With Particular Manufacturing Method Of Gate Conductor, E.g., Particular Materials, Shapes (epo) Patents (Class 257/E21.621)
  • Patent number: 7586150
    Abstract: A method of manufacturing a local recess channel transistor in a semiconductor device. A hard mask layer is formed on a semiconductor substrate that exposes a portion of the substrate. The exposed portion of the substrate is etched using the hard mask layer as an etch mask to form a recess trench. A trench spacer is formed on the substrate along a portion of sidewalls of the recess trench. The substrate along a lower portion of the recess trench is exposed after the trench spacer is formed. The exposed portion of the substrate along the lower portion of the recess trench is doped with a channel impurity to form a local channel impurity doped region surrounding the lower portion of the recess trench. A portion of the local channel impurity doped region surrounding the lower portion of the recess trench is doped with a Vth adjusting impurity to form a Vth adjusting impurity doped region inside the local channel impurity doped region. The width of the lower portion of the recess trench is expanded.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Se-myeong Jang, Yong-chul Oh, Makoto Yoshida
  • Patent number: 7579660
    Abstract: A semiconductor device includes a substrate including a semiconductor layer at a surface, a gate insulating film disposed on the semiconductor layer, and a gate electrode disposed on the gate insulating film. The gate electrode includes a conductive layer consisting of a nitride of a predetermined metal in contact with the gate insulating film. The conductive layer is formed by stacking a first film consisting of a nitride of the predetermined metal and a second film consisting of the predetermined metal, and diffusing nitrogen from the first film to the second film by solid-phase diffusion.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: August 25, 2009
    Assignees: Tokyo Electron Limited, Oki Electric Industry Co., Ltd.
    Inventors: Koji Akiyama, Zhang Lulu, Morifumi Ohno
  • Patent number: 7569404
    Abstract: A silicon wafer substrate is used in ink-jet printhead fabrication. The fabrication process is improved by simultaneously forming MOSFET source/drain contact vias simultaneously with substrate contact vias. A dry etch having a silicon oxide:silicon etch rate of at least 10:1 is employed.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: August 4, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Victorio A. Chavarria, Sadiq S. Bengali, Ronald L. Enck
  • Publication number: 20090124055
    Abstract: A gate structure in a transistor and method for fabricating the structure are disclosed. A gate structure is formed on a substrate. The gate structure includes three layers: an oxide layer, a nitride layer and a polysilicon layer. The oxide layer is located on the substrate, the nitride layer is located on the oxide layer, and the polysilicon layer is located on the nitride layer. The gate structure is reoxidized to form a layer of oxide over the gate structure.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 14, 2009
    Inventor: Frank Randolph Bryant
  • Patent number: 7528057
    Abstract: A laser-annealing method includes the steps of a first step of cleaning a non-monocrystal silicon film formed on a substrate, and a second step of laser-annealing the non-monocrystal silicon film in an atmosphere containing oxygen therein, wherein the first and second steps are conducted continuously without being exposed to the air. Also, a laser-annealing device includes a cleaning chamber, and a laser irradiation chamber, wherein a substrate to be processed is transported between the cleaning chamber and the laser irradiation chamber without being exposed to the air.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: May 5, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Toru Takayama, Masato Yonezawa
  • Patent number: 7510969
    Abstract: In an electrode line structure of a semiconductor device and a method for forming the same, the electrode line structure comprises a semiconductor substrate, and electrode lines, which are formed on the semiconductor substrate, and have an inclined end in the long axis direction. The electrode lines each include a first line unit, which substantially functions as an electrode line, a second line unit, which has an inclined end in the long axis direction and is separated from the first line unit by a predetermined distance, and an insulating plug, which is interposed between the first line unit and the second line unit and electrically insulates the first line unit from the second line unit.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo-won Lee, Kang-soo Chu, Jae-eun Park, Jong-ho Yang
  • Patent number: 7507651
    Abstract: A method for fabricating a semiconductor device with a bulb shaped recess gate pattern includes selectively etching a first portion of a substrate to form a first recess; forming a spacer on sidewalls of the first recess; performing an isotropic etching process on a second portion of the substrate beneath the first recess to form a second recess, the second recess being wider and more rounded than the first recess; removing the spacer; and forming a gate pattern having a first portion buried into the first and second recesses and a second portion projecting over the substrate.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yong-Tae Cho, Suk-Ki Kim
  • Publication number: 20090026547
    Abstract: A semiconductor device includes an active region extending along a first direction on a semiconductor substrate, the active region having a first sidewall and a second sidewall spaced apart and facing each other, a distance between the first and second sidewalls extending along a second direction, and a gate on the active region, the gate having a pair of body portions extending along the second direction and being spaced apart from each other, the second direction being perpendicular to the first direction, a head portion extending along the first direction to connect the body portions, the head portion overlapping a portion of the first sidewall, and a plurality of tab portions protruding from sidewalls of the body portions, the tab portions extending along the first direction and overlapping a portion of the second sidewall.
    Type: Application
    Filed: July 22, 2008
    Publication date: January 29, 2009
    Inventors: Hong-Ji Lee, Sung-Jin Kim
  • Publication number: 20090011537
    Abstract: The present invention is to obtain an MIS transistor which allows considerable reduction in threshold fluctuation for each transistor and has a low threshold voltage. First gate electrode material for nMIS and second gate electrode material for pMIS can be mutually converted to each other, so that a process can be simplified. Such a fact that a dependency of a work function on a doping amount is small is first disclosed, so that fluctuation in threshold voltage for each transistor hardly occurs.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 8, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Takeshi Yamaguchi, Yukie Nishikawa
  • Patent number: 7452759
    Abstract: A structure and fabrication process for a carbon nanotube field effect transistor is disclosed herein. In one embodiment, a method for forming a carbon nanotube transistor starts with a substrate comprised of a bottom dielectric, a carbon nanotube layer, and a top dielectric. A pillar is formed on the top dielectric, and a sidewall gate is formed on a sidewall of the pillar. A source is formed proximate to an outer edge of the gate and in contact with the carbon nanotube layer. The pillar is then removed, the source area masked, and a drain is formed proximate to an inner edge of the gate and in contact with the carbon nanotube layer. The source and drain are self aligned to the gate as dictated by the placement of dielectric spacers on the inner and outer edges of the gate.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: November 18, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej Sandhu
  • Publication number: 20080277741
    Abstract: A semiconductor device includes a semiconductor substrate; a source area, a channel area and a drain area vertically stacked on the semiconductor substrate; and a gate formed in both side walls of the stacked source area, channel area and drain area under interposition of a gate insulation layer.
    Type: Application
    Filed: June 20, 2007
    Publication date: November 13, 2008
    Applicant: Hynix Semiconductor, Inc.
    Inventor: Seon Yong CHA
  • Patent number: 7422960
    Abstract: The invention includes methods for utilizing partial silicon-on-insulator (SOI) technology in combination with fin field effect transistor (finFET) technology to form transistors particularly suitable for utilization in dynamic random access memory (DRAM) arrays. The invention also includes DRAM arrays having low rates of refresh. Additionally, the invention includes semiconductor constructions containing transistors with horizontally-opposing source/drain regions and channel regions between the source/drain regions. The transistors can include gates that encircle at least three-fourths of at least portions of the channel regions, and in some aspects can include gates that encircle substantially an entirety of at least portions of the channel regions.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: September 9, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Mark Fischer
  • Publication number: 20080211018
    Abstract: This semiconductor device includes a trench gate transistor including a groove formed on a semiconductor, a gate electrode formed in the groove via a gate insulating film, and a source and a drain disposed near the gate electrode on the semiconductor substrate via the gate insulating film. The gate electrode extends from an inner side of the groove to an outer side of the groove. The gate electrode has a misalignment portion in a width direction from the inner side of the groove to the outer side of the groove. The misalignment portion of the gate electrode is formed at a side higher than an opening edge of the groove. A height from the opening edge of the groove to the misalignment portion is larger than a thickness of the gate insulating film.
    Type: Application
    Filed: December 27, 2007
    Publication date: September 4, 2008
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Yoshikazu MORIWAKI
  • Patent number: 7416931
    Abstract: Methods are provided for fabricating a stress enhanced MOS circuit. One method comprises the steps of depositing a stressed material overlying a semiconductor substrate and patterning the stressed material to form a stressed dummy gate electrode overlying a channel region in the semiconductor substrate so that the stressed dummy gate induces a stress in the channel region. Regions of the semiconductor substrate adjacent the channel are processed to maintain the stress to the channel region and the stressed dummy gate electrode is replaced with a permanent gate electrode.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: August 26, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Gen Pei
  • Publication number: 20080199998
    Abstract: The embodiments of the invention provide a method, etc. for a pre-epitaxial disposable spacer integration scheme with very low temperature selective epitaxy for enhanced device performance. More specifically, one method begins by forming a first gate and a second gate on a substrate. Next, an oxide layer is formed on the first and second gates; and, a nitride layer is formed on the oxide layer. Portions of the nitride layer proximate the first gate, portions of the oxide layer proximate the first gate, and portions of the substrate proximate the first gate are removed so as to form source and drain recesses proximate the first gate. Following this, the method removes remaining portions of the nitride layer, including exposing remaining portions of the oxide layer. The removal of the remaining portions of the nitride layer only exposes the remaining portions of the oxide layer and the source and drain recesses.
    Type: Application
    Filed: April 10, 2008
    Publication date: August 21, 2008
    Applicant: International Business Machines Corporation
    Inventors: Huajie Chen, Judson R. Holt, Kern Rim, Dominic J. Schepis
  • Patent number: 7405130
    Abstract: A silicon nitride film having a thickness of 3 nm or less is formed on the surfaces of a P-well and N-well, as well as on the upper and side surfaces of a gate electrode, in which the silicon nitride film can be formed, for example, by exposing the surface of the P-well and N-well, and the upper and side surfaces of the gate electrode to a nitrogen-gas-containing plasma using a magnetron RIE apparatus. Then, pocket layers, extension layers and source/drain layers are formed while leaving the silicon nitride film unremoved.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: July 29, 2008
    Assignee: Fujitsu Limited
    Inventor: Takashi Saiki
  • Publication number: 20080160642
    Abstract: A semiconductor device according to an aspect of the invention comprises a semiconductor substrate, a conductive plug which is connected to an active region of a transistor formed on the semiconductor substrate, a metal silicide film which covers a bottom surface portion and side surface portion of the conductive plug, and an electrode structure which is formed on the conductive plug.
    Type: Application
    Filed: March 11, 2008
    Publication date: July 3, 2008
    Inventors: Hiroshi Itokawa, Keitaro Imai, Koji Yamakawa, Bum-ki Moon
  • Publication number: 20080153235
    Abstract: In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
    Type: Application
    Filed: February 26, 2008
    Publication date: June 26, 2008
    Applicants: Renesas Technology Corp., Hitachi Tobu Semiconductor, Ltd.
    Inventors: Hiroshi Inagawa, Nobuo Machida, Kentaro Oishi
  • Publication number: 20080142799
    Abstract: Disclosed herewith is a semiconductor device comprising a trench gate electrode and a zener diode, as well as a method for manufacturing the same. The trench gate electrode is formed in a semiconductor body and includes a first polycrystalline silicon layer doped with impurities of a first conductivity type at a first concentration. An extended gate electrode is elongated over the semiconductor body in contact with the trench gate electrode, and includes a second polycrystalline silicon layer doped with impurities of the first conductivity type at a second concentration that is lower than the first concentration. The zener diode is formed over the semiconductor body and includes a third polycrystalline silicon layer of a first conductivity type and a fourth polycrystalline silicon layer of a second conductivity type.
    Type: Application
    Filed: November 21, 2007
    Publication date: June 19, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Atsushi Kaneko
  • Patent number: 7361565
    Abstract: In a method of forming a metal gate in a semiconductor device, a gate insulation pattern and a dummy gate pattern are formed on a substrate. An insulation interlayer is formed on the dummy gate pattern to cover the dummy gate pattern. The insulation interlayer is polished such that a top surface of the dummy gate pattern is exposed, and the dummy gate pattern is selectively removed to form a trench on the substrate. A gate spacer is formed on an inner sidewall of the trench for determining a gate length of the metal gate. A metal is deposited to a sufficient thickness to fill the trench to form a metal layer. The metal layer is polished to remain in the trench. Accordingly, the gate length of the metal gate may be reduced no more than the resolution limit of the photolithography exposing system.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: April 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Ho Shin, Jong-Hyon Ahn, Kong-Soo Cheong, Jin-Won Jun
  • Patent number: 7335567
    Abstract: Gate electrodes of semiconductor devices and methods of manufacturing the same are disclosed. An example method comprises: sequentially forming a gate oxide layer and a sacrificial buffer layer on a semiconductor substrate; patterning the sacrificial buffer layer to form an auxiliary pattern; depositing a polysilicon layer; dry etching the polysilicon layer to form a side wall of the polysilicon layer to adjacent the auxiliary pattern; removing the auxiliary pattern; depositing an insulating layer; chemical mechanical polishing to remove a predetermined thickness of the side wall and the insulating layer to thereby complete the gate electrode from the side wall; and removing the insulating layer.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: February 26, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kee-Yong Kim
  • Publication number: 20080012007
    Abstract: A bioelectronic microchip formed on a substrate (16) includes a plurality of field effect transistors (10), each including first (12) and second (14) electrodes on the substrate; and a channel (18) extending between the first and second electrodes. An organic semiconducting material fills the channel (18); and a dielectric layer (20) formed atop the first and second electrodes and the channel. An electrolyte (22) to hold a probe molecule may be formed on the dielectric. A third electrode (24) in proximity with the first and second electrodes and isolated therefrom contacts the dielectric. Capture of target molecules may be detected at each transistor through changes in source to drain characteristics. The method provides high density and low cost sensors, particularly in diagonistic and drug discovery applications.
    Type: Application
    Filed: April 1, 2005
    Publication date: January 17, 2008
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Changming Li, Chang Sun
  • Patent number: 7306990
    Abstract: An information memory device capable of reading and writing of information by mechanical operation of a floating gate layer, in which a gate insulation film has a cavity (6), and a floating gate layer (5) having two stable deflection states in the cavity (6), the state stabilized by deflecting toward the channel side of transistor, and the state stabilized by deflecting toward the gate (7) side, writing and reading of information can be made by changing the stable deflection state of the floating gate layer (5) by Coulomb interactive force between the electrons (or positive holes 8) accumulated in the floating gate layer (5) and external electric field, and by reading the channel current change based on the state of the floating gate layer (5).
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: December 11, 2007
    Assignee: Japan Science & Technology Agency
    Inventors: Shinya Yamaguchi, Masahiko Ando, Toshikazu Shimada, Natsuki Yokoyama, Shunri Oda, Nobuyoshi Koshida
  • Publication number: 20070232078
    Abstract: A method including depositing a material for a gate electrode on a substrate over a dielectric material, the gate electrode material comprising a metal; depositing a capping material over the gate electrode material under processing conditions that will not promote any oxygen species associated with the gate electrode material to travel through the gate electrode material to the substrate; and patterning a gate electrode structure comprising the gate electrode material.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 4, 2007
    Inventors: Matthew V. Metz, Suman Datta, Mark L. Doczy, Jack T. Kavalieros, Robert S. Chau, Gilbert Dewey
  • Patent number: 7259056
    Abstract: In a method for manufacturing a semiconductor device, gate insulation films and gate electrodes are first formed on a substrate. An impurity is implanted into each gate electrode. Next, a first heat treatment is performed to the substrate for diffusing the impurity in the gate electrodes. After the heat treatment, a second heat treatment is performed for releasing stress generated in the substrate in the first heat-treatment. Thereafter, an impurity is implanted into an area to become an implanted region of the substrate, using the gate electrodes as masks, and a third heat treatment is performed for activating the impurity implanted.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: August 21, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Akira Mineji
  • Patent number: 7224008
    Abstract: The invention relates to a manufacturing method for an insulated gate semiconductor device cell, comprising the steps of forming a cell window (3) in a layered structure that is located on top of a semiconductor substrate (1), forming at least one process mask that partially covers the cell window (3). In forming the cell window (3), at least one strip (41, 42) of the layered structure is left to remain inside the cell window (3) and at least one strip (41, 42) is used to serve as an edge for the at least one process mask (51, 52). The invention further relates to an insulated gate semiconductor device, comprising a semiconductor substrate (1) having an essentially planar top surface and an insulated gate formed on the top surface by a layered structure (2) that comprises at least one electrically insulating layer (22), wherein at least one strip (41, 42) of the layered structure (2) is disposed on a third area of the top surface between an edge of the insulated gate and a first main contact (6).
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: May 29, 2007
    Assignee: ABB Schweiz AG
    Inventors: Munaf Rahimo, Christoph Von Arx
  • Patent number: 7186632
    Abstract: In a method for manufacturing a semiconductor device having a laminated gate electrode, a phosphorus-doped polysilicon is formed on a gate oxide film. A high-melting metal or a compound of a high-melting metal and silicon is formed on the polysilicon. Phosphorus is doped into the polysilicon so that a concentration of the phosphorus in the polysilicon at an interface between the polysilicon and the gate oxide film is 2×1020(1/cm3) or less. Then, thermal oxidation is carried out in a wet-hydrogen atmosphere containing water vapor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 6, 2007
    Assignee: Elpida Memory, Inc.
    Inventors: Kazuo Ogawa, Kiyonori Ohyu, Kensuke Okonogi, Toshihiro Imamura, Keiichi Watanabe, Hiroyuki Ohta