Using Etching To Form Recess At Gate Location (epo) Patents (Class 257/E21.429)
  • Patent number: 8652910
    Abstract: In a method for fabricating a semiconductor device, a substrate may be provided that includes: a base, an active fin that projects from an upper surface of the base and is integrally formed with the base, and a buffer oxide film pattern formed on the active fin in contact with the active fin. A first dummy gate film may be formed on the substrate to cover the buffer oxide film pattern and the first dummy gate film may be smoothed to expose the buffer oxide film pattern. A second dummy gate film may be formed on the exposed buffer oxide film pattern and the first dummy gate film.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bo-Kyeong Kang, Jae-Seok Kim, Ho-Young Kim, Bo-Un Yoon, Il-Young Yoon
  • Patent number: 8614127
    Abstract: A FinFET device is fabricated by first receiving a FinFET precursor. The FinFET precursor includes a substrate, first fins on the substrate, isolation regions on sides of the first fins, source/drain features on the substrate and dummy gate stacks separating the source/drain features on the substrate. The dummy gate stack is removed to expose the first fins and then the first fins are recessed to form channel trenches. A channel layer is deposited in the channel trenches and then is recessed. Then the isolation regions are recessed to laterally expose at least a portion of the recessed channel layer to form second fins. A high-k (HK) dielectric layer and a metal gate (MG) layer are deposited on the second fins.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 24, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Chieh Yang, Wei-Hao Wu, Wen-Hsing Hsieh, Zhiqiang Wu
  • Patent number: 8598627
    Abstract: An n-layer is arranged above a substrate, which can be GaAs, and a p-layer (4) is arranged on the n-layer. The p-layer is separated by a gate electrode into two separate portions forming source and drain. The gate electrode is insulated from the semiconductor material by a gate dielectric. Source/drain contacts are electrically conductively connected with the portions of the p-layer.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: December 3, 2013
    Assignee: EPCOS AG
    Inventor: Léon C. M. van den Oever
  • Patent number: 8598026
    Abstract: In a method of manufacturing a semiconductor device, a buried layer is formed in a region of a semiconductor substrate and an epitaxial growth layer is formed on the buried layer and the semiconductor substrate. Trenches are formed in the epitaxial growth layer so as to be arranged side by side in a gate width direction of a transistor to be formed, and so that an entire bottom surface of each trench is entirely surrounded by and disposed in contact with the buried layer. A gate electrode is formed inside and on a top surface of each of the trenches and on a surface of the epitaxial growth layer adjacent to each of the trenches via a gate insulating film. A high concentration source diffusion layer is formed on one side of the gate electrode. A high concentration drain diffusion layer is formed on another side of the gate electrode.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Masayuki Hashitani
  • Patent number: 8541835
    Abstract: A field effect transistor (FET) includes a semiconductor on insulator substrate, the substrate comprising a top semiconductor layer; source and drain regions located in the top semiconductor layer; a channel region located in the top semiconductor layer between the source region and the drain region, the channel region having a thickness that is less than a thickness of the source and drain regions; a gate located over the channel region; and a supporting material located over the source and drain regions adjacent to the gate.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: September 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Dechao Guo, Marwan H. Khater, Christian Lavoie, Zhen Zhang
  • Patent number: 8476701
    Abstract: A semiconductor device includes a transistor that has a trench formed in an element forming region of a substrate, a gate insulating film formed on side faces and a bottom face of the trench, a gate electrode formed on the gate insulating film so as to bury the trench, a source region formed on one side in the gate longitude direction, which is formed on the surface of the substrate, and a drain region formed on the other side in the gate longitude direction. Here, the gate electrode is formed so as to be exposed also on the substrate outside the trench, and the gate electrode is disposed so as to cover upper portions of both ends of the trench and so as to form at least one concave portion having a depth reaching the substrate in a center portion.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takehiro Ueda, Hiroshi Kawaguchi
  • Patent number: 8455343
    Abstract: A semiconductor device includes a first region and a second region, a buried gate arranged in the first region, and an oxidation prevention barrier surrounding the first region.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 4, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Se-Aug Jang
  • Patent number: 8455945
    Abstract: A method for fabricating a semiconductor device includes forming a pad nitride layer that exposes an isolation region over a cell region of a semiconductor substrate; forming a trench in the isolation region of the semiconductor substrate; forming an isolation layer within the trench; etching an active region of the semiconductor substrate by a certain depth to form a recessed isolation region; etching the isolation layer by a certain depth to form a recessed isolation region; depositing a gate metal layer in the recessed active region and the recessed isolation region to form a gate of a cell transistor; forming an insulation layer over an upper portion of the gate; removing the pad nitride layer to expose a region of the semiconductor substrate to be formed with a contact plug; and depositing a conductive layer in the region of the semiconductor substrate to form a contact plug.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 4, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jin Yul Lee, Dong Seok Kim
  • Publication number: 20130023097
    Abstract: Semiconductor devices and methods for making such devices are described. The UMOS (U-shaped MOSFET) semiconductor devices can be formed by providing a semiconductor substrate, forming a trench in the substrate using a wet or dry etching process, and then radiating the trench structure using microwaves (MW) at low temperatures. The MW radiation process improves the profile of the trench and repairs the damage to the trench structure caused by the dry etching process. The microwave radiation can help re-align the Si or SiGe atoms in the semiconductor substrate and anneal out the defects present after the dry etching process. As well, the microwave radiation can getter atoms or ions used in the dry etching process that are left in the lattice of the trench structure. Other embodiments are described.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 24, 2013
    Inventor: Robert J. Purtell
  • Patent number: 8357572
    Abstract: The semiconductor device includes an active region, a recess, a Fin channel region, a gate insulating film, and a gate electrode. The active region is defined by a device isolation structure formed in a semiconductor substrate. The recess is formed by etching the active region and its neighboring device isolation structure using an island shaped recess gate mask as an etching mask. The Fin channel region is formed on the semiconductor substrate at a lower part of the recess. The gate insulating film is formed over the active region including the Fin channel region and the recess. The gate electrode is formed over the gate insulating film to fill up the Fin channel region and the recess.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: January 22, 2013
    Assignee: 658868 N.B. Inc.
    Inventors: Sang Don Lee, Sung Woong Chung
  • Patent number: 8357600
    Abstract: A method for fabricating a semiconductor device is provided, the method includes forming a plug conductive layer over an entire surface of a substrate, etching the plug conductive layer to form landing plugs, etching the substrate between the landing plugs to form a trench, forming a gate insulation layer over a surface of the trench and forming a buried gate partially filling the trench over the gate insulation layer.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: January 22, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong-Han Shin, Jum-Yong Park
  • Patent number: 8247298
    Abstract: Disclosed is a method of manufacturing a semiconductor device comprising: forming a first layer on a sidewall of a trench formed on a main surface of a semiconductor substrate, filling up the trench with a protective film, etching back the protective film by a dry etching method so that a height of a surface of the protective film is lower than an opening of the trench and removing the first layer exposed by the etching-back.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: August 21, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Keisuke Ohtsuka
  • Patent number: 8216893
    Abstract: Stress enhanced transistor devices and methods of fabricating the same are disclosed. In one embodiment, a transistor device comprises: a gate conductor spaced above a semiconductor substrate by a gate dielectric, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the channel region comprises undercut areas under the gate conductor; a stressed material embedded in the undercut areas of the channel region under the gate conductor; and epitaxially grown source and drain regions disposed in the recessed regions of the semiconductor substrate laterally adjacent to the stressed material.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Johnathan E. Faltermeier, Judson R. Holt, Xuefeng Hua
  • Patent number: 8183113
    Abstract: A recessed gate structure in a semiconductor device includes a gate electrode partially buried in a substrate, a blocking member formed in the buried portion of the gate electrode, and a gate insulation layer formed between the gate electrode and the substrate. The blocking member may effectively prevent a void or a seam in the buried portion of the gate electrode from contacting the gate insulation layer adjacent to a channel region in subsequent manufacturing processes. Thus, the semiconductor device may have a regular threshold voltage and a leakage current passing through the void or the seam may efficiently decrease.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: May 22, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Sung Kim, Tae-Young Chung, Soo-Ho Shin, Eun-Cheol Lee
  • Patent number: 8153492
    Abstract: Forming a high-?/metal gate field effect transistor using a gate last process in which the channel region has a curved profile thus increasing the effective channel length improves the short channel effect. During the high-?/metal gate process, after the sacrificial materials between the sidewall spacers are removed, the exposed semiconductor substrate surface at the bottom of the gate trench cavity is etched to form a curved recess. Subsequent deposition of high-? gate dielectric layer and gate electrode metal into the gate trench cavity completes the high-?/metal gate field effect transistor having a curved channel region that has a longer effective channel length.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 10, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ka-Hing Fung
  • Patent number: 8143127
    Abstract: A semiconductor device includes a silicon substrate; a device isolation structure formed in the silicon substrate to delimit an active region which has a pair of gate forming areas, a drain forming area between the gate forming areas, and source forming areas outside the gate forming areas; an asymmetric bulb-type recess gate formed in each gate forming area of the active region and having the shape of a bulb on the lower end portion of the sidewall thereof facing the source forming area; and source and drain areas respectively formed on the surface of the substrate on both sides of the asymmetric bulb-type recess gate.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: March 27, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Do Kim
  • Patent number: 8115252
    Abstract: A MOSFET with a 0.7˜2.0 micrometers deep trench is formed by first carrying out a processing step of opening a trench in a semiconductor substrate. A thick insulator layer is then deposited in the trench such that the film at the bottom of the trench is much thicker than the sidewall of the trench. The insulator layer at the sidewall is then removed followed by the creation of composite dual layers that form the Gate Oxide. Another embodiment has the insulator layer deposited after Gate Oxide growth and stop at a thin Nitride layer which serves as stop layer during insulator pullback at trench sidewall and during Polysilicon CMP. Embodiments of the present invention eliminates weak spot at trench bottom corner encountered when Gate Oxide is grown in a 0.2 micrometers deep trench with thick bottom oxide.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: February 14, 2012
    Assignee: M-Mos Sdn.Bhd
    Inventors: Fwu-Iuan Hshieh, Yee Ai Fai, Ng Yeow Keong
  • Patent number: 8097509
    Abstract: A semiconductor device having a recessed channel and a method for manufacturing the same. The semiconductor device comprises a semiconductor substrate formed with an isolation layer defining an active region including a channel region and a junction region, a recessed trench including a top trench formed within the channel region of the semiconductor substrate and a bottom trench formed from a bottom surface of the top trench with a width narrower than the top trench, and a gate stack overlapping the recessed trench and extending across the active region.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 17, 2012
    Assignee: Hynix Semiconductor Inc,
    Inventor: Jin Yul Lee
  • Patent number: 8076718
    Abstract: The invention has an object to provide an insulation gate type semiconductor device and a method for producing the same in which high breakdown voltage and compactness are achieved. The semiconductor device has a gate trench and a P floating region formed in the cell area and has a terminal trench and a P floating region formed in the terminal area. In addition, a terminal trench of three terminal trenches has a structure similar to that of the gate trench, and the other terminal trenches have a structure in which an insulation substance such as oxide silicon is filled. Also, the P floating region 51 is an area formed by implanting impurities from the bottom surface of the gate trench, and the P floating region is an area formed by implanting impurities from the bottom surface of the terminal trench.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: December 13, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Hidefumi Takaya, Kimimori Hamada, Kyosuke Miyagi, Yasushi Okura, Akira Kuroyanagi, Norihito Tokura
  • Patent number: 8076207
    Abstract: A method of making a gate structure includes the following steps. First, a gate is formed. Then, a first silicon oxide layer, a silicon nitride layer, and a second silicon oxide layer are formed to cover the gate from bottom to top. Later, a dry etching is performed to etch the second silicon oxide layer. After that, a wet etching is performed to etch the silicon nitride layer and the first silicon oxide layer. The aforesaid wet etching is performed by utilizing an RCA cleaning solution. Furthermore, the silicon nitride layer is formed by the SINGEN process. Therefore, the first and second silicon oxide layer and the silicon nitride layer can be etched together by the RCA cleaning solution.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Hung Kao, Chien-En Hsu
  • Patent number: 8058161
    Abstract: A method of manufacturing a semiconductor device having shallow trench isolation includes steps of forming a hard mask layer on the substrate surface, etching a trench through the hard mask, filling the trench with an isolation material, forming a recessed trench, and forming a serpentine gate structure to connect electronic sources and drains.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Gabriel George Barna, Andrew Marshall, Brian K. Kirkpatrick
  • Patent number: 8039347
    Abstract: A semiconductor device having vertically aligned transistors made from pillar structures that have flat side surfaces is presented. The semiconductor device includes a semiconductor substrate, spacers, and gates. The semiconductor substrate has pillar structures that have flat side surfaces. The spacers are on sidewalls only on the upper portions of the pillar structures. The gates surround lower portions of the pillar structures.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: October 18, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong Han Shin, Hyung Soon Park, Jum Yong Park, Sung Jun Kim, Young Ju Lee
  • Patent number: 8012828
    Abstract: A recess gate of a semiconductor device is provided, comprising: a substrate having a recess formed therein; a metal layer formed at the bottom of the recess; a polysilicon layer formed over the metal layer; and a source region and a drain region formed adjacent to the polysilicon layer and spaced from the metal layer.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Min, Si-Hyung Lee, Heedon Hwang, Si-Young Choi, Sangbom Kang, Dongsoo Woo
  • Publication number: 20110198700
    Abstract: A semiconductor device includes a substrate including a memory cell region and a peripheral region and a field pattern including an insulating region disposed on a nitride liner in a trench in the substrate adjacent an active region. The field pattern and the active region extend in parallel through the cell and peripheral regions. The device also includes a transistor in the peripheral region including a source/drain region in the active region. The device further includes an insertion pattern including an elongate conductive region disposed in the substrate and extending along a boundary between the field pattern and the active region in the peripheral region. Fabrication methods are also described.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 18, 2011
    Inventors: Won-Kyung Park, Satoru Yamada, Young Jin Choi, Kyo-Suk Chae
  • Patent number: 7994570
    Abstract: A semiconductor device in which current flows in a vertical direction includes a structure that decreases resistance between a source electrode and a drain electrode along with a current path at a position different from a position having highest electric field intensity between the source electrode and the drain electrode.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: August 9, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Jun Tamura
  • Publication number: 20110171800
    Abstract: A polycrystalline semiconductor layer is formed on a cell active region and a peripheral active region of a substrate. A buried gate electrode is formed in the substrate in the cell active region at a level below the polycrystalline semiconductor layer after forming the polycrystalline semiconductor layer. A gate electrode is formed on the substrate in the peripheral active region from the polysilicon semiconductor layer after forming the buried gate electrode.
    Type: Application
    Filed: November 12, 2010
    Publication date: July 14, 2011
    Inventors: Bongsoo Kim, Chul Lee, Deoksung Hwang, Sang-Bin Ahn
  • Patent number: 7972914
    Abstract: A FinFET semiconductor device has an active region formed of a semiconductor substrate and projecting from a surface of the substrate. A fin having a first projection and a second projection composed of the active region are arranged in parallel and at each side of a central trench formed in a central portion of the active region. Upper surfaces and side surfaces of the first projection and the second projection comprise a channel region. A channel ion implantation layer is provided at a bottom of the central trench and at a lower portion of the fin. A gate oxide layer is provided on the fin. A gate electrode is provided on the gate oxide layer. A source region and a drain region are provided in the active region at sides of the gate electrode. A method of forming such a device is also provided.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-min Kim, Min-sang Kim, Eun-jung Yun
  • Patent number: 7960761
    Abstract: The semiconductor device having a recess channel transistor includes a device isolation structure formed in a semiconductor substrate to define an active region having a recess region at a lower part of sidewalls thereof and a recess channel region formed in the semiconductor substrate under the active region. A method for fabricating the semiconductor device includes forming a device isolation structure in a semiconductor substrate to form an active region having a recess region at a lower part of sidewalls thereof, a gate insulating film formed over the semiconductor substrate including the recess channel region, and a gate electrode formed over the gate insulating film to fill up the recess channel region.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: June 14, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Patent number: 7955930
    Abstract: A semiconductor substrate has a trench in a first main surface. An insulated gate field effect part includes a gate electrode formed in the first main surface. A potential fixing electrode fills the trench and has an expanding part expanding on the first main surface so that a width thereof is larger than the width of the trench. An emitter electrode is formed on the first main surface and insulated from the gate electrode electrically and connected to a whole upper surface of the expanding part of the potential fixing electrode. Thus, a semiconductor device capable of enhancing reliability in order to prevent an aluminum spike from generating and a manufacturing method thereof can be provided.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 7, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tadaharu Minato, Kazutoyo Takano
  • Patent number: 7955919
    Abstract: A transistor integration process provides a damascene method for the formation of gate electrodes and gate dielectric layers. An interlayer-dielectric film is deposited prior to the gate electrode formation to avoid the demanding gap fill requirements presented by adjacent gates. A trench is formed in the interlayer-dielectric film followed by the deposition of the gate material in the trench. This process avoids the potential for damage to high-k gate dielectric layers caused by high thermal cycles and also reduces or eliminates the problematic formation of voids in the dielectric layers filling the gaps between adjacent gates.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: June 7, 2011
    Assignee: LSI Corporation
    Inventors: David Pritchard, Hemanshu Bhatt, David T. Price
  • Patent number: 7951661
    Abstract: A semiconductor device includes a device isolation structure having a grounded conductive layer to define an active region, and a gate formed over the active region and the device isolation structure.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 31, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Sang Kim
  • Patent number: 7947556
    Abstract: A method of manufacturing a semiconductor apparatus includes forming a trench in a semiconductor layer, forming a gate electrode inside the trench, forming a thermally-oxidized film on the gate electrode inside the trench, forming a silicate glass film on the thermally-oxidized film inside the trench, forming a body region inside the semiconductor layer, and forming a source region on the body region. The method provides a semiconductor apparatus having reduced fluctuation of a channel length and low ON-resistance.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: May 24, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Kenya Kobayashi, Hideo Yamamoto, Atsushi Kaneko, Yoshimitsu Murase
  • Patent number: 7923334
    Abstract: A method for fabricating a semiconductor device includes the following steps. A device isolation layer with a trench type is etched in a predetermined portion of a substrate to define an active region. Predetermined portions where gate lines traverse in the device isolation layer are etched to a certain depth to form a plurality of first recesses. A pair of gate lines filling the first recesses and traversing over the active region is formed. Portions of the active region which storage nodes contact on one sides of the gate lines are etched to form a plurality of second recesses. An ion-implantation process is performed to form a plurality of first junction regions beneath the second recesses and to form a second junction region in a portion of the active region between the gate lines such that the second junction region contacts bit lines.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jung Woo Park
  • Patent number: 7898025
    Abstract: A semiconductor device having a recess gate includes a semiconductor substrate having a recess, a conductive pattern for a gate electrode filled into the recess, and having an extension portion protruding higher than a surface of the semiconductor substrate, an epitaxial semiconductor layer having a top surface disposed over the semiconductor substrate, and a gate insulating layer disposed between the epitaxial semiconductor layer and the conductive pattern, and between the semiconductor substrate and the conductive pattern. Further, a method of fabricating the same is disclosed.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 7883971
    Abstract: Disclosed are a gate structure in a trench region of a semiconductor device and a method for manufacturing the same. The semiconductor device includes a pair of drift regions formed in a semiconductor substrate; a trench region formed between the pair of drift regions; an oxide layer spacer on sidewalls of the trench region; a gate formed in the trench region; and a source and a drain formed in the pair of the drift regions, respectively.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 8, 2011
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7879666
    Abstract: A semiconductor process and apparatus fabricate a metal gate electrode (30) and an integrated semiconductor resistor (32) by forming a metal-based layer (26) and semiconductor layer (28) over a gate dielectric layer (24) and then selectively implanting the resistor semiconductor layer (28) in a resistor area (97) to create a conductive upper region (46) and a conduction barrier (47), thereby confining current flow in the resistor semiconductor layer (36) to only the top region (46) in the finally formed device.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: February 1, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Chendong Zhu, Xiangdong Chen, Melanie Sherony
  • Patent number: 7871914
    Abstract: A semiconductor device includes a semiconductor substrate having a recess therein. A gate insulator is disposed on the substrate in the recess. The device further includes a gate electrode including a first portion on the gate insulator in the recess and a second reduced-width portion extending from the first portion. A source/drain region is disposed in the substrate adjacent the recess. The recess may have a curved shape, e.g., may have hemispherical or ellipsoid shape. The source/drain region may include a lighter-doped portion adjoining the recess. Relate fabrication methods are also discussed.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: January 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Ho Kim, Chang-Sub Lee, Jeong-Dong Choe, Sung-Min Kim, Shin-Ae Lee, Dong-Gun Park
  • Patent number: 7871913
    Abstract: A method for manufacturing a semiconductor device having a vertical transistor includes forming hard masks on a semiconductor substrate to expose portions of the semiconductor substrate. Then the exposed portions of the semiconductor substrate are etched to define grooves in the semiconductor substrate. A gate conductive layer is formed on the hard masks and surfaces of the grooves to a thickness that does not completely fill the grooves. A sacrificial layer is formed on the gate conductive layer to completely fill the grooves. A partial thickness of the sacrificial layer is removed to expose the gate conductive layer and portions of the gate conductive layer formed on the hard masks and on sidewalls of upper portions of the grooves are removed. The remaining sacrificial layer is completely removed. Gates are formed on sidewalls of lower portions of the grooves by etching the gate conductive layer.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: January 18, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong Han Shin, Hyung Soon Park, Jum Yong Park, Sung Jun Kim
  • Patent number: 7855115
    Abstract: A field effect transistor (FET) is formed as follows. A trench is formed in a silicon region. An oxidation barrier layer is formed over a surface of the silicon region adjacent the trench and along the trench sidewalls and bottom. A protective layer is formed over the oxidation barrier layer inside and outside the trench. The protective layer is partially removed such that a portion of the oxidation barrier layer extending at least along the trench bottom becomes exposed and portions of the oxidation barrier layer extending over the surface of the silicon region adjacent the trench remain covered by remaining portions of the protective layer.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: December 21, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventor: John Tracey Andrews
  • Patent number: 7851298
    Abstract: Provided is a method for fabricating a transistor in a semiconductor device. The method includes forming an etch stop layer pattern over a semiconductor substrate; forming a semiconductor layer for covering the etch stop layer pattern; forming a recess trench that exposes an upper surface of the etch stop layer pattern by etching the semiconductor layer pattern; removing the etch stop layer pattern exposed in the recess trench; and forming a gate that fills the recess trench.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: December 14, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yong Seok Eun, Su Ho Kim, An Bae Lee, Hye Jin Seo
  • Patent number: 7842572
    Abstract: A method of manufacturing a local recess channel transistor in a semiconductor device. A hard mask layer is formed on a semiconductor substrate that exposes a portion of the substrate. The exposed portion of the substrate is etched using the hard mask layer as an etch mask to form a recess trench. A trench spacer is formed on the substrate along a portion of sidewalls of the recess trench. The substrate along a lower portion of the recess trench is exposed after the trench spacer is formed. The exposed portion of the substrate along the lower portion of the recess trench is doped with a channel impurity to form a local channel impurity doped region surrounding the lower portion of the recess trench. A portion of the local channel impurity doped region surrounding the lower portion of the recess trench is doped with a Vth adjusting impurity to form a Vth adjusting impurity doped region inside the local channel impurity doped region. The width of the lower portion of the recess trench is expanded.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-myeong Jang, Yong-chul Oh, Makoto Yoshida
  • Patent number: 7838405
    Abstract: A method for manufacturing a semiconductor device having a bulb-type recessed channel including: forming a trench that defines an active region including a channel region having a sidewall and a junction region in a semiconductor substrate; forming a device isolation layer that buries the trench, and forming a sidewall pattern that covers the sidewall of the channel region; forming a bulb-type trench by overlapping with the channel region in the semiconductor substrate, and forming a bottom protrusion having a predetermined space parted from the device isolation layer by removing the sidewall pattern; and forming a gate stack that overlaps with the bulb-type trench and the bottom protrusion.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: November 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Yul Lee
  • Patent number: 7833861
    Abstract: A semiconductor device having a recess channel structure includes a semiconductor substrate having a recess formed in a gate forming area in an active area; an insulation layer formed in the semiconductor substrate so as to define the active area and formed so as to apply a tensile stress in a channel width direction; a stressor formed in a surface of the insulation layer and formed so as to apply a compressive stress in a channel height direction; a gate formed over the recess in the active area; and source/drain areas formed in a surface of the active area at both side of the gate.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: November 16, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kang Sik Choi
  • Patent number: 7833863
    Abstract: Embodiments of the present invention provide an improved closed cell trench metal-oxide-semiconductor field effect transistor (TMOSFET). The closed cell TMOSFET comprises a drain, a body region disposed above the drain region, a gate region disposed in the body region, a gate insulator region, a plurality of source regions disposed at the surface of the body region proximate to the periphery of the gate insulator region. A first portion of the gate region and the gate oxide region are formed as parallel elongated structures. A second portion of the gate region and the oxide region are formed as normal-to-parallel elongated structures. A portion of the gate and drain overlap region are selectively blocked by the body region, resulting in lower overall gate to drain capacitance.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: November 16, 2010
    Assignee: Vishay-Siliconix
    Inventors: Deva N Pattanayak, Robert Xu
  • Patent number: 7825463
    Abstract: A semiconductor device includes a silicon substrate; a device isolation structure formed in the silicon substrate to delimit an active region which has a pair of gate forming areas, a drain forming area between the gate forming areas, and source forming areas outside the gate forming areas; an asymmetric bulb-type recess gate formed in each gate forming area of the active region and having the shape of a bulb on the lower end portion of the sidewall thereof facing the source forming area; and source and drain areas respectively formed on the surface of the substrate on both sides of the asymmetric bulb-type recess gate.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Do Kim
  • Patent number: 7825438
    Abstract: A CMOS image sensor cell includes a semiconductor active region of first conductivity type having a surface thereon and a P-N junction photodiode in the active region. A drive transistor is also provided in the semiconductor active region. The drive transistor has a gate electrode that is configured to receive charge generated in the P-N junction photodiode during an image capture operation (i.e., during capture of photons received from an image). This drive transistor has a gate electrode and a contoured channel region extending underneath the gate electrode. The contoured channel region has an effective channel length greater than a length of the gate electrode.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: November 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-wan Jung, Duck-hyung Lee
  • Patent number: 7816209
    Abstract: A method for fabricating a semiconductor device includes forming an insulation layer over a substrate including a pattern for forming a multi-plane channel, forming a columnar polysilicon layer over the insulation layer and filling in the pattern, and performing a thermal treatment process.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: October 19, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hong-Seon Yang, Heung-Jae Cho, Won-Joon Choi
  • Patent number: 7803681
    Abstract: When a recess of a bulb-type recess gate is formed, the recess formed in a device isolation region is formed to be separated from an edge of an active region. This structure thereby prevents damage of a semiconductor substrate of the edge of the active region and a defect during a Self Alignment Contact (SAC) process. As a result, characteristics and yield of devices improve.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 28, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dae Young Kim
  • Patent number: 7799641
    Abstract: A method for forming a semiconductor device having recess channel includes forming a hard mask film pattern for exposing first regions for forming the trenches on a semiconductor substrate; forming first trenches by a first etching process using the hard mask film pattern as a mask, and removing the hard mask film pattern; forming a barrier film on the semiconductor substrate including the first trenches; forming an ion implantation mask film for exposing the first trenches on the barrier film; forming an ion implantation region in the semiconductor substrate below the first trenches using the ion implantation mask film and the barrier film; forming bulb-shaped second trenches by a second etching process using the ion implantation mask film and the barrier film as a mask, so that bulb-type trenches for recess channels, each including the first trench and the second trench, are formed; and removing the ion implantation mask film and the barrier film.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jin Yul Lee, Min Ho Ha, Seon Yong Cha
  • Patent number: 7790551
    Abstract: A transistor having a recess gate structure and a method for fabricating the same. The transistor includes a gate insulating layer formed on the inner walls of first trenches formed in a semiconductor substrate; a gate conductive layer formed on the gate insulating layer for partially filling the first trenches; gate electrodes formed on the gate conductive layer for completely filling the first trenches, and surrounded by the gate conductive layer; channel regions formed in the semiconductor substrate along the first trenches; and source/drain regions formed in a shallow portion of the semiconductor substrate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kyoung Bong Rouh, Seung Woo Jin, Min Yong Lee, Yong Soo Jung