With Particular Manufacturing Method Of Vertical Transistor Structures, I.e., With Channel Vertical To Substrate Surface (epo) Patents (Class 257/E21.629)
  • Patent number: 7714384
    Abstract: A castellated-gate MOSFET I/O device capable of fully depleted operation is disclosed. The device includes a semiconductor substrate region having an upper portion with a top surface and a lower portion with a bottom surface. A source region and a drain region are formed in the semiconductor substrate region, and a channel-forming region is also disposed therein between the source and drain regions. Trench isolation insulator islands, having upper and lower surfaces, surround the source and drain regions as well as the channel-forming region. The channel-forming region includes a plurality of thin, spaced, vertically-orientated conductive channel elements that span longitudinally along the device between the source and drain regions. A gate structure is provided in the form of a plurality of spaced, castellated gate elements interposed between the channel elements, and a top gate member interconnects the gate elements at their upper vertical ends to cover the channel elements.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 11, 2010
    Inventor: John J. Seliskar
  • Publication number: 20100112769
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality to of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 6, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20100112765
    Abstract: A manufacturing method of a semiconductor device includes: forming multiple trenches on a semiconductor substrate; forming a second conductive type semiconductor film in each trench to provide a first column with the substrate between two trenches and a second column with the second conductive type semiconductor film in the trench, the first and second columns alternately repeated along with a predetermined direction; thinning a second side of the substrate; and increasing an impurity concentration in a thinned second side so that a first conductive type layer is provided. The impurity concentration of the first conductive type layer is higher than the first column. The first column provides a drift layer so that a vertical type first-conductive-type channel transistor is formed.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 6, 2010
    Applicant: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Takeshi Miyajima, Nozomu Akagi
  • Publication number: 20100112767
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Application
    Filed: January 11, 2010
    Publication date: May 6, 2010
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
  • Patent number: 7709889
    Abstract: The present invention provides a semiconductor device (20) comprising a trench (5) formed in a semiconductor substrate formed of a stack (4) of layers (1,2,3), a layer (6) of a first, grown dielectric material covering sidewalls and bottom of the trench (5), the layer (6) including one or more notches (13) at the bottom of the trench (5) and one or more spacers (14) formed of a second, deposited dielectric material to fill the one or more notches (13) in the layer (6) formed of the first, grown dielectric material. The semiconductor device (20) according to the present invention shows improved breakdown voltage and on-resistance. The present invention furthermore provides a method for the manufacturing of such semiconductor devices (20).
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 4, 2010
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Peter Moens, Filip Bauwens, Joris Baele, Marnix Tack
  • Patent number: 7704836
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 27, 2010
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Publication number: 20100096691
    Abstract: A semiconductor device having vertically aligned transistors made from pillar structures that have flat side surfaces is presented. The semiconductor device includes a semiconductor substrate, spacers, and gates. The semiconductor substrate has lo pillar structures that have flat side surfaces. The spacers are on sidewalls only on the upper portions of the pillar structures. The gates surround lower portions of the pillar structures.
    Type: Application
    Filed: June 25, 2009
    Publication date: April 22, 2010
    Inventors: Jong Han SHIN, Hyung Soon PARK, Jum Yong PARK, Sung Jun KIM, Young Ju LEE
  • Publication number: 20100090277
    Abstract: A semiconductor structure and associated method of formation. The semiconductor structure includes a semiconductor substrate, a first doped transistor region of a first transistor and a first doped Source/Drain portion of a second transistor on the semiconductor substrate, a second gate dielectric layer and a second gate electrode region of the second transistor on the semiconductor substrate, a first gate dielectric layer and a first gate electrode region of the first transistor on the semiconductor substrate, and a second doped transistor region of the first transistor and a second doped Source/Drain portion of the second transistor on the semiconductor substrate. The first and second gate dielectric layers are sandwiched between and electrically insulate the semiconductor substrate from the first and second gate electrode regions, respectively. The first and second gate electrode regions are totally above and totally below, respectively, the top substrate surface.
    Type: Application
    Filed: December 17, 2009
    Publication date: April 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Steven Howard Voldman
  • Patent number: 7678652
    Abstract: A MOSFET-type semiconductor device includes a monocrystalline semiconductor layer formed in a shape of a thin wall on a insulating film, a gate electrode straddling over the semiconductor layer around the middle portion of the wall-shaped semiconductor layer via a gate insulating film, source and drain regions formed at the both ends of the semiconductor layer, a first metal-semiconductor compound layer formed on one of the side walls of each of source and drain regions of the semiconductor layer, and a second metal-semiconductor compound layer having a different composition and Schottky barrier height from that of the first metal-semiconductor compound layer on the other side wall of each of source and drain regions of the semiconductor layer.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: March 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakatsu Tsuchiaki
  • Patent number: 7666741
    Abstract: A method is presented for fabricating a non-planar field effect device. The method includes the production of a Si based material Fin structure that has a top surface substantially in parallel with a {111} crystallographic plane of the Si Fin structure, and the etching of the Si Fin structure with a solution which contains ammonium hydroxide (NH4OH). In this manner, due to differing etch rates in ammonium hydroxide of various Si based material crystallographic planes, the corners on the Fin structure become clipped, and angles between the horizontal and vertical planes of the Fin structure increase. A FinFET device with clipped, or rounded, corners is then fabricated to completion. In a typical embodiment the FinFET device is selected to be a silicon-on-insulator (SOI) device.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Yujun Li, Kenneth T. Settlemyer, Jr., Jochen Beintner
  • Publication number: 20100006930
    Abstract: A semiconductor device manufacturing method includes steps of: etching a semiconductor substrate 2 by using hard masks 71, 72 and 73; forming a sidewall insulating film 38 on side surfaces of these hard masks 71, 72 and 73; selectively removing the sidewall insulating film 38 formed on the side surfaces of the hard masks 71, 72; further etching the semiconductor substrate 2 by using the hard masks 71, 72 and 73 and the sidewall insulating film 38; simultaneously forming gate trenches 12, 22 and 32 at a part of the semiconductor substrate 2 covered by the hard masks 71, 72 and 73; and forming gate electrodes 13, 23 and 33 inside the gate trenches 12, 22 and 32. Accordingly, plural recess channel transistors having different heights of fin-shaped regions 21f, 31f can be formed simultaneously.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 14, 2010
    Applicant: Elpida Memory, Inc.
    Inventor: Noriaki MIKASA
  • Patent number: 7635622
    Abstract: A manufacturing method of a semiconductor device includes: forming multiple trenches on a semiconductor substrate; forming a second conductive type semiconductor film in each trench to provide a first column with the substrate between two trenches and a second column with the second conductive type semiconductor film in the trench, the first and second columns alternately repeated along with a predetermined direction; thinning a second side of the substrate; and increasing an impurity concentration in a thinned second side so that a first conductive type layer is provided. The impurity concentration of the first conductive type layer is higher than the first column. The first column provides a drift layer so that a vertical type first-conductive-type channel transistor is formed.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: December 22, 2009
    Assignee: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Takeshi Miyajima
  • Patent number: 7625793
    Abstract: A double-diffused metal-oxide-semiconductor (“DMOS”) field-effect transistor with an improved gate structure. The gate structure includes a first portion of a first conductivity type for creating electron flow from the source to the drain when a charge is applied to the gate. The gate structure includes a second portion of a second conductivity type having a polarity that is opposite a polarity of the first conductivity type, for decreasing a capacitance charge under the gate. A second structure for decreasing a capacitance under the gate includes an implant region in the semiconductor substrate between a channel region, where the implant region is doped to have a conductivity opposite the channel region.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: December 1, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Daniel S. Calafut
  • Publication number: 20090275180
    Abstract: A conventional power MOSFET structure is difficult to improve a breakdown voltage of an element even using a super-junction structure. A power MOSFET according to an embodiment of the invention is a semiconductor device of a super-junction structure, including: a gate electrode filled in a trench formed on a semiconductor substrate; a gate wiring metal forming a surface layer; and a gate electrode plug connecting between the gate electrode and the gate wiring metal. Thus, a polysilicon layer necessary for the conventional typical power MOSFET is unnecessary. That is, column regions of an element active portion and an outer peripheral portion can be formed under the same conditions. As a result, it is possible to improve an element breakdown voltage as compared with the conventional one.
    Type: Application
    Filed: July 15, 2009
    Publication date: November 5, 2009
    Applicant: NEC Electronics Corporation
    Inventors: Hitoshi NINOMIYA, Yoshinao Miura
  • Patent number: 7608510
    Abstract: Manufacturing a power transistor by forming a gate structure on a first layer, forming a trench in the first layer, self aligned with the gate structure, and forming part of the transistor in the trench. By forming a spacer next to the gate, the spacer and gate can be used as a mask when forming the trench, to allow space for a source region next to the gate. The self-aligning rather than forming the gate after the trench means the alignment is more accurate, allowing size reduction. Another aspect involves forming a trench in a first layer, filling the trench, forming a second layer on either side of the trench with lateral overgrowth over the trench, and forming a source region in the second layer to overlap the trench. This overlap can enable the chip area to be reduced.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: October 27, 2009
    Assignee: AMI Semiconductor Belgium BVBA
    Inventors: Peter Moens, Marnix Tack
  • Publication number: 20090236660
    Abstract: An IGFET that can be turned off when a reverse voltage is applied. Included is a semiconductor substrate having formed therein an n-type drain region, p-type first body region, p?-type second body region, n-type first source region, and n+-type second source region. Trenches etched in the substrate receive gate electrodes via gate insulators. The source electrode is in ohmic contact with both first and second source regions and in schottky barrier contact with the second body region.
    Type: Application
    Filed: June 3, 2009
    Publication date: September 24, 2009
    Applicant: SANKEN ELECTRIC CO., LTD.
    Inventor: Ryoji Takahashi
  • Patent number: 7592228
    Abstract: In a trench-gated MOSFET including an epitaxial layer over a substrate of like conductivity and trenches containing thick bottom oxide, sidewall gate oxide, and conductive gates, body regions of the complementary conductivity are shallower than the gates, and clamp regions are deeper and more heavily doped than the body regions but shallower than the trenches. Zener junctions clamp a drain-source voltage lower than the FPI breakdown of body junctions near the trenches, but the zener junctions, being shallower than the trenches, avoid undue degradation of the maximum drain-source voltage. The epitaxial layer may have a dopant concentration that increases step-wise or continuously with depth. Chained implants of the body and clamp regions permits accurate control of dopant concentrations and of junction depth and position. Alternative fabrication processes permit implantation of the body and clamp regions before gate bus formation or through the gate bus after gate bus formation.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 22, 2009
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7592210
    Abstract: The semiconductor device includes an active region, a recess channel region including vertical channel structures, a gate insulating film, and a gate structure. The active region is defined by a device isolation structure formed in a semiconductor substrate. The recess channel region is formed in the active region. The vertical silicon-on-insulator (SOI) channel structures are disposed at sidewalls of both device isolation structures in a longitudinal direction of a gate region. The gate insulating film is disposed over the active region including the recess channel region. The gate structure is disposed over the recess channel region of the gate region.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: September 22, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Publication number: 20090215237
    Abstract: A lateral trench MOSFET includes a trench containing a device segment and a gate bus segment. The gate bus segment of the trench is contacted by a conductive plug formed in a dielectric layer overlying the substrate, thereby avoiding the need for the conventional surface polysilicon bridge layer. The conductive plug is formed in a substantially vertical hole in the dielectric layer. The gate bus segment may be wider than the device segment of the trench. A method includes forming a shallow trench isolation (STI) while the conductive material in the trench is etched.
    Type: Application
    Filed: April 29, 2009
    Publication date: August 27, 2009
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Cho Chiu Ma
  • Patent number: 7544571
    Abstract: A field effect transistor is formed as follows. Trenches are formed in a semiconductor region of a first conductivity type. A gate electrode recessed in each trench is formed. Using a first mask, a body region of a second conductivity type is formed in the semiconductor region by implanting dopants. Using the first mask, source regions of the first conductivity type are formed in the body region by implanting dopants.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: June 9, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Chanho Park
  • Patent number: 7528454
    Abstract: The present invention provides a semiconductor memory which has sense amplifiers, each including a pair of MOSFETs having complete symmetry in regard to not only the shape but also to the impurity profile in a diffusion layer, and the present invention is also capable of reducing variations in electric characteristics, and provides a method of manufacturing the same. Annular gate electrodes 12a, 12b are formed on diffusion layer 11. Gate electrodes 13 are formed simultaneously with a sense amplifier along edges of diffusion layer 11 to bestride the boundary between diffusion layer 11 and r shallow trench isolation area 20. Contacts 16 are formed on diffusion layer 11; contacts 17a, 17b on diffusion layer 11 within annular gate electrodes 12a, 12b, respectively; and contacts 18 on gate electrodes 12a, 12b of the sense amplifier.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 5, 2009
    Assignee: Elpida Memory, Inc.
    Inventor: Yoshihiro Takaishi
  • Patent number: 7510955
    Abstract: A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 31, 2009
    Assignee: ProMOS Technologies Inc.
    Inventor: Hsiao-Che Wu
  • Patent number: 7488647
    Abstract: A system and method is disclosed that prevents the formation of a vertical bird's beak structure in the manufacture of a semiconductor device. A polysilicon filled trench is formed in a substrate of the semiconductor device. One or more composite layers are then applied over the trench and the substrate. A mask and etch process is then applied to etch the composite layers adjacent to the polysilicon filled trench. A field oxide process is applied to form field oxide portions in the substrate adjacent to the trench. Because no field oxide is placed over the trench there is no formation of a vertical bird's beak structure. A gate oxide layer is applied and a protection cap is formed over the polysilicon filled trench to protect the trench from unwanted effects of subsequent processing steps.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: February 10, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Charles A. Dark, Andy Strachan
  • Patent number: 7482645
    Abstract: A method for forming a semiconductor structure includes the following steps. A starting semiconductor substrate having a top-side surface and a back-side surface is provided. A recess is formed in the starting semiconductor substrate through the top-side of the starting semiconductor substrate. A semiconductor material is formed in the recess. A vertically conducting device is formed in and over the semiconductor material, where the starting semiconductor substrate serves as a terminal of the vertically conducting device. A non-recessed portion of the starting semiconductor substrate allows a top-side contact to be made to portions of the starting semiconductor substrate extending beneath the semiconductor material.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 27, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chun-Tai Wu, Ihsiu Ho
  • Patent number: 7453113
    Abstract: A method for forming and the structure of a strained vertical channel of a field effect transistor, a field effect transistor and CMOS circuitry is described incorporating a drain, body and source region on a sidewall of a vertical single crystal semiconductor structure wherein a hetero-junction is formed between the source and body of the transistor, wherein the source region and channel are independently lattice strained with respect to the body region and wherein the drain region contains a carbon doped region to prevent the diffusion of dopants (boron) into the body. The invention reduces the problem of leakage current from the source region via the hetero-junction and lattice strain while independently permitting lattice strain in the channel region for increased mobility via choice of the semiconductor materials.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: November 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: Qiqing Christine Ouyang, Jack Oon Chu
  • Publication number: 20080277741
    Abstract: A semiconductor device includes a semiconductor substrate; a source area, a channel area and a drain area vertically stacked on the semiconductor substrate; and a gate formed in both side walls of the stacked source area, channel area and drain area under interposition of a gate insulation layer.
    Type: Application
    Filed: June 20, 2007
    Publication date: November 13, 2008
    Applicant: Hynix Semiconductor, Inc.
    Inventor: Seon Yong CHA
  • Patent number: 7435628
    Abstract: A vertical MOS transistor has a source region, a channel region, and a drain region that are vertically stacked, and a trench that extends from the top surface of the drain region through the drain region, the channel region, and partially into the source region. The vertical MOS transistor also has an insulation layer that lines the trench, and a conductive gate region that contacts the insulation layer to fill up the trench.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 14, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Yuri Mirgorodski, Vladislav Vashchenko, Peter Johnson
  • Patent number: 7432162
    Abstract: The semiconductor device includes an active region, a stepped recess channel region including vertical channel structures, a gate insulating film, and a gate structure. The active region is defined by a device isolation structure formed in a semiconductor substrate. The stepped recess channel region is formed in the active region. The vertical silicon-on-insulator (SOI) channel structures are disposed at sidewalls of both device isolation structures in a longitudinal direction of a gate region. The gate insulating film is disposed over the active region including the stepped recess channel region. The gate structure is disposed over the stepped recess channel region of the gate region.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: October 7, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Patent number: 7432160
    Abstract: Semiconductor devices including a gate electrode crossing over a semiconductor fin on a semiconductor substrate are provided. A gate insulating layer is provided between the gate electrode and the semiconductor fin. A channel region having a three-dimensional structure defined at the semiconductor fin under the gate electrode is also provided. Doped region is provided in the semiconductor fin at either side of the gate electrode and an interlayer insulating layer is provided on a surface of the semiconductor substrate. A connector region is coupled to the doped region and provided in an opening, which penetrates the interlayer insulating layer. A recess region is provided in the doped region and is coupled to the connector region. The connector region contacts an inner surface of the recess region. Related methods of fabricating semiconductor devices are also provided herein.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: October 7, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Suk Cho, Chul Lee
  • Patent number: 7420230
    Abstract: A MOSFET-type semiconductor device includes a monocrystalline semiconductor layer formed in a shape of a thin wall on a insulating film, a gate electrode straddling over the semiconductor layer around the middle portion of the wall-shaped semiconductor layer via a gate insulating film, source and drain regions formed at the both ends of the semiconductor layer, a first metal-semiconductor compound layer formed on one of the side walls of each of source and drain regions of the semiconductor layer, and a second metal-semiconductor compound layer having a different composition and Shottky barrier height from that of the first metal-semiconductor compound layer on the other side wall of each of source and drain regions of the semiconductor layer.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: September 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakatsu Tsuchiaki
  • Patent number: 7413954
    Abstract: A capacity layer is formed of non-doped polysilicon. Unlike capacity layers formed of an oxide film, generation of seams and the like can be suppressed and thereby a stable capacity layer can be formed. Moreover, polysilicon used as a capacity layer may be doped polysilicon, and an oxide film formed on the surface of the polysilicon also serves as a capacity film. Thus, provision of an insulated gate device featuring low capacity is made possible.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: August 19, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hirotoshi Kubo, Junichiro Tojo, Hiroaki Saito, Masahito Onda, Satoshi Iwata, Masamichi Yanagida
  • Patent number: 7410856
    Abstract: A vertical transistor forming method includes forming a first pillar above a first source/drain and between second and third pillars, providing a first recess between the first and second pillars and a wider second recess between the first and third pillars, forming a gate insulator over the first pillar, forming a front gate and back gate over opposing sidewalls of the first pillar by depositing a gate conductor material within the first and second recesses and etching the gate conductor material to substantially fill the first recess, forming the back gate, and only partially fill the second recess, forming the front gate, forming a second source/drain elevationally above the first source/drain, and providing a transistor channel in the first pillar. The channel is operationally associated with the first and second sources/drains and with the front and back gates to form a vertical transistor configured to exhibit a floating body effect.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Kris K. Brown
  • Patent number: 7368353
    Abstract: A method for manufacturing a trench type power semiconductor device which includes process steps for forming proud gate electrodes in order to decrease the resistivity thereof.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: May 6, 2008
    Assignee: International Rectifier Corporation
    Inventors: Jianjun Cao, Paul Harvey, Dave Kent, Robert Montgomery, Hugo Burke, Kyle Spring
  • Patent number: 7364997
    Abstract: In one implementation, field oxide is grown within bulk semiconductive material in a first circuitry area and not over immediately adjacent bulk semiconductive material in a second circuitry area. The field oxide is etched from the first circuitry area. After the etching, a circuit component is formed in the first circuitry area and a circuit component is formed in the second circuitry area. Dielectric material is formed over the first and second circuitry areas. The dielectric material comprises a conductive contact extending outwardly from the circuit component in the first circuitry area. The dielectric material has a first outermost surface. A portion of the dielectric material and a portion of the conductive contact are removed to form a second outermost surface of the dielectric material which has greater degree of planarity than did the first outermost surface. Other aspects are contemplated.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7348243
    Abstract: A transistor and a method for fabricating the same is disclosed, to uniformly provide impurity ions in impurity areas, and to prevent a short channel effect, in which the method for fabricating the transistor includes steps of forming a plurality of channel ion implantation areas having different depths in a first conductive type semiconductor substrate; forming a pillar by selectively etching the first conductive type semiconductor substrate; sequentially depositing a gate insulating layer and a conductive layer for a gate electrode on the first conductive type semiconductor substrate including the pillar; forming the gate electrode by selectively patterning the conductive layer; and forming second conductive type source/drain impurity ion areas in the first conductive type semiconductor substrate corresponding to the top of the pillar and both sidewalls of the pillar.
    Type: Grant
    Filed: December 24, 2004
    Date of Patent: March 25, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Hag Dong Kim
  • Patent number: 7339239
    Abstract: Memory devices, arrays, and strings are described that facilitate the use of NROM memory cells in NAND architecture memory strings, arrays, and devices. NROM NAND architecture memory embodiments of the present invention include NROM memory cells in high density vertical NAND architecture arrays or strings facilitating the use of reduced feature size process techniques. These NAND architecture vertical NROM memory cell strings allow for an improved high density memory devices or arrays that can take advantage of the feature sizes semiconductor fabrication processes are generally capable of and yet do not suffer from charge separation issues in multi-bit NROM cells.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: March 4, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7335565
    Abstract: A method for forming a MOS device includes the steps of forming a gate proximate an upper surface of a semiconductor layer, the semiconductor layer including a substrate of a first conductivity type and a second layer of a second conductivity type; forming first and second source/drain regions of the second conductivity type in the second layer proximate the upper surface of the second layer, the first source/drain region being spaced laterally from the second source/drain region, the gate being formed at least partially between the first and second source/drain regions; and forming at least one electrically conductive trench in the second layer between the gate and the second source/drain region, the trench being formed proximate the upper surface of the semiconductor layer and extending substantially vertically through the second layer to the substrate.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: February 26, 2008
    Assignee: Agere Systems Inc.
    Inventors: Muhammed Ayman Shibib, Shuming Xu
  • Patent number: 7332369
    Abstract: A method for forming an organic electronic device, which method comprises the steps of: a) forming a negative image of a desired pattern on a substrate or device layer with a lift-off ink; b) coating a first device layer to be patterned on top of the negative image; c) coating one or more further device layers to be patterned on top of the first device layer to be patterned; and d) removing the lift-off ink and unwanted portions of the device layers above it, thereby leaving the desired pattern of device layers. The method allows the formation of a device structure wherein the device layers to be patterned are self-aligned. The method enables a multiplicity of layers to be patterned in a single set of printing and lift-off steps using one pattern which ensures the excellent vertical alignment of edges, which would be difficult to achieve by direct printing. Horizontal alignment can also be achieved. The size of the device features can be reduced below the actual printing resolution.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: February 19, 2008
    Assignee: Merck Patent GmbH
    Inventors: Janos Veres, Simon Dominic Ogier, Stephen George Yeates
  • Patent number: 7332398
    Abstract: A method of manufacturing a trench-gate semiconductor device (1), the method including forming trenches (20) in a semiconductor body (10) in an active transistor cell area of the device, the trenches (20) each having a trench bottom and trench sidewalls, and providing silicon oxide gate insulation (21) in the trenches such that the gate insulation (33) at the trench bottoms is thicker than the gate insulation (21) at the trench sidewalls in order to reduce the gate-drain capacitance of the device.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: February 19, 2008
    Assignee: NXP B.V.
    Inventors: Michael A. A. In't Zandt, Erwin A. Hijzen
  • Patent number: 7326611
    Abstract: The invention includes a method of forming a semiconductor construction. Dopant is implanted into the upper surface of a monocrystalline silicon substrate. The substrate is etched to form a plurality of trenches and cross-trenches which define a plurality of pillars. After the etching, dopant is implanted within the trenches to form a source/drain region that extends less than an entirety of the trench width. The invention includes a semiconductor construction having a bit line disposed within a semiconductor substrate below a first elevation. A wordline extends elevationally upward from the first elevation and substantially orthogonal relative to the bit line. A vertical transistor structure is associated with the wordline. The transistor structure has a channel region laterally surrounded by a gate layer and is horizontally offset relative to the bit line.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: February 5, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7326621
    Abstract: A method of fabricating a recess channel array transistor. Using a mask layer pattern having a high etch selectivity with respect to a silicon substrate, the silicon substrate and an isolation insulating layer are etched to form a recess channel trench. After forming a gate insulating layer and a recess gate stack on the recess channel trench, a source and a drain are formed in the silicon substrate adjacent to both sidewalls of the recess gate stack, thereby completing the recess channel array transistor. Because the mask layer pattern having the high etch selectivity with respect to the silicon substrate is used, a depth of the recess channel trench is easily controlled while good etching uniformity of the silicon substrate is obtained.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: February 5, 2008
    Assignee: Samsug Electronics Co., Ltd.
    Inventors: Young-sun Cho, Tae-hyuk Ahn, Jeong-sic Jeon, Jun-sik Hong, Ji-hong Kim, Hong-Mi Park
  • Patent number: 7319060
    Abstract: A semiconductor device includes a pair of first source/drain regions disposed on a silicon substrate. A first silicon epitaxial layer pattern defines a gate forming region that exposes the silicon substrate between the pair of first source/drain regions. A first gate insulation layer is disposed on the silicon substrate in the gate forming region. A second gate insulation layer is disposed on a sidewall of the first silicon epitaxial layer pattern. A second silicon epitaxial layer pattern is disposed in the gate forming region and on the first silicon epitaxial layer pattern. A pair of second source/drain regions is disposed on the second silicon epitaxial layer pattern. A third gate insulation layer exposes the second silicon epitaxial layer pattern in the gate forming region and covers the pair of second source/drain regions. A gate is disposed on the second silicon epitaxial layer pattern in the gate forming region.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 15, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Tae-Hong Lim
  • Patent number: 7288815
    Abstract: A semiconductor device (20, 21, 22), including: a channel region (4) of a first conductivity type formed at a surface layer portion of a semiconductor substrate (1); a source region (25) of a second conductivity type which is different from the first conductivity type, the source region (25) being formed at a rim of a trench (17) having a depth sufficient to penetrate through the channel region (4); a drain region (2) of the second conductivity type formed at a region adjacent to a bottom of the trench (17); a gate insulating film (13) formed along an inner side wall of the trench (17); a gate electrode (26, 36) arranged in the trench (17) so as to be opposed to the channel region (4) with the gate insulating film (13) interposed therebetween; a conductive layer (37, 40, 40a, 40b) formed in the trench (17) so as to be nearer to the drain region (2) than the gate electrode (26, 36); and an insulating layer (15) surrounding the conductive layer (37, 40, 40a, 40b) to electrically insulate the conductive layer (3
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: October 30, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Patent number: 7271048
    Abstract: A method of manufacturing a trench MOSFET with high cell density is disclosed. The method introduces a sidewall oxide spacer for narrowing the opening of the trench structure, thereby decreasing the cell pitch of the memory units. Moreover, the source structure is formed automatically by means of an extra contact silicon etch for preventing the photoresist from lifting during the ion implantation of the prior art. On the other hand, the contact structure is filled with W-plug for overcoming the defect of poor metal step coverage resulted from filling the contact structure with AlSiCu according to the prior art. Thus, the cell density of the device can be increased; and the Rds-on and the power loss of the device can be decreased.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: September 18, 2007
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chien-Ping Chang, Mao Song Tseng, Hsin Huang Hsieh, Tien-Min Yuan
  • Patent number: 7242040
    Abstract: A junction field effect transistor is described. The transistor is made from a wide bandgap semiconductor material. The device comprises source, channel, drift and drain semiconductor layers, as well as p-type implanted or Schottky gate regions. The source, channel, drift and drain layers can be epitaxially grown. The ohmic contacts to the source, gate, and drain regions can be formed on the same side of the wafer. The devices can have different threshold voltages depending on the vertical channel width and can be implemented for both depletion and enhanced modes of operation for the same channel doping. The devices can be used for digital, analog, and monolithic microwave integrated circuits. Methods for making the transistors and integrated circuits comprising the devices are also described.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: July 10, 2007
    Assignee: Semisouth Laboratories, Inc.
    Inventors: Igor Sankin, Jeffrey B. Casady, Joseph N. Merrett
  • Patent number: 7229872
    Abstract: A trench type power MOSFET has a thin vertical gate oxide along its side walls and a thickened oxide with a rounded bottom at the bottom of the trench to provide a low RDSON and increased VDSMAX and VGSMAX and a reduced Miller capacitance. The walls of the trench are first lined with nitride to permit the growth of the thick bottom oxide to, for example 1000 ? to 1400 ? and the nitride is subsequently removed and a thin oxide, for example 320 ? is regrown on the side walls. In another embodiment, the trench bottom in amorphized and the trench walls are left as single crystal silicon so that oxide can be grown much faster and thicker on the trench bottom than on the trench walls during an oxide growth step. A reduced channel length of about 0.7 microns is used. The source diffusion is made deeper than the implant damage depth so that the full 0.7 micron channel is along undamaged silicon.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: June 12, 2007
    Assignee: International Rectifier Corporation
    Inventor: Naresh Thapar
  • Patent number: 7220644
    Abstract: The invention relates to a vertical-type single-pole component, comprising regions with a first type of conductivity which are embedded in a thick layer with a second type of conductivity. Said regions are distributed over at least one same horizontal level and are independent of each other. The regions also underlie an insulating material.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: May 22, 2007
    Assignee: STMicroelectronics S.A.
    Inventor: Frédéric Lanois
  • Patent number: 7193912
    Abstract: A DRAM whose operation is sped up and power consumption is reduced is provided. A pair of precharge MOSFETs for supplying a precharge voltage to a pair of input/output nodes of a CMOS sense amplifier is provided; the pair of input/output nodes are connected to a complementary bit-line pair via a selection switch MOSFET; a first equalize MOSFET is provided between the complementary bit-line pair for equalizing them; a memory cell is provided between one of the complementary bit-line pair and a word line intersecting with it; gate insulators of the selection switch MOSFETs and first equalize MOSFET are formed by first film thickness; a gate insulator of the precharge MOSFET is formed by second film thickness thinner than the first film thickness; a precharge signal corresponding to a power supply voltage is supplied to the precharge MOSFET; and an equalize signal and a selection signal corresponding to a boost voltage are supplied to the first equalize MOSFET and the selection switch MOSFET, respectively.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: March 20, 2007
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Tadahiro Obara, Masatoshi Hasegawa, Yousuke Tanaka, Tomofumi Hokari, Kenichi Tajima
  • Publication number: 20070018179
    Abstract: The Invention Is A Method For Making Power Device On A Semiconductor Wafer, Where The Backside Of The Wafer Has Been Thinned In Selected Regions To A Thickness Of About 25 Um By Reactive Ion Etching.
    Type: Application
    Filed: September 22, 2006
    Publication date: January 25, 2007
    Inventors: Francis Kub, Karl Hobart
  • Patent number: 7132321
    Abstract: Semiconductor substrates suitable for making thin vertical current conducting devices are made by providing a relatively thick semiconducting substrate with at least one conductivity type having a thickness of from about 100 ?m to 700 ?m. At least one active device region is optionally first formed on a first side. Then the semiconducting substrate is thinned in at least one selected region on the other side below at least partially where the active device will be on the first side so as to have the selected region thinned to a thickness ranging from about 10 ?m to 400 ?m to form at least one deep trench.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: November 7, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Karl D. Hobart