Mechanical Treatment, E.g., Grinding, Polishing, Cutting (epo) Patents (Class 257/E21.237)
  • Patent number: 9472458
    Abstract: In one embodiment, semiconductor die are singulated from a semiconductor wafer by placing the semiconductor wafer onto a carrier tape, forming singulation lines through the semiconductor wafer, and reducing the presence of residual contaminates on the semiconductor wafer.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 18, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jason Michael Doub, Gordon M. Grivna
  • Patent number: 9399274
    Abstract: An apparatus and method of polishing a substrate is described. The polishing includes: rotating a substrate; pressing a first polishing tool against an edge portion of the substrate to polish the edge portion; and pressing a second polishing tool against the edge portion of the substrate to polish the edge portion. The second polishing tool is located more inwardly than the first polishing tool with respect to a radial direction of the substrate. The first polishing tool has a polishing surface rougher than a polishing surface of the second polishing tool.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: July 26, 2016
    Assignee: Ebara Corporation
    Inventors: Tetsuji Togawa, Atsushi Yoshida, Toshifumi Watanabe
  • Patent number: 9040424
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 26, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Janos Fucsko, David H. Wells, Patrick Flynn, Whonchee Lee
  • Patent number: 9034733
    Abstract: In one embodiment, semiconductor die are singulated from a semiconductor wafer having a backmetal layer by placing the semiconductor wafer onto a carrier tape with the backmetal layer adjacent the carrier tape, forming singulation lines through the semiconductor wafer to expose the backmetal layer within the singulation lines, and separating portions of the backmetal layer within the singulation lines using a pressurized fluid applied to the carrier tape.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: May 19, 2015
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: William F. Burghout, Dennis Lee Conner, Michael J. Seddon, Jay A. Yoder, Gordon M. Grivna
  • Patent number: 9029239
    Abstract: A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Sandia Corporation
    Inventors: Anna Tauke-Pedretti, Gregory N. Nielson, Jeffrey G. Cederberg, Jose Luis Cruz-Campa
  • Patent number: 9006010
    Abstract: Radiation detectors and methods of fabricating radiation detectors are provided. One method includes mechanically polishing at least a first surface of a semiconductor wafer using a polishing sequence including a plurality of polishing steps, wherein a last polishing step of the polishing sequence includes polishing with a slurry having a grain size smaller than about 0.1 ?m to create a polished first surface. The method also includes applying (i) an encapsulation layer on a top of the polished first surface to seal the polished first surface and (ii) a photoresist layer on top of the encapsulation layer on the polished first surface. The method further includes creating undercuts of the encapsulation layer under the photoresist layer. The method additionally includes partially etching the polished first surface of the semiconductor via the openings in the photoresist layer and in the encapsulation layer to partially etch the semiconductor creating etched regions.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventors: Arie Shahar, Eliezer Traub, Diego Sclar, Peter Rusian
  • Patent number: 8969175
    Abstract: A method for producing singulated semiconductor components includes providing a starting substrate. An etching process is carried out to form depressions at a side of the starting substrate. The depressions are arranged in the region of the semiconductor components to be produced. Walls present between the depressions are arranged in the region of separating regions provided for severing the starting substrate. The method furthermore comprises forming a metallic layer on the side of the starting substrate with the depressions and walls and carrying out a further etching process for severing the starting substrate in the separating regions and forming the singulated semiconductor components.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 3, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Ploessl, Heribert Zull
  • Patent number: 8962452
    Abstract: In one embodiment, a method of singulating semiconductor die from a semiconductor wafer includes forming a material on a surface of a semiconductor wafer and reducing a thickness of portions of the material. Preferably, the thickness of the material is reduced near where singulation openings are to be formed in the semiconductor wafer.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 24, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 8952555
    Abstract: To provide a technique capable of positioning of a semiconductor chip and a mounting substrate with high precision by improving visibility of an alignment mark. In a semiconductor chip constituting an LCD driver, a mark is formed in an alignment mark formation region over a semiconductor substrate. The mark is formed in the same layer as that of an uppermost layer wiring (third layer wiring) in an integrated circuit formation region. Then, in the lower layer of the mark and a background region surrounding the mark, patterns are formed. At this time, the pattern P1a is formed in the same layer as that of a second layer wiring and the pattern P1b is formed in the same layer as that of a first layer wiring. Further, the pattern P2 is formed in the same layer as that of a gate electrode, and the pattern P3 is formed in the same layer as that of an element isolation region.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: February 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Masami Koketsu, Toshiaki Sawada
  • Patent number: 8952496
    Abstract: A wafer surface of a semiconductor wafer to be used as a device active region is mirror-polished, and an outer peripheral portion of the mirror-polished wafer surface is further polished, thereby forming an edge roll-off region between the device active region of the wafer surface and a beveled portion formed at the wafer edge. The edge roll-off region has a specific roll-off shape corresponding to an edge roll-off of the oxide film to be formed in a device fabrication process. Thus, a semiconductor wafer can be provided in which reduction in the thickness of an oxide film on the outer peripheral portion of the wafer in a CMP process can be prevented while maintaining high flatness of the wafer surface.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: February 10, 2015
    Assignee: Sumco Corporation
    Inventor: Sumihisa Masuda
  • Patent number: 8927348
    Abstract: Provided are a method of manufacturing a group-III nitride semiconductor light-emitting device in which a light-emitting device excellent in the internal quantum efficiency and the light extraction efficiency can be obtained, a group-III nitride semiconductor light-emitting device and a lamp. Included are an epitaxial step of forming a semiconductor layer (30) so as to a main surface (20) of a substrate (2), a masking step of forming a protective film on the semiconductor layer (30), a semiconductor layer removal step of removing the protective film and the semiconductor layer (30) by laser irradiation to expose the substrate (2), a grinding step of reducing the thickness of the substrate (2), a polishing step of polishing the substrate (2), a laser processing step of providing processing marks to the inside of the substrate (2), a division step of creating a plurality of light-emitting devices (1) while forming a division surface of the substrate (2) to have a rough surface.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: January 6, 2015
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Susumu Sugano, Hisayuki Miki, Hironao Shinohara
  • Patent number: 8871571
    Abstract: A frame includes heat slug pads coupled together in a N×M matrix such that singulation of the heat slug pads consists of one or more passes across the frame, wherein the one or more passes are parallel. A method of attaching heat slug pads to packages includes gathering a plurality of packages, preparing a heat slug frame including a N×M matrix of heat slug pads, dispensing thermally conductive material onto surfaces of the heat slug pads, attaching the plurality of packages onto the heat slug pads, and singulating the heat slug pads, wherein the singulating step consists of one or more parallel passes across the N×M matrix. A method of attaching heat slug foil to packages includes preparing a plurality of packages, laminating the heat slug foil to one side of the plurality of packages using thermally conductive material, and singulating the plurality of packages.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: October 28, 2014
    Assignee: UTAC Thai Limited
    Inventor: Saravuth Sirinorakul
  • Patent number: 8865566
    Abstract: Multiphoton absorption is generated, so as to form a part which is intended to be cut 9 due to a molten processed region 13 within a silicon wafer 11, and then an adhesive sheet 20 bonded to the silicon wafer 11 is expanded. This cuts the silicon wafer 11 along the part which is intended to be cut 9 with a high precision into semiconductor chips 25. Here, opposing cut sections 25a, 25a of neighboring semiconductor chips 25, 25 are separated from each other from their close contact state, whereby a die-bonding resin layer 23 is also cut along the part which is intended to be cut 9. Therefore, the silicon wafer 11 and die-bonding resin layer 23 can be cut much more efficiently than in the case where the silicon wafer 11 and die-bonding resin layer 23 are cut with a blade without cutting a base 21.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 21, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Ryuji Sugiura
  • Patent number: 8841170
    Abstract: A method of singulating semiconductor devices in the close proximity to active structures by controlling interface charge of semiconductor device sidewalls is provided that includes forming a scribe on a surface of a semiconductor devices, where the scribe is within 5 degrees of a crystal lattice direction of the semiconductor device, cleaving the semiconductor device along the scribe, where the devices are separated, using a coating process to coat the sidewalls of the cleaved semiconductor device with a passivation material, where the passivation material is disposed to provide a fixed charge density at a semiconductor interface of the sidewalls, and where the fixed charge density interacts with charge carriers in the bulk of the material.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 23, 2014
    Assignees: The Regents of the University of California, Naval Research Laboratory
    Inventors: Vitaliy Fadeyev, Hartmut F. W. Sadrozinski, Marc Christophersen, Bernard F. Phlips
  • Patent number: 8828891
    Abstract: For modulating laser light for forming a modified region SD3 at an intermediate position between a position closer to a rear face 21 and a position closer to a front face 3 with respect to an object 1, a quality pattern J having a first brightness region extending in a direction substantially orthogonal to a line 5 and second brightness regions located on both sides of the first brightness region in the extending direction of the line 5 is used. After forming modified regions SD1, SD2 at positions closer to the rear face 21 but before forming modified regions SD4, SD5 at positions closer to the rear face 21 while using the front face 3 as a laser light entrance surface, the modified region SD3 is formed at the intermediate position by irradiation with laser light modulated according to a modulation pattern including the quality pattern J.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 9, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Takeshi Sakamoto
  • Patent number: 8802543
    Abstract: A laser processing method which can highly accurately cut objects to be processed having various laminate structures is provided. An object to be processed comprising a substrate and a laminate part disposed on the front face of the substrate is irradiated with laser light L while a light-converging point P is positioned at least within the substrate, so as to form a modified region due to multiphoton absorption at least within the substrate, and cause the modified region to form a starting point region for cutting. When the object is cut along the starting point region for cutting, the object 1 can be cut with a high accuracy.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: August 12, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu
  • Patent number: 8791574
    Abstract: In a manufacturing method of a semiconductor device having a multilevel interconnect layer including a low-k layer, a two-step cutting technique is used for dicing. After formation of a groove in a semiconductor wafer with a tapered blade, the groove is divided with a straight blade thinner than the groove width. The multilevel interconnect layer portion is cut while being covered with a tapered face and then the wafer is separated with a thin blade which is not brought into contact with the multilevel interconnect layer portion. The wafer can thus be diced without damaging a relatively fragile low-k layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 29, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiko Akiba, Minoru Kimura, Masao Odagiri
  • Patent number: 8772177
    Abstract: A wafer surface of a semiconductor wafer to be used as a device active region is mirror-polished, and an outer peripheral portion of the mirror-polished wafer surface is further polished, thereby forming an edge roll-off region between the device active region of the wafer surface and a beveled portion formed at the wafer edge. The edge roll-off region has a specific roll-off shape corresponding to an edge roll-off of the oxide film to be formed in a device fabrication process. Thus, a semiconductor wafer can be provided in which reduction in the thickness of an oxide film on the outer peripheral portion of the wafer in a CMP process can be prevented while maintaining high flatness of the wafer surface.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 8, 2014
    Assignee: Sumco Corporation
    Inventor: Sumihisa Masuda
  • Patent number: 8753923
    Abstract: A wafer processing method of dividing a wafer along streets. The wafer processing method includes a protective tape attaching step of attaching a protective tape to the front side of the wafer, a modified layer forming step of holding the wafer through the protective tape on a chuck table of a laser processing apparatus under suction and next applying a laser beam having a transmission wavelength to the wafer from the back side of the wafer along the streets, thereby forming a modified layer inside the wafer along each street, and a wafer dividing step of canceling suction holding of the wafer by the chuck table and next applying an air pressure to the wafer now placed on the holding surface in the condition where horizontal movement of the wafer is limited, thereby dividing the wafer along each street where the modified layer is formed, thus obtaining individual devices.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: June 17, 2014
    Assignee: Disco Corporation
    Inventors: Satoshi Kobayashi, Jinyan Zhao
  • Patent number: 8748289
    Abstract: A method for manufacturing a semiconductor device makes it possible to efficiently polish with a polishing tape a peripheral portion of a silicon substrate under polishing conditions particularly suited for a deposited film and for silicon underlying the deposited film. The method includes pressing a first polishing tape against a peripheral portion of a device substrate having a deposited film on a silicon surface while rotating the device substrate at a first rotational speed, thereby removing the deposited film lying in the peripheral portion of the device substrate and exposing the underlying silicon. A second polishing tape is pressed against the exposed silicon lying in the peripheral portion of the device substrate while rotating the device substrate at a second rotational speed, thereby polishing the silicon to a predetermined depth.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: June 10, 2014
    Assignee: Ebara Corporation
    Inventors: Masayuki Nakanishi, Tetsuji Togawa, Kenya Ito, Masaya Seki, Kenji Iwade, Takeo Kubota
  • Patent number: 8728916
    Abstract: A method for manufacturing a semiconductor element of the present invention, has: a laser irradiation step of focusing a pulsed laser beam inside of a substrate constituting a wafer, thereby forming a plurality of isolated processed portions along an intended dividing line inside of the substrate, and creating a fissure that runs from the processed portions at least to the surface of the substrate and links adjacent processed portions; and a wafer division step of dividing the wafer along the intended dividing line.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 20, 2014
    Assignee: Nichia Corporation
    Inventor: Hiroaki Tamemoto
  • Patent number: 8722516
    Abstract: A plurality of modified parts are formed at a first formation pitch for a line arranged along the M-plane of a single-crystal sapphire substrate to construct a modified region and cause a fracture occurring from the modified region to reach a principal surface of the single-crystal sapphire substrate. A plurality of modified parts are formed at a second formation pitch narrower than the first formation pitch for a line arranged along the A-plane of the single-crystal sapphire substrate to construct a modified region and cause a fracture occurring from the modified region to reach the principal surface of the single-crystal sapphire substrate. Along the lines, a knife edge is pressed against a wafer from the side of the single-crystal sapphire substrate opposite from the principal surface of the single-crystal sapphire substrate where the fractures have reached, to cut the wafer along the lines.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: May 13, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takeshi Yamada, Masaharu Hoshikawa, Yasunaga Nara
  • Patent number: 8709912
    Abstract: Even when a substrate for treatment is joined with a supporting substrate having an outer shape larger than that of the substrate for treatment, with a photothermal conversion layer and an adhesive layer interposed, and the surface of the substrate for treatment on the side opposite this joined surface is treated, the occurrence of a defective external appearance on the treatment surface of the substrate for treatment is prevented. An adhesive layer 4 is formed on one surface of a substrate for treatment 3, a photothermal conversion layer 2 is formed on one surface of a supporting substrate 1 having a surface with an outer shape larger than that of the surface of the substrate for treatment, and the substrate for treatment 3 is bonded onto the surface of the photothermal conversion layer 2 with the adhesive layer 4 interposed, to obtain a layered member.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: April 29, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yuichi Urano, Kenichi Kazama
  • Patent number: 8709915
    Abstract: A method of manufacturing a semiconductor device comprises: forming a protective film so as to cover at least a side edge of a substrate; forming a trench, which is annular in shape when viewed oppositely to a first principal surface of the substrate, on the first principal surface by etching using a photoresist pattern; and forming an insulating film so as to fill the trench, to form an insulating ring.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 29, 2014
    Inventor: Takeo Tsukamoto
  • Patent number: 8703583
    Abstract: A technique with which die bonding can be carried out without forming a void in a bond area is provided. A vacuum supply line that connects to a vacuum chuck hole formed in the bottom face of a vacuuming collet and supplies the vacuuming collet with reduced pressure for vacuum chucking a chip is constructed of two systems. That is, the vacuum supply line is so structured that a first pipe and a second pipe connect to the vacuuming collet. The first pipe supplies the vacuuming collet with a vacuum that provides suction force when a chip is unstuck from a dicing tape and transported to a mounting position on a wiring substrate. The second pipe supplies the vacuuming collet with a vacuum that provides suction force when a chip is mounted over a wiring substrate. The intensity of the vacuum (suction force) supplied to the vacuuming collet is controlled by opening or closing valves respectively installed in the pipes.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 22, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Maki, Masayuki Mochizuki, Ryuichi Takano, Yoshiaki Makita, Haruhiko Fukasawa, Keisuke Nadamoto, Tatsuyuki Okubo
  • Patent number: 8679945
    Abstract: An integrated circuit is formed by coating a top surface of a wafer that has been processed through all integrated circuit chip manufacturing steps prior to backgrind with photoresist, applying backgrind tape over a top surface of the photoresist, backgrinding a back surface of the wafer to a specified thickness, removing the backgrind tape from the top surface of the photoresist, and removing the photoresist. The surface of the integrated circuit and any devices that may be bonded to the surface of the integrated circuit are protected by the photoresist layer during removal of the backgrind tape.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 25, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory A. Moore, Tyonda Hill
  • Patent number: 8679944
    Abstract: The invention provides a method of trimming a structure that includes a first wafer bonded to a second wafer, with the first wafer having a chamfered edge. The method includes a first trimming step carried out over a first depth that includes at least the thickness of the first wafer and over a first width determined from the edge of the first wafer. A second trimming step is then carried out over a second depth that includes at least the thickness of the first wafer and over a second width that is less than the first width.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 25, 2014
    Assignee: Soitec
    Inventors: Marcel Broekaart, Marion Migette, Sébastien Molinari, Eric Neyret
  • Patent number: 8664089
    Abstract: In one embodiment, semiconductor die are singulated from a semiconductor wafer having a backmetal layer by placing the semiconductor wafer onto a carrier tape with the backmetal layer adjacent the carrier tape, forming singulation lines through the semiconductor wafer to expose the backmetal layer within the singulation lines, and fluid machining the semiconductor wafer to remove the backmetal layer from the singulation lines.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: March 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: William F. Burghout, Dennis Lee Conner, Michael J. Seddon, Jay A. Yoder
  • Patent number: 8659113
    Abstract: An embedded semiconductor die package is made by mounting a frame carrier to a temporary carrier with an adhesive. The frame carrier includes die mounting sites each including a leadframe interconnect structure around a cavity. A semiconductor die is disposed in each cavity. An encapsulant is deposited in the cavity over the die. A package interconnect structure is formed over the leadframe interconnect structure and encapsulant. The package interconnect structure and leadframe interconnect structure are electrically connected to the die. The frame carrier is singulated into individual embedded die packages. The semiconductor die can be vertically stacked or placed side-by-side within the cavity. The embedded die packages can be stacked and electrically interconnected through the leadframe interconnect structure. A semiconductor device can be mounted to the embedded die package and electrically connected to the die through the leadframe interconnect structure.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 25, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Il Kwon Shim, Seng Guan Chow, Heap Hoe Kuan
  • Publication number: 20140051233
    Abstract: One illustrative method disclosed herein includes forming a plurality of die above a crystalline semiconducting substrate, irradiating and cooling an edge region of the substrate to form an amorphous region in the edge region of the substrate and, after forming the amorphous region, performing at least one process operation to reduce the thickness of the substrate.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Rahul Agarwal, Ramakanth Alapati, Jon Greenwood
  • Patent number: 8633603
    Abstract: In a semiconductor chip constituting an LCD driver, a mark is formed in an alignment mark formation region over a semiconductor substrate. The mark is formed in the same layer as that of an uppermost layer wiring (third layer wiring) in an integrated circuit formation region. Then, in the lower layer of the mark and a background region surrounding the mark, patterns are formed. At this time, the pattern P1a is formed in the same layer as that of a second layer wiring and the pattern Pib is formed in the same layer as that of a first layer wiring. Further, the pattern P2 is formed in the same layer as that of a gate electrode, and the pattern P3 is formed in the same layer as that of an element isolation region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 21, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masami Koketsu, Toshiaki Sawada
  • Publication number: 20140017903
    Abstract: Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having a first surface. In the method, a stress is applied to the semiconductor substrate to change inter-atomic spacing at the first surface of the semiconductor substrate to a stressed inter-atomic spacing. Then, the semiconductor substrate is processed. Thereafter, the stress is released and the first surface of the processed semiconductor substrate retains the stressed inter-atomic spacing.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 16, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Abner Bello, Abhijeet Paul
  • Patent number: 8629567
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an isolated contact having a contact protrusion; forming a die paddle, adjacent to the isolated contact, having a die paddle contour; depositing a contact pad on the contact protrusion; coupling an integrated circuit die to the contact protrusion; molding an encapsulation on the integrated circuit die; and depositing an organic filler on and between the isolated contact and the die paddle, the contact protrusion extended past the organic filler.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 14, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8614131
    Abstract: A method for fabricating an integrated circuit providing an enlarged contact process window while reducing device size is disclosed. The method comprises providing a substrate including a first region and a second region, the first and second regions having one or more gate structures including a dummy gate layer; removing the dummy gate layer from at least one of the one or more gate structures in the first and second regions to form one or more trenches in the first and second regions; filling the one or more trenches in the first and second regions with a conductive layer; selectively etching back the conductive layer of the one or more gate structures in the second region of the substrate; forming a protective layer over the etched back conductive layer of the one or more gate structures in the second region; and forming one or more contact openings in the first and second regions.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: December 24, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: An-Chun Tu, Chen-Ming Huang
  • Patent number: 8598015
    Abstract: A laser processing method which can highly accurately cut objects to be processed having various laminate structures is provided. An object to be processed comprising a substrate and a laminate part disposed on the front face of the substrate is irradiated with laser light L while a light-converging point P is positioned at least within the substrate, so as to form a modified region due to multiphoton absorption at least within the substrate, and cause the modified region to form a starting point region for cutting. When the object is cut along the starting point region for cutting, the object 1 can be cut with a high accuracy.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 3, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu
  • Patent number: 8598720
    Abstract: A semiconductor device and its manufacturing method are offered to increase the number of semiconductor devices obtained from a semiconductor wafer while simplifying a manufacturing process. After forming a plurality of pad electrodes in a predetermined region on a top surface of a semiconductor substrate, a supporter is bonded to the top surface of the semiconductor substrate through an adhesive layer. Next, an opening is formed in the semiconductor substrate in a region overlapping the predetermined region. A wiring layer electrically connected with each of the pad electrodes is formed in the opening. After that, a stacked layer structure including the semiconductor substrate and the supporter is cut by dicing along a dicing line that is outside the opening.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: December 3, 2013
    Assignees: SANYO Semiconductor Co., Ltd., SANYO Semiconductor Manufacturing Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Hiroaki Tomita, Kazuyuki Sutou
  • Publication number: 20130316538
    Abstract: The generation of surface patterns or the replication of surface patterns is achieved in the present disclosure without the need to employ an etching process. Instead, a unique fracture mode referred to as spalling is used in the present disclosure to generate or replicate surface patterns. In the case of surface pattern generation, a surface pattern is provided in a stressor layer and then spalling is performed. In the case of surface pattern replication, a surface pattern is formed within or on a surface of a base substrate, and then a stressor layer is applied. After applying the stressor layer, spalling is performed. Generation or replication of surface patterns utilizing spalling provides a low cost means for generation or replication of surface patterns.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Augustin J. Hong, Ning Li, Devendra K. Sadana, Katherine L. Saenger, Davood Shahrjerdi, Kuen-Ting Shiu
  • Patent number: 8592286
    Abstract: An ultra-thin wafer system providing thinning a wafer on a protective tape to an ultra-thin thickness and forming electrical interconnects on the thinned wafer on a support plate.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: November 26, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Heap Hoe Kuan, Byung Tai Do
  • Patent number: 8592316
    Abstract: A nitride semiconductor substrate includes two principal surfaces including an upper surface that is a growth face and a lower surface on its opposite side. An FWHM in a surface layer region at depths of from 0 to 250 nm from the upper surface is narrower than an FWHM in an inner region at depths exceeding 5 ?m from the upper surface, where the FWHMs are obtained by X-ray rocking curve measurement using diffraction off a particular asymmetric plane inclined relative to the upper surface.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: November 26, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Yuichi Oshima, Takehiro Yoshida
  • Patent number: 8569148
    Abstract: The present invention provides a final polishing method for a silicon single crystal wafer that performs final polishing with a polishing rate being set to 10 nm/min or below at a final polishing step as a final step among a plurality of polishing steps for polishing the silicon single crystal wafer with a polishing slurry being interposed between the silicon single crystal wafer and a polishing pad, and a silicon single crystal wafer subjected to final polishing by this method. Hereby, there can be provided the final polishing method that can obtain a silicon single crystal wafer with less PIDs (Polishing Induced Defects) and the silicon single crystal wafer subjected to final polishing by this method.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: October 29, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Naoto Iizuka, Hirotaka Kurimoto, Koichi Kosaka, Fumiaki Maruyama
  • Patent number: 8563394
    Abstract: Solutions for forming an integrated circuit structure having a substantially planar N-P step height are disclosed. In one embodiment, a method includes: providing a structure having an n-type field effect transistor (NFET) region and a p-type field effect transistor (PFET) region; forming a mask over the PFET region to leave the NFET region exposed; performing dilute hydrogen-flouride (DHF) cleaning on the exposed NFET region to substantially lower an STI profile of the NFET region; and forming a silicon germanium (SiGE) channel in the PFET region after the performing of the DHF.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: October 22, 2013
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Weipeng Li, Deleep R. Nair, Jae-Eun Park, Voon-Yew Thean, Young Way Teh
  • Patent number: 8552510
    Abstract: A semiconductor device includes: a substrate; a transistor that has a ring-shaped gate electrode formed on the substrate; a plurality of external dummy electrodes that are arranged outside the gate electrode and are formed in the same layer as the gate electrode; and at least one internal dummy electrode that is arranged inside the gate electrode and is formed in the same layer as the gate electrode.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: October 8, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Takamitsu Onda
  • Patent number: 8546244
    Abstract: A method includes the steps of: (a) fixing a front surface of a wafer (semiconductor wafer) having the front surface, a plurality of chip regions formed on the front surface, a dicing region formed between the chip regions, and a rear surface opposite to the front surface to the supporting member; (b) in a state of having the wafer fixed to the supporting member, grinding the rear surface of the wafer to expose the rear surface; (c) in a state of having the wafer fixed to the supporting member, dividing the wafer into the chip regions; (d) etching side surfaces of the chip regions to remove crushed layers formed in the step (c) on the side surfaces and obtain a plurality of semiconductor chips. After the steps (e) and (d), the plurality of divided chip regions are peeled off from the supporting member to obtain a plurality of semiconductor chips.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: October 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiyuki Abe, Chuichi Miyazaki, Toshihide Uematsu, Haruo Shimamoto
  • Patent number: 8536025
    Abstract: A resized wafer using a negative photoresist ring, methods of manufacture and design structures thereof are disclosed. The method includes forming a ring within a radius of a wafer. The method also includes patterning a photoresist formed on the wafer, by exposing the photoresist to energy. Additionally, the method includes forming troughs in a substrate of the wafer based on the patterning of the photoresist, wherein the ring blocks formation of the troughs underneath the ring. The method also includes filling the troughs with a metal and resizing the wafer at an area of the ring.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dennis P. Hogan, Gregory S. Jankowski, Robert K. Leidy
  • Patent number: 8524576
    Abstract: In a wafer processing method, the back side of a wafer having a plurality of devices on the front side thereof is ground, thereby reducing the thickness of the wafer to a predetermined thickness. The back side of the wafer is polished after performing the back grinding step, thereby removing a grinding strain, and a silicon nitride film is formed on the back side of the wafer. The thickness of the silicon nitride film to be formed in the silicon nitride film forming step is set to 6 to 100 nm. Thus, the silicon nitride film having a thickness of 6 to 100 nm is formed on the polished back side of the wafer from which a grinding strain has been removed. Accordingly, each device constituting the wafer can ensure a sufficient die strength and a sufficient gettering effect.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 3, 2013
    Assignee: Disco Corporation
    Inventors: Seiji Harada, Yoshikazu Kobayashi
  • Patent number: 8524602
    Abstract: The present invention relates to a method for forming vias in a substrate, including the following steps: (a) providing a substrate having a first surface and a second surface; (b) forming a groove on the substrate; (c) filling the groove with a conductive metal; (d) removing part of the substrate which surrounds the conductive metal, wherein the conductive metal is maintained so as to form an accommodating space between the conductive metal and the substrate; (e) forming an insulating material in the accommodating space; and (f) removing part of the second surface of the substrate to expose the conductive metal and the insulating material. In this way, thicker insulating material can be formed in the accommodating space, and the thickness of the insulating material in the accommodating space is even.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: September 3, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Meng-Jen Wang
  • Patent number: 8518801
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 8518800
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20130207243
    Abstract: The method includes providing a semiconductor chip having a first main face and a second main face opposite the first main face. The semiconductor chip includes an electrical device adjacent to the first main face. Material of the semiconductor chip is removed at the second main face except for a pre-defined portion so that a non-planar surface remains at the second main face.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Edward Fuergut, Joachim Mahler
  • Patent number: 8497515
    Abstract: An improved light emitting diode (LED) device with a thermoelectric module is provided. In the preferred embodiment, the LED device herein includes a heat sink/housing containing a LED light, heat slug, and LED circuit board attached to a first side of a thermoelectric module and a heat sink on a second side of the thermoelectric module. Heat is conducted from the LED light and through the circuit board to the first side of the thermoelectric module. The heat sink housing dissipates heat from the second side of the thermoelectric module to create a temperature differential across the thermoelectric module and generate electricity.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: July 30, 2013
    Inventor: E. Mikhail Sagal