Local Interconnects; Local Pads (epo) Patents (Class 257/E21.59)
  • Patent number: 7919839
    Abstract: A semiconductor structure, such as a wafer-level package or a vertically stacked structure. The wafer-level package includes a substrate wafer on which an integrated circuit is formed. A cover wafer is bonded to the substrate wafer to provide a cavity between the substrate wafer and the cover wafer in which the integrated circuit is hermetically sealed. Vias are formed through the substrate wafer and make electrical contact with signal and ground traces formed on the substrate wafer within the cavity, where the traces are electrically coupled to the integrated circuit. Probe pads are formed on the substrate wafer outside of the cavity and are in electrical contact with the vias. A support post is provided directly beneath the probe pad so that when pressure is applied to the probe pad from the probe for testing purposes, the support post prevents the substrate wafer from flexing and being damaged.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: April 5, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Patty Pei-Ling Chang-Chien, Kelly Jill Tornquist Hennig
  • Publication number: 20110068484
    Abstract: A description is given of a device, including a semiconductor chip, a first metal layer laterally extending over the semiconductor chip, the first metal layer having a first thickness. A dielectric layer laterally extends over the first metal layer, and a second metal layer laterally extends over the dielectric layer, the second metal layer having a second thickness that is at least four times larger than the first thickness.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicant: Infineon Technologies AG
    Inventors: Thorsten Meyer, Andreas Bahr
  • Patent number: 7902056
    Abstract: Devices and methods for plasma treated metal silicide layer formation are disclosed. In one embodiment, a method for manufacturing a semiconductor device comprises forming a metal layer on a silicon substrate, exposing the metal layer to a plasma, and thermally treating the silicon substrate and the metal layer to form a metal silicide layer.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: March 8, 2011
    Assignee: Spansion LLC
    Inventors: Takayuki Enda, Tatsuya Inoue, Naoki Takeguchi
  • Publication number: 20110049723
    Abstract: Methods and structures for controlling wafer curvature during fabrication of integrated circuits caused by stressed films. The methods include controlling the conductor density of wiring levels, adding compensating stressed film layers and disturbing the continuity of stress films with the immediately lower layer. The structure includes integrated circuits having compensating stressed film layers.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mohammed Fazil Fayaz, Jeffery Burton Maxson, Anthony Kendall Stamper, Daniel Scott Vanslette
  • Publication number: 20110049707
    Abstract: According to one embodiment, a semiconductor device includes an electrode pad, a protective layer, a bump, and a resin layer. The electrode pad is formed on a semiconductor substrate. The protective layer includes a pad opening formed in the position of the electrode pad. The bump is formed in the pad opening and electrically connected to the electrode pad. The resin layer has a space provided between the resin layer and the bump and is formed on the protective layer via a metal layer. The resin layer is formed by using an adhesive resin material.
    Type: Application
    Filed: August 5, 2010
    Publication date: March 3, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaharu Seto, Soichi Yamashita, Hirokazu Ezawa
  • Patent number: 7888258
    Abstract: A forming method of an electrode includes the steps of providing an electrode material on a conductive part; exposing the electrode material at a temperature equal to or higher than a melting point of the electrode material in an oxidizing atmosphere; and exposing the melted electrode material, in a reducing atmosphere, at a temperature equal to or higher than the melting point of the electrode material and lower than the temperature at which the electrode material is exposed in the oxidizing atmosphere.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: February 15, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yoshito Akutagawa, Hiroyuki Matsui, Yutaka Makino
  • Publication number: 20110024914
    Abstract: In a stacked chip configuration, the “inter chip” connection is established on the basis of functional molecules, thereby providing a fast and space-efficient communication between the different semiconductor chips.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Inventors: Stephan Kronholz, Markus Lenski, Ralf Richter
  • Publication number: 20110027983
    Abstract: A manufacturing method of a semiconductor device wherein a metal pad is etched to form a trench in which a central part is concave in form, or to form a trench in the shape of a cylinder or a parallelepiped on the edge part of a metal pad. Accordingly, the contact area between a polymide isoindro quirazorindione (PIQ) or similar curable layer and the metal pad is increased and the bondability is improved. Accordingly, the technology of improving the characteristic of device by preventing the problem that the metal pad is excessively opened in a subsequent curing process and the layer of a lower portion of the metal pad is attacked is disclosed.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 3, 2011
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Hyung Kyu Kim
  • Publication number: 20110008957
    Abstract: A metal interconnection method of a semiconductor device includes forming a copper layer on a semiconductor substrate and planarizing the copper layer. Two thermal treatments are performed at different temperatures between formation of the copper layer and planarization of the copper layer.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 13, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sun-E Park, Younghoon Park, Joocheol Han, Jinkuk Chung, Kiho Kang, Yu Jin Ahn
  • Publication number: 20110001238
    Abstract: A semiconductor construct includes a semiconductor substrate and connection pads provided on the semiconductor substrate. Some of the connection pads are connected to a common wiring and at least one of the remaining of the connection pads are connected to a wiring. The construct also includes a first columnar electrode provided to be connected to the common wiring and a second columnar electrode provided to be connected to a connection pad portion of the wiring.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: Casio Computer Co., Ltd.
    Inventors: Shinji WAKISAKA, Takeshi Wakabayashi
  • Publication number: 20100330798
    Abstract: An integrated circuit structure includes a semiconductor wafer, which includes a first notch extending from an edge of the semiconductor wafer into the semiconductor wafer. A carrier wafer is mounted onto the semiconductor wafer. The carrier wafer has a second notch overlapping at least a portion of the first notch. A side of the carrier wafer facing the semiconductor wafer forms a sharp angle with an edge of the carrier wafer. The carrier wafer has a resistivity lower than about 1×108 Ohm-cm.
    Type: Application
    Filed: March 31, 2010
    Publication date: December 30, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hon-Lin Huang, Ching-Wen Hsiao, Kuo-Ching Hsu, Chen-Shien Chen
  • Publication number: 20100330797
    Abstract: A circuit substrate uses post-fed top side power supply connections to provide improved routing flexibility and lower power supply voltage drop/power loss. Plated-through holes are used near the outside edges of the substrate to provide power supply connections to the top metal layers of the substrate adjacent to the die, which act as power supply planes. Pins are inserted through the plated-through holes to further lower the resistance of the power supply path(s). The bottom ends of the pins may extend past the bottom of the substrate to provide solderable interconnects for the power supply connections, or the bottom ends of the pins may be soldered to “jog” circuit patterns on a bottom metal layer of the substrate which connect the pins to one or more power supply terminals of an integrated circuit package including the substrate.
    Type: Application
    Filed: September 2, 2010
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel Douriet, Francesco Preda, Brian L. Singletary, Lloyd A. Walls
  • Patent number: 7851346
    Abstract: A method provides a first substrate with a conductive pad and disposes layers of Cu, TaN, and AlCu, respectively, forming a conductive stack on the conductive pad. The AlCu layer of the first substrate is bonded to a through substrate via (TSV) structure of a second substrate, wherein a conductive path is formed from the conductive pad of the first substrate to the TSV structure of the second substrate.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: December 14, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-I Lee, Dean Wang
  • Publication number: 20100308475
    Abstract: A composite, including a first semiconductor substrate that is secured by soldering material to at least one second semiconductor substrate, a eutectic being formed between the soldering material and the second semiconductor substrate and/or at least one layer possibly provided on the semiconductor substrate. It is provided that the eutectic is formed between the soldering material and a microstructure, which is formed in the region of contact with the soldering material on the second semiconductor substrate and/or the layer. Also described is a production method.
    Type: Application
    Filed: September 2, 2008
    Publication date: December 9, 2010
    Inventors: Achim Trautmann, Ando Feyh
  • Publication number: 20100301490
    Abstract: A profiled contact for a device, such as a high power semiconductor device is provided. The contact is profiled in both a direction substantially parallel to a surface of a semiconductor structure of the device and a direction substantially perpendicular to the surface of the semiconductor structure. The profiling can limit the peak electric field between two electrodes to approximately the same as the average electrical field between the electrodes, as well as limit the electric field perpendicular to the semiconductor structure both within and outside the semiconductor structure.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 2, 2010
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20100295135
    Abstract: In a static memory cell comprising six MOS transistors, the MOS transistors have a structure in which the drain, gate and source formed on the substrate are arranged in the vertical direction and the gate surrounds the columnar semiconductor layer, the substrate comprises a first active region having a first conductive type and a second active region having a second conductive type, and diffusion layers constructing the active regions are mutually connected via a silicide layer formed on the substrate surface, thereby realizing an SRAM cell with small surface area. In addition, drain diffusion layers having the same conductive type as a first well positioned on the substrate are surrounded by a first anti-leak diffusion layer and a second anti-leak diffusion layer having a conductive type different from the first well and being shallower than the first well, and thereby controlling leakage to the substrate.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 25, 2010
    Applicant: UNISANTIS ELECTRONICS (JAPAN) LTD.
    Inventors: Fujio MASUOKA, Shintaro ARAI
  • Publication number: 20100297841
    Abstract: A system and method is disclosed for providing a redistribution metal layer in an integrated circuit. The redistribution metal layer is formed from the last metal layer in the integrated circuit during manufacture of the integrated circuit before final passivation is applied. The last metal layer provides sites for solder bump pads used in flip chip interconnection. The redistribution metal layer can be (1) a flat layer deposited over the next to last metal layer through an opening in a dielectric layer, or (2) deposited over an array of vias connected to the next to last metal layer. Space between the solder bump pads is deposited with narrower traces for connecting active circuit areas below. A final passivation layer is deposited to ensure product reliability.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventors: Danielle A. Thomas, Harry Michael Siegel, Antonio A. Do Bento Vieira, Anthony M. Chiu
  • Patent number: 7838408
    Abstract: A process margin of an interconnect is to be expanded, to minimize the impact of vibration generated during a scanning motion of a scanning type exposure equipment. In a semiconductor device, the interconnect handling a greater amount of data (frequently used interconnect) is disposed in a same orientation such that the longitudinal direction of the interconnects is aligned with a scanning direction of a scanning type exposure equipment, in an interconnect layer that includes a narrowest interconnect or a narrowest spacing between the interconnects. Aligning thus the direction of the vibration with the longitudinal direction of the pattern can minimize the positional deviation due to the vibration.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 23, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Yoshihisa Matsubara, Hiromasa Kobayashi
  • Publication number: 20100289145
    Abstract: A method and structure for an unencapsulated wafer section such as a wafer chip scale package (WCSP) includes a plurality of interconnect terminals and a pad metallization structure on an active surface of a WCSP chip. An area of the pad metallization structure is larger than an area of one of the interconnect terminals and, in an embodiment, larger than an area of two interconnect terminals. A plurality of conductive interconnects are attached to the plurality of interconnect terminals. The conductive interconnects are placed in contact with first lands of a supporting substrate, which can be a printed circuit board. Subsequently, a conductive mass is electrically coupled with a second land of the receiving substrate, with the second land being connected to at least one via of the supporting substrate which can, in turn, be connected to a plane of the supporting substrate. Improved thermal characteristics can result.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Inventors: Jayprakash Vijay Chipalkatti, Matthew David Romig
  • Publication number: 20100283157
    Abstract: The present invention provides an interconnect structure in which a patternable low-k material is employed as an interconnect dielectric material. Specifically, this invention relates to single-damascene and dual-damascene low-k interconnect structures with at least one patternable low-k dielectric. In general terms, the interconnect structure includes at least one patterned and cured low-k dielectric material located on a surface of a substrate. The at least one cured and patterned low-k material has conductively filled regions embedded therein and typically, but not always, includes Si atoms bonded to cyclic rings via oxygen atoms. The present invention also provides a method of forming such interconnect structures in which no separate photoresist is employed in patterning the patterned low-k material.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 11, 2010
    Applicant: International Business Machines Corporation
    Inventors: Qinghuang Lin, Shyng-Tsong Chen
  • Publication number: 20100276816
    Abstract: Disclosed are a system and method of separate probe and bond regions of an integrated circuit (IC). An IC, an I/O region adjacent to the core region to enable the core region, and a die metal interconnect separating a bond pad area in the I/O region from a probe pad area outside the I/O region of the IC are disclosed. The die metal interconnect may have a length that is greater than the bond pad area length and/or the probe pad area length, and a width that is less than the bond pad area width and/or the probe pad area width. An in-front staggering technique may be used at a die corner of the IC to maintain the bond pad area in the I/O region, and a side staggering technique may be used at the die corner of the IC to maintain the bond pad area in the I/O region.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Inventors: ANWAR ALI, Kalyan Doddapaneni, Gokulnath Sulur, Wilson Leung, Tauman T. Lau
  • Publication number: 20100276786
    Abstract: Methods and apparatus for forming through-vias are presented, for example, a method for forming a via in a portion of a semiconductor wafer comprising a substrate. The method comprises forming a trench surrounding a first part of the substrate such that the first part is separated from a second part of the substrate, forming a hole through the substrate within the first part, and forming a first metal within the hole. The trench extends through the substrate. The first metal extends from a front surface of the substrate to a back surface of the substrate. The via comprises the hole and the first metal.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: John Michael Cotte, Christopher Vincent Jahnes, Bucknell Chapman Webb
  • Publication number: 20100279489
    Abstract: In a semiconductor wafer, the polyimide film underneath a power metal structure is partially etched to create corresponding surface depressions of the conformal top power metal. The depressions at the surface of power metal are visible under optical microscopy. Arrangement of the depressions in a pattern facilitates the alignment of probe needles, set-up of automated wire bonding and microscopic inspection for precise alignment of wire bonds.
    Type: Application
    Filed: April 26, 2010
    Publication date: November 4, 2010
    Applicant: Power Gold LLC
    Inventor: James Jen-Ho Wang
  • Publication number: 20100270687
    Abstract: One aspect of the present invention is a semiconductor device including: a semiconductor substrate; a first wiring that is formed on the semiconductor substrate; a second wiring that is formed to cross over the first wiring with a space interposed therebetween at a cross portion in which the first wiring and the second wiring cross each other; a protective film that is formed on the semiconductor substrate to cover at least a part of the first wiring, the part being located under the second wiring in the cross portion; and an insulator film that is formed in an island shape on the protective film under the second wiring in the cross portion to be located between edges of the protective film and to cover the first wiring in the cross portion.
    Type: Application
    Filed: April 19, 2010
    Publication date: October 28, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Akira FUJIHARA
  • Publication number: 20100264414
    Abstract: In the current manufacturing process of LSI, or semiconductor integrated circuit device, the step of assembling device (such as resin sealing step) is normally followed by the voltage-application test (high-temperature and high-humidity test) in an environment of high temperature (such as an approximate range from 85 to 130° C.) and high humidity (such as about 80% RH). For that test, the inventors of the present invention found the phenomenon of occurrence of separation of titanium nitride film as the anti-reflection film from upper film and of generation of cracks in the titanium nitride film at an edge part of upper surface of the aluminum-based bonding pad applied with a positive voltage during the high-temperature and high-humidity test caused by an electrochemical reaction due to moisture incoming through the sealing resin and the like to generate oxidation and bulging of the titanium nitride film.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Inventors: Takuro HOMMA, Katsuhiko Hotta, Takashi Moriyama
  • Publication number: 20100258942
    Abstract: A semiconductor device and a method for forming the same are disclosed. The semiconductor device includes a plurality of bit lines having a uniform width on a semiconductor substrate, an active region obliquely arranged to have a predetermined angle with respect to the bit lines, a spacer arranged around the bit lines connected to a center part of the active region. A contact pad is connected to a lower part of the bit lines. The spacer is formed not only at an upper part of sidewalls of the contact pad but also at sidewalls of the bit lines. As a result, a CD of the bit line contact increases, so that a bit line contact patterning margin also increases. A bit line pattern having a uniform width is formed so that a patterning margin increases. A storage electrode contact self-alignment margin increases so that a line-type storage electrode contact margin increases.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 14, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Byung Sub NAM
  • Publication number: 20100261344
    Abstract: A method of forming a semiconductor structure is provided. One method comprises forming a device region between a substrate and a bond pad. Patterning a conductor between the bond pad and the device region with gaps. Filling the gaps with insulation material that is harder than the conductor to form pillars of relatively hard material that extend through the conductor and forming an insulation layer of the insulation material between the conductor and the bond pad.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 14, 2010
    Applicant: INTERSIL AMERICAS INC.
    Inventors: John T. Gasner, Michael D. Church, Sameer D. Parab, Paul E. Bakeman, JR., David A. Decrosta, Robert L. Lomenick, Chris A. McCarty
  • Publication number: 20100252932
    Abstract: A sensor device includes a substrate which includes an element forming region, a plurality of sensor elements formed in the element forming region, a plurality of connection pads formed on a region of the substrate other than the element forming region, a plurality of first wiring formed on the substrate and electrically connected with the plurality of sensor elements, a plurality of second wiring formed on the substrate and electrically connected with the plurality of connection pads, a plurality of third wiring formed on a different layer to the plurality of first wiring and the plurality of second wiring and formed to intersect with the plurality of first wiring and the plurality of second wiring, and an insulation layer formed between the plurality of first wiring, the plurality of second wiring and the plurality of third wiring.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventors: Kazuhiko Aida, Katsumi Hashimoto
  • Patent number: 7808077
    Abstract: A semiconductor device is composed of: an interconnect made of a first conductive film and a second conductive film that are stacked in sequence from the interconnect underside on an insulating film formed on a substrate; and a capacitor composed of a lower capacitor electrode made of the first conductive film, a dielectric film formed on the lower capacitor electrode, and an upper capacitor electrode made of the second conductive film and formed on the dielectric film.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: October 5, 2010
    Assignee: Panasonic Corporation
    Inventors: Kyoko Egashira, Shin Hashimoto
  • Patent number: 7808117
    Abstract: A pad (20) is electrically connected to a first I/O cell (14) while also physically overlying active circuitry of a second I/O cell (16). Note that although the pad (20) overlies the second I/O cell (16), the pad (20) is not electrically connected to the I/O cell (16). Such a pattern may be replicated in any desired manner so that the I/O cells (e.g. 300-310) may have a finer pitch than the corresponding pads (320-324 and 330-335). In addition, the size of the pads may be increased (e.g. pad 131 may be bigger than pad 130) while the width “c” of the I/O cells (132-135) does not have to be increased. Such a pattern (e.g. 500) may be arranged so that the area required in one or more dimensions may be minimized.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 5, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Nhat D. Vo, Tu-Anh N. Tran, Burton J. Carpenter, Dae Y. Hong, James W. Miller, Kendall D. Phillips
  • Publication number: 20100244262
    Abstract: A deposition method of fine particles, includes the steps of irradiating a fine particle beam formed by size-classified fine particles to an irradiated subject under a vacuum state, and depositing the fine particles on a bottom part of a groove structure formed at the irradiated subject.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Yuji Awano, Noriyoshi Shimizu, Shintaro Sato
  • Publication number: 20100248469
    Abstract: A semiconductor device and method of fabricating the same reduce the likelihood of the occurrence of electrical defects. The device includes a first interlayer insulating film on a semiconductor substrate; a contact pad spacer on the first interlayer insulating film; and a contact pad in the first interlayer insulating film and the contact pad spacer. The cross-sectional area of an upper portion of the contact pad in the contact pad spacer in a direction horizontal to the substrate is equal to or less than a cross-sectional area of an intermediate portion at an interface between the contact pad spacer and the first interlayer insulating film in a direction horizontal to the substrate.
    Type: Application
    Filed: June 10, 2010
    Publication date: September 30, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Dae-ik Kim
  • Publication number: 20100237506
    Abstract: A semiconductor device and manufacturing method. One embodiment provides a device including a semiconductor chip. A first conductor line is placed over the semiconductor chip. An external contact pad is placed over the first conductor line. At least a portion of the first conductor line lies within a projection of the external contact pad on the semiconductor chip.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Markus Brunnbauer, Jens Pohl, Thorsten Meyer
  • Publication number: 20100240211
    Abstract: A method of manufacturing a semiconductor device including an integrated circuit part in which an integrated circuit is formed and a main wall part including metal films surrounding said integrated circuit part, includes the step of selectively forming a sub-wall part including metal films between the integrated circuit part and the main wall part, in parallel to formation of the integrated circuit part and the main wall part. A sub-wall part which is in an “L” shape is provided between each corner of the main wall part and the integrated circuit part of the resulting semiconductor device.
    Type: Application
    Filed: April 21, 2010
    Publication date: September 23, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Kenichi WATANABE, Michiari KAWANO, Hiroshi NAMBA, Kazuo SUKEGAWA, Takumi HASEGAWA, Toyoji SAWADA
  • Publication number: 20100237500
    Abstract: A semiconductor substrate includes a first conductive layer formed over the semiconductor substrate. The first conductive layer has first and second portions which are electrically isolated during formation of the first conductive layer. A solder resist layer is formed over the first conductive layer and semiconductor substrate. An opening is formed in the solder resist layer to expose the first conductive layer. A seed layer is formed over the semiconductor substrate and first conductive layer within the opening. A second conductive layer is formed over the seed layer within the opening. The opening may expose the second portion of the first conductive layer due to solder resist registration shifting causing a defect condition. The second conductive layer electrically contacts the first and second portions of the first conductive layer. By testing the first and second portions of the first conductive layer, the defect condition can be identified.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: ChoongHwan Kwon, SooMoon Park, HeeJo Chi
  • Publication number: 20100227462
    Abstract: A liquid crystal display has a pad structure. The pad structure includes at least one pad formed on a substrate, an insulating film formed on the pad, and at least one conductive layer connected to the pad through contact holes defined through the insulating film. The insulating film covers side surfaces of the pad and a portion of the substrate adjacent to the side surfaces of the pad.
    Type: Application
    Filed: May 19, 2010
    Publication date: September 9, 2010
    Inventors: Soon Sung Yoo, Dong Yeung Kwak, Hu Sung Kim, Yong Wan Kim, Dug Jin Park, Yu Ho Jung, Woo Chae Lee
  • Publication number: 20100227463
    Abstract: Methods of forming pad structures are provided in which a first contact region and second contact regions are formed in an active region of a substrate. An insulating interlayer is formed on the substrate. The insulating interlayer has a first opening that exposes the first contact region and the second contact regions. First conductive pads are formed in the first opening. Each first conductive pad is in electrical contact with a respective one of the second contact regions. Spacers are formed, where each spacer is on a sidewall of a respective one of the first conductive pads. Finally, a second conductive pad is formed between the first conductive pads and in electrical contact with the first contact region to complete the pad structure.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 9, 2010
    Inventor: Kyoung-Yong Cho
  • Publication number: 20100221908
    Abstract: Disclosed is a method of manufacturing a semiconductor device that does not have a defect, such as wire breakage, due to an uplifted portion created at a rewiring pattern in a multilayer wire structure. Before a wiring layer is formed on an insulation layer, the insulation layer is exposed via a mask. The mask has a weak exposure part and a strong exposure part. The mask is positioned such that the weak exposure part corresponds to an arrangement position of a wire line of an underlying wiring layer, and such that the strong exposure part corresponds to an arrangement position of a via part of the underlying wiring layer. The underlying wiring layer is a layer immediately below the insulation layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 2, 2010
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Yasuyoshi Ohno
  • Publication number: 20100219535
    Abstract: A method for producing a semiconductor component with an easily solderable contact structure comprising the provision of a semiconductor substrate of a planar design with a first side, a second side, a surface normal standing vertically thereon, a dielectric passivation layer arranged on at least one of the sides and a first contact layer arranged on passivation layer, the application, at least in some areas, of at least one second contact layer onto the first contact layer, the at least one second contact layer comprising at least a partial layer made of an easily solderable metal, especially of nickel and/or silver and/or tin and/or a compound thereof, and the making of an electrically conductive contact between the second contact layer and the semiconductor substrate.
    Type: Application
    Filed: February 27, 2010
    Publication date: September 2, 2010
    Inventors: Martin KUTZER, Bernd Bitnar, Andreas Krause, Michael Heemeier, Kristian Schlegel, Torsten Weber, Holger Neuhaus, Alexander Fülle, Eric Schneiderlöchner
  • Publication number: 20100213620
    Abstract: A manufacturing method of a substrate for a semiconductor package includes a resist layer forming step to form a resist layer on a surface of a conductive substrate; an exposure step to expose the resist layer using a glass mask with a mask pattern including a transmission area, a light shielding area, and an intermediate transmission area, wherein transmittance of the intermediate transmission area is lower than that of the transmission area and is higher than that of the light shielding area; a development step to form a resist pattern including a hollow with a side shape including a slope part decreasing in hollow circumference as the hollow circumference approaches the substrate; and a plating step to plate on an exposed area to form a metal layer with a side shape including a slope part decreasing in circumference as the circumference approaches the substrate.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 26, 2010
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yoichiro Hamada, Shigeru Hosomomi
  • Publication number: 20100213614
    Abstract: One or more embodiments of the present invention relates to a method for passivating metallic interconnects, said method including: forming a metallic conductor embedded in at least one surrounding dielectric layer, said metallic conductor including a metal or alloy chosen from a group consisting of Cu, Ag, and alloys including one or more of these metals, said metallic conductor and said at least one surrounding dielectric layer having top surfaces; and forming a capping passivation film directly on the top surface of the metallic conductor, but not over the top surface of the at least one surrounding dielectric layer, wherein said capping passivation film including one or more materials selected from the group consisting of copper sulfide, silver sulfide, copper selenide, silver selenide, copper telluride, and silver telluride, wherein the copper sulfide refers to CuSX or Cu2SX, the silver sulfide refers to AgSX or Ag2SX, the copper selenide refers to CuSeXor Cu2SeX, and the copper telluride refers to CuTeX
    Type: Application
    Filed: April 30, 2010
    Publication date: August 26, 2010
    Inventor: Uri Cohen
  • Publication number: 20100200948
    Abstract: Disclosed herein is a fabrication method of a semiconductor device to order to increase an operation liability of the semiconductor device. A method for fabricating a semiconductor device comprises forming a recess in a semiconductor substrate, forming a word line in a lower part of the recess, oxidizing a top portion of the word line, and depositing an insulating material in a remained part of the recess.
    Type: Application
    Filed: June 26, 2009
    Publication date: August 12, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Se hyun KIM
  • Publication number: 20100193901
    Abstract: A semiconductor device includes a substrate including a trench, a buried gate filling a part of the trench, an inter-layer dielectric layer formed on the buried gate to gap-fill the rest of the trench, and a protection layer covering substantially an entire surface of the substrate including the inter-layer dielectric layer.
    Type: Application
    Filed: June 29, 2009
    Publication date: August 5, 2010
    Inventors: Se-Aug Jang, Hong-Seon Yang, Ja-Chun Ku, Seung-Ryong Lee
  • Publication number: 20100187688
    Abstract: The present invention relates to a stress buffering package (49) for a semiconductor component, with a semiconductor substrate (52); an I/O pad (54), electrically connected to the semiconductor substrate (52); a stress buffering element (74) for absorbing stresses, electrically connected to the I/O pad (54); an underbump metallization (70), electrically connected to the stress buffering element (74); a solder ball (60), electrically connected to the underbump metallization (70); a metal element (61) between the solder ball (60) and the semiconductor substrate (52); a passivation layer (56, 58), which protects the semiconductor substrate (52) and the metal element (61) and which at least partially exposes the I/O pad (54); characterized in that a roughness of an interface between the stress buffering element (74) and the passivation layer (56, 58) is lower than a roughness of an interface between the metal element (61) and the passivation layer (56, 58).
    Type: Application
    Filed: July 15, 2008
    Publication date: July 29, 2010
    Applicant: NXP B.V.
    Inventor: Hendrik Hochstenbach
  • Publication number: 20100190299
    Abstract: A semiconductor device including a plurality of input/output cells and having a first bond pad and at least one second bond pad coupled to each input/output cell. The first bond pads comprise a first pattern, and the at least second bond pads comprise at least one second pattern, wherein the at least one second pattern is different from or the same as the first pattern. Either the first bond pads, the at least second bond pads, or both, may be used to electrically couple the input/output cells of the semiconductor device to leads of an integrated circuit package or other circuit component.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 29, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ker-Min Chen
  • Publication number: 20100167528
    Abstract: A process for forming a local interconnect includes applying a layer of metal over a semiconductor layer. A layer of metal silicide is formed over the layer of metal. The layer of metal silicide is patterned to define the boundaries of the local interconnect. The metal silicide is reacted with the layer of metal to form a composite structure. The composite structure includes the metal silicide, another metal silicide formed as silicon from the metal silicide reacts with the underlying layer of metal and an intermetallic compound of the metal from the layer of metal and metal from the layer of metal silicide. The unreacted layer of metal is removed with the composite structure remaining as the local interconnect.
    Type: Application
    Filed: March 10, 2010
    Publication date: July 1, 2010
    Inventor: Jigish D. Trivedi
  • Patent number: 7745340
    Abstract: A process of cleaning wire bond pads associated with OLED devices, including the steps of depositing on the wire bond pads one or more layers of ablatable material, and ablating the one or more layers with a laser, thereby exposing a clean wire bond pad.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: June 29, 2010
    Assignee: Emagin Corporation
    Inventors: Amalkumar P. Ghosh, Yachin Liu, Hua Xia Ji
  • Publication number: 20100155958
    Abstract: A bonding pad structure of a semiconductor device and a method of manufacturing the same reduce the likelihood of peel-off defects from occurring. The bonding pad structure includes a substrate, an interlayer insulation layer on the substrate, an upper wiring layer on the interlayer insulation layer, and a plurality of lower wiring layers disposed in the interlayer insulation layer between the upper wiring layer and the substrate and configured to prevent the interlayer insulation layer from cracking especially during a wire bonding process in which a wire is bonded to the upper wiring layer. For example, the respective areas occupied by the lower wiring layers sequentially increase in the interlayer insulation layer in a downward direction from the upper wiring layer towards the substrate. Also, each of the lower wiring layers may project further inwardly toward a central part of the bonding pad than the lower layer of wiring disposed above it in the interlayer insulation layer.
    Type: Application
    Filed: October 29, 2009
    Publication date: June 24, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Kyoung-Hwan Kim
  • Patent number: 7741171
    Abstract: An integrated circuit structure and a method of forming the same are provided. The method includes providing a surface; performing an ionized oxygen treatment to the surface; forming an initial layer comprising silicon oxide using first process gases comprising a first oxygen-containing gas and tetraethoxysilane (TEOS); and forming a silicate glass over the initial layer. The method may further include forming a buffer layer using second process gases comprising a second oxygen-containing gas and TEOS, wherein the first and the second process gases have different oxygen-to-TEOS ratio.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: June 22, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Wan-Ting Huang, Yu-Jen Chien, Phil Sun
  • Patent number: 7741227
    Abstract: A process for structuring at least one layer as well as an electrical component with structures from the layer are described. The invention states a process to generate at least one structured layer (10A), wherein a mask structure (20) with a first (20A) and second structure (20B) is generated on a layer (10) which is present on a substrate (5). Through this mask structure (20), the first layer (20A) is transferred onto the layer (10) using isotropic structuring processes, and the second structure (20B) is transferred onto the layer (10) using anisotropic structuring processes. The process as per the invention permits the generation of two structures (20A, 20B) in at least a single layer while using a single mask structure.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: June 22, 2010
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Maja Hackenberger, Johannes Voelkl, Roland Zeisel