Following removal of the photoresist, a second etch completely removes the BARC. The silicon dioxide layer can be removed by a subsequent wet etch with HF.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 16, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Koji Tamura
  • Patent number: 7153781
    Abstract: In a process for etching poly Si gate stacks with raised STI structure where the thickness of poly Si gates at the AA and STI are different, the improvement comprising: a) etching a gate silicide layer+a poly Si 2 layer; b) forming a continuous poly Si passivation layer on sidewalls of the silicide and poly Si 2 layers and at the interface of the poly Si 2 layer and a poly Si 1 layer and affecting thermal oxidation to form an underlying thin Si oxide gate layer; c) affecting a Si oxide breakthrough etch to clear the passivation layer at interface of the poly Si 2 and the poly Si 1 layers while leaving intact the passivation layer on the sidewalls of the silicide and the poly Si 2 layers; and d) etching the poly Si 1 layer with an oxide selective process to preserve the underlying thin gate oxide and thin passivation layer at the sidewall to obtain vertical profiles of poly Si gate stacks both at the AA and the STI oxide.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: December 26, 2006
    Assignee: Infineon Technologies AG
    Inventors: Heon Lee, Young-Jin Park
  • Patent number: 7087532
    Abstract: A process for forming sublithographic structures such as fins employs a hardmask protective layer above a hardmask to absorb damage during a dry etching step, thereby preserving symmetry in the hardmask and eliminating a source of defects.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: David M Dobuzinsky, Jochen C. Beintner, Siddhartha Panda