Three-dimensional Integrated Circuits Stacked In Different Levels (epo) Patents (Class 257/E21.614)
  • Patent number: 8697495
    Abstract: The formation of electronic assemblies is described. One embodiment includes first and second semiconductor die structures each including a front side and a backside, the front side including an active region and the backside including metal regions and non-metal regions thereon. The first and second semiconductor die structures include a plurality of vias, the vias forming electrical connections between the active region and the backside metal regions. The first and second semiconductor die structures are stacked together with at least one of the metal regions on the backside of the first semiconductor die structure in direct contact with at least one of the metal regions on the back side of the second semiconductor die structure. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 15, 2014
    Assignee: Intel Corporation
    Inventors: Bok Eng Cheah, Shanggar Periaman, Kooi Chi Ooi, Yen Hsiang Chew
  • Patent number: 8664042
    Abstract: A method to construct configurable systems, the method including: providing a first configurable system including a first die and a second die, where the connections between the first die and the second die include through-silicon-via (“TSV”), where the first die is diced from a first wafer using first dice lines; providing a second configurable system including a third die and a fourth die, where the connections between the third die and the fourth die include through-silicon-via (“TSV”), where the third die is diced from a third wafer using third dice lines; and processing the first wafer and the third wafer utilizing at least 20 masks that are the same; where the first dice lines are substantially different than the third dice lines, and where the second die includes a configurable I/O to connect the first configurable system to external devices.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 4, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8652877
    Abstract: A layered chip package includes a main body, and wiring that includes a plurality of wires disposed on a side surface of the main body. The main body includes a plurality of stacked layer portions. A method of manufacturing the layered chip package includes the step of fabricating a layered substructure and the step of cutting the layered substructure. The layered substructure includes: a plurality of arrayed pre-separation main bodies; a plurality of accommodation parts disposed between two adjacent pre-separation main bodies; and a plurality of preliminary wires accommodated in the accommodation parts. The accommodation parts are formed in a photosensitive resin layer by photolithography. In the step of cutting the layered substructure, the plurality of pre-separation main bodies are separated from each other, and the wires are formed by the preliminary wires.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 18, 2014
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hiroshi Ikejima, Atsushi Iijima
  • Patent number: 8625381
    Abstract: Provided is a stacked semiconductor device including n stacked chips. Each chip includes “j” corresponding upper and lower electrodes, wherein j is a minimal natural number greater than or equal to n/2, and an identification code generator including a single inverter connecting one of the j first upper electrode to a corresponding one of the j lower electrodes. The upper electrodes receive a previous identification code, rotate the previous identification code by a unit of 1 bit, and invert 1 bit of the rotated previous identification code to generate a current identification code. The current identification code is applied through the j lower electrodes and corresponding TSVs to communicate the current identification code to the upper adjacent chip.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ho-Cheol Lee
  • Patent number: 8574982
    Abstract: A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl Robert Erickson, David Paul Paulsen, John Edward Sheets, II, Kelly L. Williams
  • Patent number: 8574929
    Abstract: A method to form a monolithic 3D device including: processing a first layer including first mono-crystal transistors; transferring a second mono-crystal layer on top of the first layer including first mono-crystal transistors by using ion-cut layer transfer; and repairing the damage caused by the ion-cut by using optical annealing.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 5, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak Sekar, Brian Cronquist
  • Publication number: 20130277731
    Abstract: Various embodiments include methods and apparatuses, such as memory cells formed on two or more stacked decks. A method includes forming a first deck with first levels of conductor material and first levels of dielectric material over a substrate. Each level of the conductor material is separated from an adjacent level of conductor material by at least one of the first levels of dielectric material. A first opening is formed through the first levels of conductor material and dielectric material. A sacrificial material is formed at least partially filling the first opening. A second deck is formed over the first deck. The second deck has second levels of conductor material and second levels of dielectric material with each level of the conductor material being separated from an adjacent level of conductor material by at least one of the second levels of dielectric material. Additional apparatuses and methods are disclosed.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: Akira Goda, Roger W. Lindsay
  • Patent number: 8563979
    Abstract: In a liquid crystal display device, a first substrate includes electrical wirings and a semiconductor integrated circuit which has TFTs and is connected electrically to the electrical wirings, and a second substrate includes a transparent conductive film on a surface thereof. A surface of the first substrate that the electrical wirings are formed is opposite to the transparent conductive film on the second substrate. Also, in a liquid crystal display device, a first substrate includes a matrix circuit and a peripheral driver circuit, and a second substrate is opposite to the first substrate. Spacers are provided between the first and second substrates. A seal material is formed outside the matrix circuits and the peripheral driver circuits in the first and second substrates. A protective film is formed on the peripheral driver circuit has substantially a thickness equivalent to an interval between the substrates which is formed by the spacers.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: October 22, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Setsuo Nakajima, Yasuyuki Arai
  • Patent number: 8558297
    Abstract: Disclosed herein is an improved memory device, and related methods of manufacturing, wherein the area occupied by a conventional landing pad is significantly reduced to around 50% to 10% of the area occupied by conventional landing pads. This is accomplished by removing the landing pad from the cell structure, and instead forming a conductive via structure that provides the electrical connection from the memory stack or device in the structure to an under-metal layer. By forming only this via structure, rather than separate vias formed on either side of a landing pad, the overall width occupied by the connective via structure from the memory stack to an under-metal layer is substantially reduced, and thus the via structure and under-metal layer may be formed closer to the memory stack (or conductors associated with the stack) so as to reduce the overall width of the cell structure.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jhon Jhy Liaw, Yu-Jen Wang, Chia-Shiung Tsai
  • Patent number: 8546250
    Abstract: A vertically integrated semiconductor device includes multiple continuous single crystal silicon layers vertically separated from one another by a dielectric layer or layers. Semiconductor devices are disposed on an underlying single crystal silicon substrate and the continuous single crystal silicon layers. The individual devices are interconnected to one another using tungsten or doped polysilicon leads that extend through openings formed in the continuous single crystal silicon layers. The method for forming the structure includes forming a dielectric material over the single crystal silicon layer or substrate and forming an opening extending down to the surface of the single crystal silicon material to act as a seed layer. An epitaxial silicon growth process begins at the seed location and laterally overgrows the openings. Growth fronts from the various seed locations meet to form a continuous single crystal silicon layer which is then polished.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: October 1, 2013
    Assignee: Wafertech LLC
    Inventor: Daniel Piper
  • Patent number: 8546188
    Abstract: A first set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a primary pattern. A second set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a mirror-image pattern. A first semiconductor substrate from the first set is bonded to a second semiconductor substrate from the second set such that each bonding pads is bonded to a mirror-image bonding pad. Additional substrates are bonded sequentially such that the bonded structure includes an even number of semiconductor substrates of which one half have bonding pads of the primary pattern and are bonded to the side of the first semiconductor substrate, while the other half have bonding pads of the mirror-image pattern and are bonded to the side of the second semiconductor substrate. The mirror-image patterns of the bonding pads enable maximal cancellation of wafer bow.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Fei Liu, Albert M. Young, Roy R. Yu
  • Patent number: 8536634
    Abstract: Method and device embodiments are described for fabricating MOSFET transistors in a semiconductor also containing non-volatile floating gate transistors. MOSFET transistor gate dielectric smiling, or bird's beaks, are adjustable by re-oxidation processing. An additional re-oxidation process is performed by opening a poly-silicon layer prior to forming an inter-poly oxide dielectric provided for the floating gate transistors.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 17, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Patent number: 8530350
    Abstract: Methods for forming semiconductor structures are disclosed, including a method that involves forming sets of conductive material and insulating material, forming a first mask over the sets, forming a first number of contact regions, forming a second mask over a first region of the sets, and removing material from of the sets in a second, exposed region laterally adjacent the first region to form a second number of contact regions. Another method includes forming first and second contact regions on portions of sets of conductive materials and insulating materials, each of the second contact regions more proximal to an underlying substrate than each of the first contact regions. Apparatuses such as memory devices including laterally adjacent first and second regions each including contact regions of a different portion of a plurality of conductive materials and related methods of forming such devices are also disclosed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Eric H. Freeman, Michael A. Smith
  • Patent number: 8513791
    Abstract: A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Bucki, Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Eric Robinson
  • Patent number: 8513058
    Abstract: a method for producing a semiconductor device provided in such a manner that a first layer and a second layer are laminated to ensure that their TSVs are arranged in almost a straight line, including: first layer production steps including steps of preparing a substrate, forming a transistor of an input/output circuit on an upper surface of the substrate, forming an insulation layer so as to cover the transistor, and forming a TSV in the insulation layer; second layer production steps including steps of preparing a substrate, forming a transistor of a logic circuit on an upper surface of the substrate, forming an insulation layer so as to cover the transistor, and forming a TSV in the insulation layer; a connection step of connecting surfaces of the first layer and the second layer on a side opposite to substrates of the first layer and the second layer to ensure that the TSV of the first layer and the TSV of the second layer are arranged in almost a straight line; and a step of removing the substrate of the
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: August 20, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Toshiaki Iwamatsu, Yuichi Hirano
  • Patent number: 8513121
    Abstract: A semiconductor memory device has a plurality of core chips and an interface chip, whose specification can be easily changed, while suppressing the degradation of its reliability. The device has an interposer chip. First internal electrodes connected to core chips are formed on the first surface of the interposer chip. Second internal electrodes connected to an interface chip and third internal electrodes connected to external electrodes are formed on the second surface of the interposer chip. The interface chip can be mounted on the second surface of the interposer chip whenever desired. Therefore, the memory device can have any specification desirable to a customer, only if an appropriate interface chip is mounted on the interposer chip, as is demanded by the customer. Thus, the core chips do not need to be stocked in great quantities in the form of bare chips.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: August 20, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Masakazu Ishino, Hiroaki Ikeda, Kayoko Shibata
  • Patent number: 8482957
    Abstract: A memory unit including a first transistor spanning a first transistor region in a first layer of the memory unit; a second transistor spanning a second transistor region in a second layer of the memory unit; a first resistive sense memory (RSM) cell spanning a first memory region in a third layer of the memory unit; and a second RSM cell spanning a second memory region in the third layer of the memory unit, wherein the first transistor is electrically coupled to the first RSM cell, and the second transistor is electrically coupled to the second RSM cell, wherein the second layer is between the first and third layers, wherein the first and second transistor have an transistor overlap region, and wherein the first memory region and the second memory region do not extend beyond the first transistor region and the second transistor region.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: July 9, 2013
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Yong Lu, Hai Li, Hongyue Liu
  • Patent number: 8481420
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an integrated circuit die having an active side and a passive side; providing a contact pad having a top side oriented in a same direction as the passive side; connecting an inner bond wire to the contact pad and the integrated circuit die; and molding a stacking structure around the contact pad, the inner bond wire, and the integrated circuit die with the passive side and the top side exposed, and the stacking structure having a top structure surface on top and adjacent to or below the integrated circuit die, and a horizontal member under the integrated circuit die and forming a cavity.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 9, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: Jong-Woo Ha, DaeSik Choi, Byoung Wook Jang
  • Patent number: 8471306
    Abstract: A double-sided integrated circuit chips, methods of fabricating the double-sided integrated circuit chips and design structures for double-sided integrated circuit chips. The method includes removing the backside silicon from two silicon-on-insulator wafers having devices fabricated therein and bonding them back to back utilizing the buried oxide layers. Contacts are then formed in the upper wafer to devices in the lower wafer and wiring levels are formed on the upper wafer. The lower wafer may include wiring levels. The lower wafer may include landing pads for the contacts. Contacts to the silicon layer of the lower wafer may be silicided.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Stephen Ellinwood Luce, Anthony Kendall Stamper
  • Patent number: 8466008
    Abstract: A stacked semiconductor package technique applicable to semiconductor chips having pins short enough that the semiconductor chips cannot be directly bonded together is provided. A printed circuit board (PCB) is inserted into a space between pins of an upper semiconductor chip and the exterior of bodies of stacked semiconductor chips. The PCB includes a plurality of conductive patterns at locations corresponding to the respective pins. The respective conductive patterns and the corresponding respective pins of the upper and lower semiconductor chips are bonded together. The PCB includes a plurality of recess patterns on one side, the recess patterns having the same pitch as the pins of the semiconductor chips. The PCB is disposed across the pins of the lower semiconductor chip, and thereby easily arranged with the stacked semiconductor chips.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: June 18, 2013
    Assignee: Polystak, Inc.
    Inventor: Tae Seung Chung
  • Patent number: 8461035
    Abstract: A method for fabricating a device, the method including: providing a first layer including first transistors wherein the first transistors include mono-crystalline semiconductor and first alignment marks; overlaying a second semiconductor layer over the first layer, wherein the second layer includes second transistors, the second transistors include mono-crystalline semiconductor and are configured to be memory cells, at least one of the memory cells include a floating body region configured to be charged to a level indicative of a state of the memory cell, and fabricating the second transistors includes alignment to the first alignment marks.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 11, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Brian Cronquist, Isreal Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 8461693
    Abstract: In an embodiment, a substrate arrangement is provided. The substrate arrangement may include a semiconductor substrate including a first contact portion and a second contact portion on a first surface of the semiconductor substrate, wherein the semiconductor substrate is arranged such that the first contact portion and the second contact portion face each other. The substrate arrangement may further include an electrical connector configured to connect the first contact portion and the second contact portion.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: June 11, 2013
    Assignee: Siemens Medical Instruments Pte. Ltd.
    Inventors: Hock Peng Lim, Meng Kiang Lim
  • Patent number: 8445322
    Abstract: A stacked semiconductor package having a unit package, cover substrates, adhesive members and connection electrodes is presented. The unit package includes a substrate, a first circuit pattern and a second circuit pattern. The first circuit pattern is disposed over an upper face of the substrate. The second circuit pattern is disposed over a lower face of the substrate. The lower and upper faces of the substrate oppose each other. The first and second semiconductor chips are respectively electrically connected to the first and second circuit patterns. The cover substrates are opposed to the first semiconductor chip and the second semiconductor chip. The adhesive members are respectively interposed between the unit package and the cover substrates. The connection electrodes pass through the unit package, the cover substrates and the adhesive members and are electrically connected to the first and second circuit patterns.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 21, 2013
    Assignee: SK Hynix Inc.
    Inventors: Woong Sun Lee, Qwan Ho Chung
  • Patent number: 8446015
    Abstract: A semiconductor device has a first semiconductor chip 10 molded with a resin 12, a first metal 14 provided in the resin 12 in a circumference of the first semiconductor chip 10, and being exposed on a lower surface of the resin 12, a second metal 16 provided in the resin 12 over the first metal 14, and being exposed on an upper surface of the resin 12, and a first wire 18 coupling the first semiconductor chip 10 to the first metal 14 and the second metal 16. The first wire 18 is coupled to the first metal 14 and the second metal 16 so as to be sandwiched therebetween.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: May 21, 2013
    Assignee: Spansion LLC
    Inventors: Naomi Masuda, Kouichi Meguro
  • Patent number: 8441112
    Abstract: A layered chip package includes a main body, and wiring that includes a plurality of wires disposed on a side surface of the main body. The main body includes: a main part including first and second layer portions; and a plurality of first and second terminals that are disposed on the top and bottom surfaces of the main part, respectively, and are electrically connected to the plurality of wires. The first and second terminals are formed by using electrodes of the first and second layer portions. The layered chip package is manufactured by fabricating a layered substructure by stacking two substructures each of which includes an array of a plurality of preliminary layer portions, and then cutting the layered substructure. The layered substructure includes a plurality of preliminary wires that are disposed between two adjacent pre-separation main bodies and are to become the plurality of wires.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: May 14, 2013
    Assignees: Headway Technologies, Inc., Sae Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Hiroshi Ikejima, Atsushi Iijima
  • Patent number: 8440542
    Abstract: A method of manufacturing a semiconductor wafer, the method comprising: providing a base wafer comprising a semiconductor substrate; preparing a first monocrystalline layer comprising semiconductor regions; preparing a second monocrystalline layer comprising semiconductor regions overlying the first monocrystalline layer; and etching portions of said first monocrystalline layer and portions of said second monocrystalline layer as part of forming at least one transistor on said first monocrystalline layer.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 14, 2013
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 8436414
    Abstract: A nonvolatile semiconductor memory device includes: a semiconductor substrate; a stacked body provided on the semiconductor substrate, the stacked body having electrode films and insulating films being alternately stacked; a first and second semiconductor pillars; and a first and second charge storage layers. The first and second semiconductor pillars are provided inside a through hole penetrating through the stacked body in a stacking direction of the stacked body. The through hole has a cross section of an oblate circle, when cutting in a direction perpendicular to the stacking direction. The first and second semiconductor pillars face each other in a major axis direction of the first oblate circle. The first and second semiconductor pillars extend in the stacking direction. The first and second charge storage layers are provided between the electrode film and the first and second semiconductor pillars, respectively.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: May 7, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Hideaki Aochi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Yoshiaki Fukuzumi, Yosuke Komori, Megumi Ishiduki, Tomoko Fujiwara, Junya Matsunami, Ryouhei Kirisawa
  • Patent number: 8432028
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate having a base substrate top side; mounting a base integrated circuit over the base substrate top side, the base integrated circuit having an active side opposite an inactive side with the inactive side facing the base substrate top side; attaching a peripheral interconnect to the base substrate top side and a device peripheral pad of the base integrated circuit at the active side; mounting an interposer over the base integrated circuit and the peripheral interconnect, the interposer having an interposer top side and a window; and attaching a central interconnect to the interposer top side and a device central pad of the base integrated circuit at the active side, the central interconnect through the window.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: April 30, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: JinGwan Kim, KyuWon Lee, MoonKi Jeong, SunYoung Chun, JiHoon Oh
  • Patent number: 8426921
    Abstract: Integrated circuits having complementary metal-oxide semiconductor (CMOS) and photonics circuitry and techniques for three-dimensional integration thereof are provided. In one aspect, a three-dimensional integrated circuit comprises a bottom device layer and a top device layer. The bottom device layer comprises a substrate; a digital CMOS circuitry layer adjacent to the substrate; and a first bonding oxide layer adjacent to a side of the digital CMOS circuitry layer opposite the substrate. The top device layer comprises an analog CMOS and photonics circuitry layer formed in a silicon-on-insulator (SOI) layer having a buried oxide (BOX) with a thickness of greater than or equal to about 0.5 micrometers; and a second bonding oxide layer adjacent to the analog CMOS and photonics circuitry layer. The bottom device layer is bonded to the top device layer by an oxide-to-oxide bond between the first bonding oxide layer and the second bonding oxide layer.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Kuan-Neng Chen, Steven J. Koester, Yuri A. Vlasov
  • Patent number: 8427865
    Abstract: There is provided a semiconductor storage device which is capable of further reducing a size of a memory cell, and increasing a storage capacity. Plural memory cells each including a transistor formed on a semiconductor substrate, and a variable resistive device having a resistance value changed by voltage supply and connected between source and drain terminals of the transistor are arranged longitudinally and in an array to configure a three-dimensional memory cell array. A memory cell structure has a double channel structure in which an inside of a switching transistor is filled with a variable resistance element, particularly, a phase change material. The switching transistor is turned off by application of a voltage to increase a channel resistance so that a current flows in the internal phase change material to operate the memory.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 23, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Akio Shima, Yoshitaka Sasago, Masaharu Kinoshita, Toshiyuki Mine, Norikatsu Takaura, Takahiro Morikawa, Kenzo Kurotsuchi, Satoru Hanzawa
  • Patent number: 8426947
    Abstract: In a laminated semiconductor substrate, a plurality of semiconductor substrates are laminated. Each of the semiconductor substrate has a plurality of scribe-groove parts formed along scribe lines. Further, each of the semiconductor substrate has a plurality of device regions insulated from each other and has a semiconductor device formed therein. Further, an uppermost substrate and a lowermost substrate have an electromagnetic shielding layer formed using a ferromagnetic body. The electromagnetic shielding layer is formed in a shielding region except the extending zone. The extending zone is set a part which the wiring electrode crosses, in a peripheral edge part of the device region.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 23, 2013
    Assignees: Headway Technologies, Inc., SAE Magentics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8421087
    Abstract: A semiconductor module having one or more silicon carbide diode elements mounted on a switching element is provided in which the temperature rise is reduced by properly disposing each of the diode elements on the switching element, to thereby provide a thermal dissipation path for the respective diode elements. The respective diode elements are arranged on a non-central portion of the switching element, to facilitate dissipation of the heat produced by each of the diode elements, whereby the temperature rise in the semiconductor module is reduced.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 16, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kiyoshi Arai, Gourab Majumdar
  • Patent number: 8395191
    Abstract: A semiconductor device including a first single crystal layer with first transistors and a first alignment mark; at least one metal layer overlying the first single crystal layer, wherein the at least one metal layer includes copper or aluminum; and a second layer including activated dopant regions, the second layer overlying the at least one metal layer, wherein the second layer includes second transistors, wherein the second transistors are processed aligned to the first alignment mark with less than 100 nm alignment error, and the second transistors include mono-crystal, horizontally-oriented transistors.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 12, 2013
    Assignee: MonolithIC 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar, Zeev Wurman
  • Patent number: 8395252
    Abstract: An apparatus for packaging MEMS and ICs can include a semiconductor substrate, one or more MEMS devices, an enclosure, and one or more bonding structures. The semiconductor substrate can be bonded to a portion of the surface region. The semiconductor substrate can include one or more integrated circuits. Also, the semiconductor substrate can have an upper surface region. The one or more MEMS devise can overlie an inner region of the upper surface region formed by the semiconductor substrate. The enclosure can house the one or more MEMS devices. The enclosure can overlie a first outer region of the upper surface region. Also, the enclosure can have an upper cover region. The one or more bonding structures can be provided within a second outer region of the supper surface region.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 12, 2013
    Assignee: mCube Inc.
    Inventor: Xiao “Charles” Yang
  • Patent number: 8389333
    Abstract: A semiconductor device has a first semiconductor die and first encapsulant deposited around the first semiconductor die. A first insulating layer is formed over the first semiconductor die and first encapsulant. A first conductive layer is formed over the first insulating layer and electrically connected to a contact pad of the first semiconductor die. A second semiconductor die is mounted to the first insulating layer and first conductive layer. A second encapsulant is deposited around the second semiconductor die. A second insulating layer is formed over the second semiconductor die and second encapsulant. A second conductive layer is formed over the second insulating layer and electrically connected to a contact pad of the second semiconductor die. A plurality of conductive vias is formed continuously through the first and second encapsulants outside a footprint of the first and second semiconductor die electrically connected to the first and second conductive layers.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 5, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Zigmund R. Camacho
  • Patent number: 8383458
    Abstract: A method for manufacturing an integrated circuit package system includes: providing a base package including a first integrated circuit coupled to a base substrate by an electrical interconnect formed on one side; and mounting an offset package over the base package, the offset package electrically coupled to the base substrate via a system interconnect.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 26, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: DaeSik Choi, BumJoon Hong, Sang-Ho Lee, Jong-Woo Ha, Soo-San Park
  • Patent number: 8373237
    Abstract: Example embodiments provide a transistor and a method of manufacturing the same. The transistor may include a channel layer formed of an oxide semiconductor and a gate having a three-dimensional structure. A plurality of the transistors may be stacked in a perpendicular direction to a substrate. At least some of the plurality of transistors may be connected to each other.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-ho Park, Chang-jung Kim, I-hun Song, Sang-wook Kim, Jae-chul Park
  • Patent number: 8354300
    Abstract: Mitigating electrostatic discharge damage when fabricating a 3-D integrated circuit package, wherein in one embodiment when a second tier die is placed in contact with a first tier die, conductive bumps near the perimeter of the second tier die that are electrically coupled to the substrate of the second tier die make contact with corresponding conductive bumps on the first tier die that are electrically coupled to the substrate of first tier die before other signal conductive bumps and power conductive bumps on the second tier and first tier dice make electrical contact.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 15, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Brian Matthew Henderson, Arvind Chandrasekaran
  • Patent number: 8349650
    Abstract: A multi-layered semiconductor apparatus capable of producing at least 500 W of continuous power includes at least two device substrates arranged in a stack. Each of the at least two device substrates has a first side and a second side opposite to the first side, and each of the at least two device substrates is configured to produce an average power density higher than 100 W/cm2. A plurality of active devices are provided on the first side of each of the at least two device substrates. The plurality of active devices are radiatively coupled among the at least two device substrates. At least one of the at least two device substrates is structured to provide a plurality of cavities on its second side to receive corresponding ones of the plurality of active devices on the first side of an adjacent one of the at least two device substrates.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: January 8, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: Peter D. Brewer, Keith V. Guinn, Jonathan J. Lynch
  • Patent number: 8343814
    Abstract: A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Bucki, Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Eric Robinson
  • Patent number: 8324070
    Abstract: A semiconductor device includes a NMOS transistor of a peripheral circuit region. The NMOS transistor is formed over a relaxed silicon germanium layer and a silicon layer to have a tensile strain structure, thereby increasing electron mobility of a channel region in operation of the device. The semiconductor device may include a second active region including a first silicon layer connected to a first active region of a semiconductor substrate, a second silicon layer and a relaxed silicon germanium layer formed over the first silicon layer expected to be a NMOS region, and a NMOS gate formed over the second silicon layer.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: December 4, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Taek Hwang
  • Patent number: 8298940
    Abstract: A semiconductor memory device has a plurality of core chips and an interface chip, whose specification can be easily changed, while suppressing the degradation of its reliability. The device has an interposer chip. First internal electrodes connected to core chips are formed on the first surface of the interposer chip. Second internal electrodes connected to an interface chip and third internal electrodes connected to external electrodes are formed on the second surface of the interposer chip. The interface chip can be mounted on the second surface of the interposer chip whenever desired. Therefore, the memory device can have any specification desirable to a customer, only if an appropriate interface chip is mounted on the interposer chip, as is demanded by the customer. Thus, the core chips do not need to be stocked in great quantities in the form of bare chips.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: October 30, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Masakazu Ishino, Hiroaki Ikeda, Kayoko Shibata
  • Patent number: 8298931
    Abstract: A method for fabricating a 3-D monolithic memory device in which a via and trench are etched using an amorphous carbon hard mask. The via extends in multiple levels of the device as a multi-level vertical interconnect. The trench extends laterally, such as to provide a word line or bit line for memory cells, or to provide other routing paths. A dual damascene process can be used in which the via is formed first and the trench is formed second, or the trench is formed first and the via is formed second. The technique is particularly suitable for deep via applications, such as for via depths of greater than 1 ?m. A dielectric antireflective coating, optionally with a bottom antireflective coating, can be used to etch an amorphous carbon layer to provide the amorphous carbon hard mask.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 30, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Patent number: 8294159
    Abstract: A method for fabrication of 3D semiconductor devices utilizing a layer transfer and steps for forming transistors on top of a pre-fabricated semiconductor device comprising transistors formed on crystallized semiconductor base layer and metal layer for the transistors interconnections and insulation layer. The advantage of this approach is reduction of the over all metal length used to interconnect the various transistors.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: October 23, 2012
    Assignee: MonolithIC 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8274102
    Abstract: A semiconductor device includes a PMOS transistor of a peripheral circuit region. The PMOS transistor is formed over a silicon germanium layer to have a compressive strain structure, thereby increasing hole mobility of a channel region in operation of the device. The semiconductor device may include a second active region including a silicon layer connected to a first active region of a semiconductor substrate, a silicon germanium layer formed over the silicon layer expected to be a PMOS region, and a PMOS gate formed over the silicon germanium layer.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 25, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Taek Hwang
  • Patent number: 8258517
    Abstract: One embodiment exemplarily described herein can be generally characterized as a semiconductor device that includes a lower level device layer located over a semiconductor substrate, an interlayer insulating film located over the lower level device layer and an upper level device layer located over the interlayer insulating film. The lower level device layer may include a plurality of devices formed in the substrate. The upper level device layer may include a plurality of semiconductor patterns and at least one device formed in each of the plurality of semiconductor patterns. The plurality of semiconductor patterns may be electrically isolated from each other. Each of the plurality of semiconductor patterns may include at least one active portion and at least one body contact portion electrically connected to the at least one active portion.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-In Yun, Soon-Moon Jung, Han-Soo Kim, Hoo-Sung Cho, Jun-Beom Park, Jae-Hun Jeong
  • Patent number: 8258563
    Abstract: A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: September 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Chul Jang, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Patent number: 8247895
    Abstract: A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. The 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tounge and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling. The memory stack is further diced at the fixed clock-cycle distance and is flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Roy R. Yu
  • Patent number: 8247864
    Abstract: A semiconductor device with an amorphous silicon (a-Si) metal-oxide-nitride-oxide-silicon (MONOS) or metal-aluminum oxide-silicon (MAS) memory cell structure with one-time programmable (OTP) function. The device includes a substrate, a first dielectric layer overlying the substrate, and one or more source or drain regions embedded in the first dielectric layer with a co-planar surface of n-type a-Si and the first dielectric layer. Additionally, the device includes a p-i-n a-Si diode junction. The device further includes a second dielectric layer on the a-Si p-i-n diode junction and a metal control gate overlying the second dielectric layer. Optionally the device with OTP function includes a conductive path formed between n-type a-Si layer and the metal control gate. A method of making the same memory cell structure is provided and can be repeated to integrate the structure three-dimensionally.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: August 21, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Mieno Fumitake
  • Patent number: 8241989
    Abstract: An integrated circuit with stacked devices. One embodiment provides a surface of a first semiconductor structure of a first crystalline semiconductor material including first and second portions. First structures are formed on the first portions. The second portions remain uncovered. Sacrificial structures of a second, different crystalline material are formed on the second portions. A second semiconductor structure of the first crystalline semiconductor material is formed over the sacrificial structures and over the first structures.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: August 14, 2012
    Assignee: Qimonda AG
    Inventor: Franz Hofmann