With Subsequent Division Of Substrate Into Plural Individual Devices (epo) Patents (Class 257/E21.599)

  • Patent number: 11955437
    Abstract: Techniques are provided for containing magnetic fields generated by an integrated switching package and for reducing electromagnetic interference generated from an integrated switching package.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: April 9, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: Leonard Shtargot, Zafer Kutlu, John Underhill Gardner
  • Patent number: 11929256
    Abstract: A wafer processing method for processing a wafer having a chamfered portion formed at a periphery thereof includes a tape attaching step of attaching a protective tape to a front surface of the wafer and making a diameter of the protective tape coincide with a diameter of the wafer; a grinding step of grinding a back surface of the wafer held by a holding table with use of grinding stones so as to thin the wafer to a thickness thinner than half of an original thickness, to reduce the diameter of the wafer, and to form a protruding portion where the protective tape protrudes from the wafer; and a contracting step of heating and contracting the protruding portion of the protective tape after the grinding step is carried out.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: March 12, 2024
    Assignee: DISCO CORPORATION
    Inventor: Yuya Matsuoka
  • Patent number: 11881425
    Abstract: A technique for handling an integrated circuit/tape assembly having a plurality of integrated circuits supported by underlying dicing tape involves placing the integrated circuit/tape assembly on a bottom file frame carrier (FFC) frame having structure (e.g., an inner rim or flexible pegs), placing a top FFC frame having a central opening over the integrated circuit/tape assembly, and mating the top and bottom FFC frames such that the dicing tape is pulled over the structure thereby laterally stretching the dicing tape, which breaks wafer saw bows holding the integrated circuits together. The lateral stretching of the dicing tape increases distance between adjacent integrated circuits in at least two mutually orthogonal lateral directions, thereby inhibiting the adjacent integrated circuits from colliding during shipment or storage for subsequent processing. The resulting assembly can be thinner than conventional FFC configurations, which results in more efficient shipment and storage.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 23, 2024
    Assignee: NXP B.V.
    Inventors: Antonius Hendrikus Jozef Kamphuis, Guido Albermann, Johannes Cobussen
  • Patent number: 11854986
    Abstract: A semiconductor device includes a die, an encapsulant over a front-side surface of the die, a redistribution structure on the encapsulant, a thermal module coupled to the back-side surface of the die, and a bolt extending through the redistribution structure and the thermal module. The die includes a chamfered corner. The bolt is adjacent to the chamfered corner.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Hua Yu, Wei-Kang Hsieh, Shih-Wei Chen, Tin-Hao Kuo, Hao-Yi Tsai
  • Patent number: 11842911
    Abstract: In certain aspects, a method for controlling wafer stress is disclosed. A semiconductor film is formed on a backside of a wafer. The wafer is deformed by stress associated with a front-side semiconductor structure on a front side of the wafer opposite to the backside of the wafer. A laser application region of the semiconductor film is determined. A laser anneal process is performed in the laser application region of the semiconductor film.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: December 12, 2023
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Pengan Yin, Siping Hu, Shu Wu, Lina Miao
  • Patent number: 11837487
    Abstract: A transfer device, configured to hold a substrate to be thinned and configured to be moved along a transfer path through which the substrate is transferred, includes a grip member configured to hold a frame to which the substrate is mounted with a tape therebetween; a guide member configured to be moved along the transfer path together with the grip member and configured to place thereon the frame held by the grip member; and a moving mechanism configured to move the grip member with respect to the guide member to move the frame held by the grip member along the guide member.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 5, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Takeshi Tamura, Masatoshi Kaneda, Seiji Nakano
  • Patent number: 11705409
    Abstract: A semiconductor device including a chip package, a dielectric structure, and a first antenna pattern is provided. The dielectric structure is disposed on the chip package and includes a cavity and a vent in communication with the cavity. The first antenna pattern is disposed on the dielectric structure, wherein the chip package is electrically coupled to the first antenna pattern, and the cavity of the dielectric structure is disposed between the chip package and the first antenna pattern.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Albert Wan, Ching-Hua Hsieh, Chao-Wen Shih, Han-Ping Pu, Meng-Tse Chen, Sheng-Hsiang Chiu
  • Patent number: 11688642
    Abstract: Aspects of the present disclosure provide a method for forming a chiplet onto a semiconductor structure. The method can include providing a first semiconductor structure having a first circuit and a first wiring structure formed on a first side thereof, and attaching the first side to a carrier substrate. The method can further include forming a composite of a first stress film and a second stress film on a second side of the first semiconductor structure, and separating the carrier substrate from the first semiconductor structure. The method can further include cutting the composite of the first stress film and the second stress film and the first semiconductor structure to define at least one chiplet, and bonding the at least one chiplet to a second semiconductor structure that has a second circuit and a second wiring structure such that the second wiring structure is connected to the first wiring structure.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: June 27, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. Devilliers, Daniel J. Fulford, Anthony R. Schepis, Mark I. Gardner, H. Jim Fulford
  • Patent number: 11688641
    Abstract: An element chip manufacturing method including: attaching a substrate via a die attach film (DAF) to a holding sheet; forming a protective film that covers the substrate; forming an opening in the protective film with a laser beam, to expose the substrate in the dicing region therefrom; exposing the substrate to a first plasma to etch the substrate exposed from the opening, so that a plurality of element chips are formed from the substrate and so that the DAF is exposed from the opening; exposing the substrate to a second plasma to etch the die attach film exposed from the opening, so that the DAF is split so as to correspond to the element chips; and detaching the element chips from the holding sheet, together with the split DAF. The DAF is larger than the substrate. The method includes irradiating the laser beam to the DAF protruding from the substrate.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 27, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hidefumi Saeki, Hidehiko Karasaki, Shogo Okita, Atsushi Harikai, Akihiro Itou
  • Patent number: 11675448
    Abstract: A touch panel having a visible area and a non-visible area disposed at least on one side of the visible area. The touch panel includes a substrate, a nano-metal conductive layer, a trace layer, a first passivation layer, and a second passivation layer. The nano-metal conductive layer is disposed on the substrate and at least in the visible area. The trace layer is disposed on the substrate and in the non-visible area. The trace layer is electrically connected to the nano-metal conductive layer. The first passivation layer covers the trace layer. The second passivation layer covers at least a portion of the first passivation layer. The first passivation layer has a different Young's modulus than the second passivation layer.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: June 13, 2023
    Assignee: TPK Advanced Solutions Inc.
    Inventors: Chi-Mei Yan, Jin-Hui Zhang, Fang Fang, Kang-Yu Liu
  • Patent number: 11651989
    Abstract: A wafer is positioned in an opening of a first frame. The wafer is pressure-bonded at one surface thereof to a first tape together with the first frame, onto a second tape pressure-bonded to a second frame. The wafer is processed by pressure-bonding the second tape, which is pressure-bonded to the second frame having an outer diameter smaller than an inner diameter of the opening of the first frame, to another surface of the wafer, cutting the first tape along an outer periphery of the second frame, imparting an external stimulus to the first tape to lower a pressure-bonding force with which the first tape is pressure-bonded to the one surface of the wafer, and peeling off the first tape from the one surface of the wafer pressure-bonded to the second tape.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: May 16, 2023
    Assignee: DISCO CORPORATION
    Inventor: Yoshinori Kakinuma
  • Patent number: 11623307
    Abstract: A resin flux solder paste includes a solder powder, and a flux, in which the flux contains at least an epoxy resin, a curing agent, a curing accelerator, and an activator, the epoxy resin contains 10% to 90% by weight of one or more of a biphenyl aralkyl type epoxy resin, a naphthalene type epoxy resin, and a dicyclopentadiene type epoxy resin, having an epoxy equivalent of 200 to 400, with respect to a total amount of the epoxy resin, and the curing agent contains 30% to 95% by weight of a biphenyl aralkyl phenol resin having a hydroxyl group equivalent of 150 to 350 with respect to a total amount of the curing agent, and 5% to 70% by weight of a phenol novolac resin having an allyl group having a hydroxyl group equivalent of 100 to 200 with respect to the total amount of the curing agent.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: April 11, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hirohisa Hino, Koso Matsuno
  • Patent number: 11610815
    Abstract: A wafer processing method includes a polyolefin sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyolefin sheet on a back side or a front side of the wafer and on a back side of the ring frame, a uniting step of heating the polyolefin sheet as applying a pressure to the polyolefin sheet to thereby unite the wafer and the ring frame through the polyolefin sheet by thermocompression bonding, a dividing step of applying a laser beam to the wafer to form shield tunnels in the wafer, thereby dividing the wafer into individual device chips, and a pickup step of heating the polyolefin sheet, pushing up each device chip through the polyolefin sheet, and picking up each device chip from the polyolefin sheet.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: March 21, 2023
    Assignee: DISCO CORPORATION
    Inventors: Shigenori Harada, Minoru Matsuzawa, Hayato Kiuchi, Yoshiaki Yodo, Taro Arakawa, Masamitsu Agari, Emiko Kawamura, Yusuke Fujii, Toshiki Miyai, Makiko Ohmae
  • Patent number: 11594454
    Abstract: A wafer processing method includes a polyolefin sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyolefin sheet on a back side or a front side of the wafer and on a back side of the ring frame, a uniting step of heating the polyolefin sheet as applying a pressure to the polyolefin sheet to thereby unite the wafer and the ring frame through the polyolefin sheet by thermocompression bonding, a dividing step of applying a laser beam to the wafer to form shield tunnels in the wafer, thereby dividing the wafer into individual device chips, and a pickup step of picking up each device chip from the polyolefin sheet.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: February 28, 2023
    Assignee: DISCO CORPORATION
    Inventors: Shigenori Harada, Minoru Matsuzawa, Hayato Kiuchi, Yoshiaki Yodo, Taro Arakawa, Masamitsu Agari, Emiko Kawamura, Yusuke Fujii, Toshiki Miyai, Makiko Ohmae
  • Patent number: 11551974
    Abstract: A manufacturing process of an element chip comprises a preparing step for preparing a substrate having first and second sides opposed to each other, the substrate containing a semiconductor layer, a wiring layer and a resin layer formed on the first side, and the substrate including a plurality of dicing regions and element regions defined by the dicing regions. Also, the manufacturing process comprises a laser grooving step for irradiating a laser beam onto the dicing regions to form grooves so as to expose the semiconductor layer along the dicing regions. Further, the manufacturing process comprises a dicing step for plasma-etching the semiconductor layer along the dicing regions through the second side to divide the substrate into a plurality of the element chips. The laser grooving step includes a melting step for melting a surface of the semiconductor layer exposed along the dicing regions.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 10, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hidefumi Saeki, Atsushi Harikai, Shogo Okita
  • Patent number: 11504804
    Abstract: A method of confirming an optical axis of a laser processing apparatus includes placing an image capturing unit so as to be movable in X-axis directions, removing a second mirror and capturing an image of a laser beam with the image capturing unit for receiving the laser beam reflected by a first mirror, installing the second mirror and capturing an image of the laser beam with the image capturing unit for receiving the laser beam reflected by a third mirror, and determining whether an optical axis of the laser beam reflected by the first mirror and an optical axis of the laser beam reflected by the third mirror exist in one XZ plane or not on the basis of the captured images and a reference line in the captured images.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 22, 2022
    Assignee: DISCO CORPORATION
    Inventor: Keiji Nomaru
  • Patent number: 11456116
    Abstract: A recess in a die backside surface occupies a footprint that accommodates an inductor coil that is formed in metallization above an active surface of the die. Less semiconductive material is therefore close to the inductor coil. A ferromagnetic material is formed in the recess, or a ferromagnetic material is formed on a dielectric layer above the inductor coil. The recess may extend across a die that allows the die to be deflected at the recess.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 27, 2022
    Assignee: Intel Corporation
    Inventors: Andreas Augustin, Bernd Waidhas, Sonja Koller, Reinhard Mahnkopf, Georg Seidemann
  • Patent number: 11426123
    Abstract: Wearable electronic devices that employ techniques for routing signals between components are described. An exemplary wearable electronic device includes a set of pod structures with each pod structure positioned adjacent and physically coupled to at least one other pod structure. The set of pod structures includes multiple sensor pods and at least one processor pod. Each sensor pod includes an on-board sensor to in use detect user-effected inputs and provide signals in response to the user-effected inputs. The signals are serially routed via successive ones of adjacent pod structures by respective communicative pathways until the signals are routed from the sensor pods to the processor pod. A processor on-board the processor pod processes the signals. Systems, articles, and methods for routing electrical signals and/or optical signals, including analog signals and/or digital signals, between pod structures are described.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: August 30, 2022
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Matthew Bailey, Stephen Lake, Aaron Grant
  • Patent number: 11424209
    Abstract: An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Sven Albers, Klaus Reingruber, Georg Seidemann, Christian Geissler, Richard Patten
  • Patent number: 11417570
    Abstract: A wafer processing method for forming a modified layer within a wafer along planned dividing lines forms the modified layer within the wafer, positions a condensing point within the wafer or at the top surface of the wafer and applies a second laser beam while moving the condensing point in a thickness direction of the wafer, images reflected light, and determines the processed state of the wafer on the basis of a photographed image. The second laser beam is formed such that the sectional shape of the second laser beam in a plane perpendicular to the traveling direction of the second laser beam is asymmetric with respect to the modified layer.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: August 16, 2022
    Assignee: DISCO CORPORATION
    Inventors: Shunsuke Teranishi, Shuichiro Tsukiji, Yuki Ikku
  • Patent number: 11407063
    Abstract: A protective film forming agent for dicing of semiconductor wafers for forming a protective film on the surface of the semiconductor wafers and capable of forming a protective film of high absorbance index, and a production method of semiconductor chips using the protective film forming agent. In a protective film forming agent containing a water-soluble resin, light absorber and solvent, a compound having a specific structure is used as the light absorber. The content of the light absorber in the protective film forming agent is 0.1% by mass or more and 10% by mass or less.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: August 9, 2022
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventor: Tetsuro Kinoshita
  • Patent number: 11402579
    Abstract: A fabrication method includes arranging a plurality of dice on a substrate and performing a first etching process that etches a first layer of the substrate at a boundary between adjacent dice on the substrate. The etching forms facets of one or more waveguides that are defined within the first layer, and the etching leaves a portion of the first layer in the boundary between the adjacent dice. The method continues with a second etching process that etches the portion of the first layer and a second layer beneath the portion of the first layer, the second etching process forming a trench in the boundary where the second layer has a different material than the first layer. The method also includes separating the dice from one another along the trench.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 2, 2022
    Assignee: Medlumics S.L.
    Inventors: José Luis Rubio Guivernau, Eduardo Margallo Balbás
  • Patent number: 11371829
    Abstract: The present invention relates to a wafer carrier thickness measuring device capable of accurately measuring an inner/outer circumferential thickness of a wafer carrier in a non-contact manner. The present invention provides a wafer carrier thickness measuring device including: a first table installed to be capable of rotating and moving vertically and capable of supporting a central portion of a wafer carrier; a second table disposed outside the first table and rotatably installed, and capable of supporting an outer circumferential portion of the wafer carrier; upper and lower sensors for calculating a thickness of the wafer carrier by measuring a distance to upper and lower surfaces of the wafer carrier supported by one of the first and second tables in a non-contact manner; and a sensor driving unit located at one side of the second table and moving the upper and lower sensors to an upper side or a lower side of the wafer carrier supported by one of the first and second tables.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 28, 2022
    Assignee: SK SILTRON CO., LTD.
    Inventor: Suk Jin Jung
  • Patent number: 11322404
    Abstract: A wafer processing method includes applying a laser beam of such a wavelength as to be transmitted through a wafer to the wafer from a back surface of the wafer, with a focal point of the laser beam positioned at a predetermined point inside the wafer, to form division start points along streets, the division start point including a modified layer and a crack extending from the modified layer to a front surface of the wafer; and grinding the back surface of the wafer by a grinding wheel having a plurality of grindstones in an annular pattern, to thin the wafer and divide the wafer into individual device chips. In forming the division start points, a chuck table is heated to a predetermined temperature, whereby the cracks formed inside the wafer to extend from the modified layers to the front surface of the wafer are grown.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: May 3, 2022
    Assignee: DISCO CORPORATION
    Inventor: Masaru Nakamura
  • Patent number: 11037903
    Abstract: A method of forming a plurality of semiconductor packages includes providing an array of unsingulated semiconductor packages that are at least partially encapsulated in an encapsulant. The array of unsingulated semiconductor packages may be coupled with a lead frame or a substrate. A first plurality of singulation lines are simultaneously etched in the encapsulant through slits in an etch mask using a plasma etching process and a fixture coupled with the array. A second plurality of parallel singulation lines may also be etched. The first and second pluralities of singulation lines may include substantially straight or arcuate lines. The second plurality of parallel singulation lines may be substantially perpendicular to the first plurality of parallel singulation lines and be formed using the plasma etching process, the fixture, and an etch mask. The formation of singulation lines in the array singulates the array into a plurality of singulated semiconductor packages.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 15, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Darrell Truhitte
  • Patent number: 11011446
    Abstract: A semiconductor device and a method of making the same. The device includes a semiconductor substrate having a major surface, a backside and side surfaces extending between the major surface and the backside. The semiconductor device also includes at least one metal layer extending across the backside of the substrate. A peripheral part of the at least one metal layer located at the edge of the substrate between the backside and at least one of the side surfaces extends towards a plane containing the major surface. This can prevent burrs located at the peripheral part of the at least one metal layer interfering with the mounting of the backside of the substrate on the surface of a carrier.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: May 18, 2021
    Assignee: NEXPERIA B.V.
    Inventors: Tonny Kamphuis, Leo van Gemert, Hans van Rijckevorsel, Sascha Moeller, Hartmut Buenning, Steffen Holland, Y Kuang Huang
  • Patent number: 11004805
    Abstract: Provided is a method of fabricating a semiconductor device, including the following steps. A first seal ring and a second seal ring that are separated from each other are formed on a substrate. A protective layer covering the first seal ring and the second seal ring is formed on the substrate. The protective layer between the first seal ring and the second seal ring includes a concave surface. The protective layer at the concave surface and a portion of the protective layer on the first seal ring are removed to form a spacer on a sidewall of the first seal ring, and form an opening in the protective layer. The width of the opening is greater than the width of the first seal ring, and the opening exposes a top surface of the first seal ring and the spacer.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 11, 2021
    Assignee: Winbond Electronics Corp.
    Inventors: Yao-Ting Tsai, Chiang-Hung Chen, Che-Fu Chuang, Wen Hung
  • Patent number: 10991623
    Abstract: A wafer processing method for processing a wafer having a substrate and a device layer formed on a front side of the substrate includes forming a mask on a back side of the wafer, so as to form an etched groove along each street through a thickness of the substrate from the back side of the wafer, performing plasma etching from the back side of the wafer through the mask to the substrate after forming the mask, thereby forming the etched groove in the substrate along each street so that the etched groove has a depth equal to the thickness of the substrate, and applying a laser beam to the device layer along each street from the front side of the wafer before etching and mask forming, thereby forming a device layer dividing groove corresponding to the etched groove along each street.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: April 27, 2021
    Assignee: DISCO CORPORATION
    Inventors: Masatoshi Wakahara, Karl Heinz Priewasser, Meiya Piao, Kentaro Odanaka, Wakana Onoe, Heidi Lan
  • Patent number: 10957596
    Abstract: A method for fabricating caterpillar trenches for wafer dicing includes forming at least one opening within a mask formed on a substrate to protect an electronics device disposed on the substrate during isotropic etching, and isotropically etching through the at least one opening to form at least one wafer dicing channel, including laterally etching a collection of nested trenches including trenches each having a non-circular cross-section from a first surface of the substrate to a second surface of the substrate opposite the first surface.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Effendi Leobandung, Ghavam G. Shahidi
  • Patent number: 10950480
    Abstract: An adhesive tape sticking apparatus includes a chamber includes a lower chamber and an upper chamber. The lower chamber includes a first inner space and the upper chamber includes a second inner space. An adhesive tape sheet is positioned between the upper chamber and the lower chamber. A substrate support is movable upward and downward within the lower chamber and is configured to support a substrate. A differential pressure generator is configured to generate a differential pressure between the first inner space and the second inner space. A tape support plate positioned between a first sidewall of the lower chamber and a circumferential edge of the substrate. The tape support plate is configured to contact at least a portion of the adhesive tape sheet when the adhesive tape sheet bends downward toward the first inner space when the differential pressure is generated between the first and second inner spaces.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: March 16, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Min Kim, Joo-Hyung Lee, Hae-Gu Lee
  • Patent number: 10950579
    Abstract: A package and a method of forming the same are provided. A method includes forming a first die structure. The first die structure includes a die stack and a stacked dummy structure bonded to a carrier. A second die structure is formed. The second die structure includes a first integrated circuit die. The first die structure is bonded to the second die structure by bonding a topmost integrated circuit die of the die stack to the first integrated circuit die. The topmost integrated circuit die of the die stack is a farthest integrated circuit die of the die stack from the carrier. A singulation process is performed on the first die structure to form a plurality of individual die structures. The singulation process singulates the stacked dummy structure into a plurality of individual stacked dummy structures.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fa Chen, Hsien-Wei Chen, Chen-Hua Yu
  • Patent number: 10796914
    Abstract: In various embodiments, a method for processing a wafer is provided. The method includes forming a layer stack, including a support layer and a useful layer and a sacrificial region between them, said sacrificial region having, vis-à-vis a processing fluid, a lower mechanical and/or chemical resistance than the support layer and than the useful layer. The support layer has a depression, which exposes the sacrificial region. The method further includes forming at least one channel in the exposed sacrificial region by means of the processing fluid. The channel connects the depression to an exterior of the layer stack.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: October 6, 2020
    Assignee: Infineon Technologies AG
    Inventor: Francisco Javier Santos Rodriguez
  • Patent number: 10790193
    Abstract: A method for processing a wafer in which patterns including a metal layer are formed on streets. The method includes: a step of applying a laser beam along the streets formed with the patterns to form laser processed grooves having a depth in excess of a finished thickness of the wafer while removing the patterns; a step of grinding a back surface side of the wafer to thin the wafer to the finished thickness, and to expose the laser processed grooves to the back surface of the wafer, thereby dividing the wafer into a plurality of device chips; a step of removing a crushed layer formed on the back surface side of the wafer; and a step of forming a strain layer on the back surface side of the wafer by plasma processing using an inert gas.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: September 29, 2020
    Assignee: DISCO Corporation
    Inventors: Yoshiteru Nishida, Hidekazu Iida, Susumu Yokoo, Hiroyuki Takahashi, Kenta Chito
  • Patent number: 10790192
    Abstract: A method for processing a wafer in which patterns including a metal layer are formed on streets. The method includes: a step of applying a laser beam along the streets formed with the patterns to form laser processed grooves while removing the patterns; a step of forming cut grooves having a depth in excess of a finished thickness of the wafer, inside the laser processed grooves; a step of grinding the back surface side of the wafer to thin the wafer to the finished thickness and to expose the cut grooves to the back surface of the wafer, thereby dividing the wafer into a plurality of device chips; a step of removing a crushed layer formed on the back surface side of the wafer; and a step of forming a strain layer on the back surface side of the wafer by plasma processing using an inert gas.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: September 29, 2020
    Assignee: DISCO CORPORATION
    Inventors: Yoshiteru Nishida, Hidekazu Iida, Susumu Yokoo, Hiroyuki Takahashi, Kenta Chito
  • Patent number: 10672731
    Abstract: An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: June 2, 2020
    Assignee: Intel IP Corporation
    Inventors: Sven Albers, Klaus Reingruber, Georg Seidemann, Christian Geissler, Richard Patten
  • Patent number: 10643953
    Abstract: An electronic device having an electronic component with electric terminals and a component carrier in which the electronic component is packaged. The component carrier includes a shielding cage surrounding all sides of the electronic component at least partially.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 5, 2020
    Assignee: AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
    Inventors: Mikael Tuominen, Christian Vockenberger, Wolfgang Schrittwieser
  • Patent number: 10615075
    Abstract: A method for dicing a wafer includes scribing perforations in a wafer. The wafer has a monocrystalline structure and the perforations have a polycrystalline structure. The method also includes adhering the wafer to a top surface of a dicing tape and applying a downward force on a periphery of the dicing tape. The downward force causes a bottom surface of the dicing tape to deform around a contour of a dome-shaped chuck, breaking the perforations in the wafer.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jerry Gomez Cayabyab, Jeniffer Otero Aspuria, Julian Carlo Concepc Barbadillo, Alvin Lopez Andaya
  • Patent number: 10573558
    Abstract: A method for fabricating caterpillar trenches for wafer dicing includes forming at least one opening from a top surface of a mask formed on a substrate to a bottom surface of the mask opposite the top surface of the mask. The mask is formed on the substrate to protect an electronics device disposed on the substrate during isotropic etching. The method further includes isotropically etching through the at least one opening to form at least one wafer dicing channel, including isotropically etching a collection of nested trenches from a top surface of the substrate to a bottom surface of the substrate opposite the top surface of the substrate.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Ghavam G. Shahidi
  • Patent number: 10553489
    Abstract: A wafer includes a first set of dies and a second set of dies. The wafer further includes a scribe line separating the first set of dies from the second set of dies, wherein the scribe line has a first width. The wafer further includes a plurality of trenches between adjacent dies of the first set of dies and connected to the scribe line, wherein the plurality of trenches has a second width less than the first width, and a depth of each trench of the plurality of trenches is less than a thickness of the wafer.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Hsiang Huang, Chung-Chuan Tseng, Chia-Wei Liu, Li Hsin Chu
  • Patent number: 10529671
    Abstract: Package structures and methods for forming the same are provided. A fan-out package structure includes a semiconductor substrate. The package structure also includes a connector over a top surface of the semiconductor substrate. The package structure further includes a buffer layer surrounding the connector and overlying a sidewall of the semiconductor substrate. In addition, the package structure includes an encapsulation layer surrounding the buffer layer. The buffer layer is between the encapsulation layer and the sidewall of the semiconductor substrate. The package structure also includes a redistribution layer (RDL) over the buffer layer and the encapsulation layer. The redistribution layer is electrically connected to the connector.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: January 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiao-Wen Lee, Hsien-Wen Liu, Shin-Puu Jeng
  • Patent number: 10510709
    Abstract: A semiconductor package and a manufacturing method for the semiconductor package are provided. The semiconductor package has at least one chip, through interlayer vias aside the chip and a composite molding compound encapsulating the chip and the through interlayer vias. The semiconductor package may further include a redistribution layer and conductive elements disposed on the redistribution layer.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Tse Chen, Ching-Hua Hsieh, Chung-Shi Liu, Chih-Wei Lin
  • Patent number: 10510604
    Abstract: A semiconductor device and method of manufacture are provided. In an embodiment a first semiconductor device and a second semiconductor device are formed within a semiconductor wafer and a scribe region between the first semiconductor device and the second semiconductor device is patterned. A singulation process is then utilized within the scribe region to singulate the first semiconductor device from the second semiconductor device. The first semiconductor device and the second semiconductor device are then bonded to a second semiconductor substrate and thinned in order to remove extension regions from the first semiconductor device and the second semiconductor device.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hung-Pin Chang, Yi-Hsiu Chen, Ku-Feng Yang, Wen-Chih Chiou
  • Patent number: 10403490
    Abstract: A wafer processing method includes a close contact making step of pressing a protective film against the front side of a wafer in a radially outward direction starting from the center of the wafer to thereby bring the protective film into close contact with the front side of the wafer, a protective member fixing step of covering the protective film with a protective member formed by curing a liquid resin to thereby fix the protective member through the protective film to the front side of the wafer, a grinding step of grinding the back side of the wafer to reduce the thickness of the wafer, and a peeling step of peeling the protective film and the protective member from the wafer thinned by the grinding step.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: September 3, 2019
    Assignee: Disco Corporation
    Inventor: Kazuma Sekiya
  • Patent number: 10388827
    Abstract: A method for manufacturing a semiconductor element is provided. The method includes providing a semiconductor wafer including a substrate and a semiconductor structure on the substrate, forming a cleavage starting portion in the semiconductor wafer, and dividing the semiconductor wafer into a plurality of semiconductor elements by transferring a pressing member on the semiconductor wafer in a state where the pressing member is pressed against the semiconductor wafer to separate the semiconductor wafer at the cleavage starting portion. The pressing member includes a tip portion to be pressed on the semiconductor wafer, and the tip portion has a spherical surface.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 20, 2019
    Assignee: NICHIA CORPORATION
    Inventors: Hiroki Okamoto, Hiroaki Tamemoto, Junya Narita
  • Patent number: 10388508
    Abstract: Disclosed herein is a laser processing apparatus including a condenser having a function of spherical aberration. Since the condenser has a function of spherical aberration, the focal point of a laser beam to be focused by the condenser and applied to a wafer can be continuously changed in position along the thickness of the wafer. Accordingly, a uniform shield tunnel composed of a fine hole and an amorphous region surrounding the fine hole can be formed so as to extend from, the front side of the wafer to the back side thereof, by one shot of the laser beam.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: August 20, 2019
    Assignee: DISCO CORPORATION
    Inventor: Naotoshi Kirihara
  • Patent number: 10357851
    Abstract: A wafer producing method for producing an SiC wafer from a single crystal SiC ingot. The wafer producing method includes a separation surface forming step of forming a separation surface composed of modified layers, cracks, and connection layers inside the ingot and a wafer separating step of separating a part of the ingot along the separation surface as an interface to thereby produce the wafer. The separation surface forming step includes a modified layer forming step of forming the modified layers and the cracks extending from the modified layers along a c-plane, and a connection layer forming step of forming the connection layers each connecting the cracks formed adjacent to each other in the thickness direction of the ingot.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: July 23, 2019
    Assignee: DISCO CORPORATION
    Inventors: Yoko Nishino, Kazuya Hirata
  • Patent number: 10354962
    Abstract: A destroy on-demand electrical device includes a substrate layer formed using a soluble material (e.g., a Germanium oxide), a semi-conductor layer formed from a material that can become soluble upon further processing (e.g., Germanium) and conductive elements, formed from a metallic material such as Copper. The device is coupled with one or more disintegration sources that contain disintegration agents (e.g., Hydrogen Peroxide) that can promote disintegration of the device. The device can be destroyed in response to actuation of the disintegration sources, for example by actuation of a source that produces Hydrogen Peroxide for use in oxidizing the semi-conductor layer. Water can be used to dissolve dissolvable substrate layers. The semi-conductor layer can be destroyed by first processing this layer to form a dissolvable material and dissolving the processed layer with water. The remaining Copper components disintegrate once their underlying layer have been dissolved and/or by use of a salt.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: July 16, 2019
    Assignee: The Charles Stark Draper Laboratory Inc.
    Inventors: Jeffrey T. Borenstein, Gregory M. Fritz, Jonathan R. Coppeta, Brett C. Isenberg
  • Patent number: 10340430
    Abstract: An optoelectronic lamp device includes an optoelectronic semiconductor component including a top side including a light-emitting face, and a housing embedding the semiconductor component and leaving free the light-emitting face, wherein a housing face is coated with a light-scattering dielectric resist layer that may scatter light incident on a face of the resist layer facing away from the housing face.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: July 2, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Leirer, Björn Hoxhold, Stefanie Rammelsberger
  • Patent number: 10211104
    Abstract: A processing method of a package wafer includes a mold resin removal step of exposing grooves filled with a mold resin of the package wafer in a peripheral surplus region, a holding step of holding the package wafer in such a manner that the grooves are exposed, an orientation adjustment step of causing the grooves to be parallel to a processing-feed direction in which processing feeding of a chuck table is carried out when dividing grooves are formed, a coordinate registration step of imaging both ends of the plural grooves exposed at a peripheral edge and registering coordinate information of both ends or a single side of the grooves from taken images, and a dividing groove forming step of calculating the positions of the dividing grooves to be formed along the grooves based on the registered coordinate information of the grooves and forming the dividing grooves along the grooves.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: February 19, 2019
    Assignee: Disco Corporation
    Inventors: Yuta Yoshida, Hironari Ohkubo
  • Patent number: 10164144
    Abstract: Embodiments transfer thin layers of material utilized in electronic devices (e.g., GaN for optoelectronic devices), from a donor to a handle substrate. Certain embodiments employ bond-and-release system(s) where release occurs along a cleave plane formed by implantation of particles into the donor. Some embodiments may rely upon release by converting components from solid to liquid under carefully controlled thermal conditions (e.g., solder-based materials and/or thermal decomposition of Indium-containing materials). Some embodiments utilize laser-induced film release processes using epitaxially grown or implanted regions as an optically absorptive region. A single bond-and-release sequence may involve processing an exposed N-face of GaN material. Multiple bond-and-release sequences (involving processing an exposed Ga-face of GaN material) may be employed in series, for example utilizing a temporary handle substrate as an intermediary.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: December 25, 2018
    Assignee: QMAT, Inc.
    Inventors: Francois J. Henley, Sien Kang, Mingyu Zhong, Minghang Li