Gate Conductors With Different Shapes, Lengths Or Dimensions (epo) Patents (Class 257/E21.638)
  • Patent number: 10395987
    Abstract: The disclosure is related to MV transistors with reduced gate induced drain leakage (GIDL) and impact ionization. The reduced GILD and impact ionization are achieved without increasing device pitch of the MV transistor. A low voltage (LV) device region and a medium voltage (MV) device region are disposed on the substrate. Non-extended spacers are disposed on the sidewalls of the LV gate in the LV device region; extended L shaped spacers are disposed on the sidewalls of the MV gate in the MV device region. The non-extended spacers and extended L shape spacers are patterned simultaneously. Extended L shaped spacers displace the MV heavily doped (HD) regions a greater distance from at least one sidewall of the MV gate to reduce the GIDL and impact ionization of the MV transistor.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: August 27, 2019
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Chia Ching Yeo, Kiok Boone Elgin Quek, Khee Yong Lim, Jae Han Cha, Yung Fu Chong
  • Patent number: 9331077
    Abstract: A semiconductor device includes: a first conductivity type transistor and a second conductivity type transistor, wherein each of the first conductivity type transistor and the second conductivity type includes a gate insulating film formed on a base, a metal gate electrode formed on the gate insulating film, and side wall spacers formed at side walls of the metal gate electrode, wherein the gate insulating film is made of a high dielectric constant material, and wherein offset spacers are formed between the side walls of the metal gate electrode and the inner walls of the side wall spacers in any one of the first conductivity type transistor and the second conductivity type transistor, or offset spacers having different thicknesses are formed in the first conductivity type transistor and the second conductivity type transistor.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: May 3, 2016
    Assignee: SONY CORPORATION
    Inventor: Koichi Matsumoto
  • Patent number: 8927404
    Abstract: It is made possible to provide an insulating film that can reduce the leakage current. An insulating film includes: an amorphous oxide dielectric film containing a metal, hydrogen, and nitrogen. The nitrogen amount [N] and the hydrogen amount [H] in the oxide dielectric film satisfy the following relationship: {[N]—[H]}/2?1.0×1021 cm?3.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Masato Koyama
  • Patent number: 8908419
    Abstract: A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element 3a, 3b, a second gate wiring element 3c, 3d, a first connector 5a, 5b, and a second connector 5c, 5d. Each memory cell 10 has first and second sets having a driver transistor 11, a load transistor 12, and an access transistor 13. The word lines are arranged in parallel to each other along a first direction. The bit lines are arranged in parallel to each other along a second direction perpendicular to the first direction. The first gate wiring element comprises a gate electrode of the first driver transistor and the first load transistor, and has a rectangular shape having straight line on opposite sides. The second gate wiring element comprises a gate electrode of the access transistor and has a rectangular shape having straight line on opposite sides.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: December 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hidemoto Tomita, Shigeki Ohbayashi, Yoshiyuki Ishigaki
  • Patent number: 8664066
    Abstract: The present disclosure provides manufacturing techniques in which sophisticated high-k metal gate electrode structures may be formed in an early manufacturing stage on the basis of a selectively applied threshold voltage adjusting semiconductor alloy. In order to reduce the surface topography upon patterning the deposition mask while still allowing the usage of well-established epitaxial growth recipes developed for silicon dioxide-based hard mask materials, a silicon nitride base material may be used in combination with a surface treatment. In this manner, the surface of the silicon nitride material may exhibit a silicon dioxide-like behavior, while the patterning of the hard mask may be accomplished on the basis of highly selective etch techniques.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: March 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Rohit Pal, Stephan-Detlef Kronholz
  • Patent number: 8637371
    Abstract: Non-planar Metal Oxide Field Effect Transistors (MOSFETs) and methods for making non-planar MOSFETs with asymmetric, recessed source and drains having improved extrinsic resistance and fringing capacitance. The methods include a fin-last, replacement gate process to form the non-planar MOSFETs and employ a retrograde metal lift-off process to form the asymmetric source/drain recesses. The lift-off process creates one recess which is off-set from a gate structure while a second recess is aligned with the structure. Thus, source/drain asymmetry is achieved by the physical structure of the source/drains, and not merely by ion implantation. The resulting non-planar device has a first channel of a fin contacting a substantially undoped area on the drain side and a doped area on the source side, thus the first channel is asymmetric. A channel on atop surface of a fin is symmetric because it contacts doped areas on both the drain and source sides.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B Chang, Paul Chang, Michael A Guillorn, Chung-hsun Lin, Jeffrey W Sleight
  • Patent number: 8603875
    Abstract: An integrated circuit containing an SAR SRAM and CMOS logic, in which sidewall spacers on the gate extension of the SAR SRAM cell are thinner than sidewall spacers on the logic PMOS gates, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively etch the sidewall spacers on the on the gate extension of the SAR SRAM cell, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively implanting extra p-type dopants in the drain node SRAM PSD layer, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Shaofeng Yu, Russell Carlton McMullan, Wah Kit Loh
  • Patent number: 8476714
    Abstract: A semiconductor device includes a semiconductor substrate; an n-channel MOS transistor including a first gate insulating film provided on a p-type layer, a first gate electrode made of TiN, and a first upper gate electrode made of semiconductor doped with impurities; and a p-channel MOS transistor including a second gate insulating film provided on an n-type layer, a second gate electrode including at least as a part, a TiN layer made of TiN crystal in which a ratio of (111) orientation/(200) orientation is about 1.5 or more, and a second upper gate electrode made of semiconductor doped with impurities.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Jun Suzuki, Hiroshi Nakagawa
  • Patent number: 8470664
    Abstract: A dual polysilicon gate is fabricated by, inter alia, forming a polysilicon layer doped with impurities of a first conductivity type on a substrate having a first region and a second region, forming a mask pattern that covers the polysilicon layer in the first region and leaves the polysilicon layer in the second region, injecting impurities of a second conductivity type into the polysilicon layer in the second region left exposed by the mask pattern. Removing the mask pattern, and patterning the polysilicon layer to form a first polysilicon pattern in the first region and a second polysilicon pattern in the second region. The second polysilicon pattern is formed to have protrusions that laterally protrude from sidewalls thereof. Subsequently, impurities of the second conductivity type are injected into the substrate in the second region and into the protrusions of the second polysilicon pattern.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: June 25, 2013
    Assignee: SK Hynix Inc.
    Inventors: Kyong Bong Rouh, Yong Seok Eun
  • Patent number: 8294238
    Abstract: A peripheral circuit area is formed around a memory cell array area. The peripheral circuit area has element regions, an element isolation region isolating the element regions, and field-effect transistor formed in each of the element regions and including a gate electrode extending in a channel width direction, on a semiconductor substrate. An end portion and a corner portion of the gate electrode are on the element isolation region. A radius of curvature of the corner portion of the gate electrode is smaller than a length from the end portion of the element region in the channel width direction to the end portion of the gate electrode in the channel width direction, and is less than 85 nm.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Takayuki Toba, Yoshiko Kato, Kenji Gomikawa, Haruhiko Koyama
  • Patent number: 8288256
    Abstract: By combining an anneal process for adjusting the effective channel length and a substantially diffusion-free anneal process performed after a deep drain and source implantation, the vertical extension of the drain and source region may be increased substantially without affecting the previously adjusted channel length. In this manner, in SOI devices, the drain and source regions may extend down to the buried insulating layer, thereby reducing the parasitic capacitance, while the degree of dopant activation and thus series resistance in the extension regions may be improved. Furthermore, less critical process parameters during the anneal process for adjusting the channel length may provide the potential for reducing the lateral dimensions of the transistor devices.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: October 16, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Rolf Stephan, Manfred Horstmann
  • Patent number: 8263485
    Abstract: A method for fabricating semiconductor device includes forming an etch target layer over a substrate including a cell region and a peripheral region, forming a first mask pattern having a first portion and a second portion over the etch target layer in the cell region and forming a second mask pattern having a first portion and a second portion over the etch target layer in the peripheral region, forming a photoresist pattern over the cell region, trimming the first portion of the second mask pattern, removing the photoresist pattern and the second portion of the first mask pattern and the second portion of the second mask pattern, and etching the etch target layer to form a pattern in the cell region and a pattern in the peripheral region.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: September 11, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin-Ki Jung
  • Patent number: 8198704
    Abstract: In one embodiment, a method of fabricating a semiconductor device having a crystalline semiconductor layer includes preparing a semiconductor substrate and forming a preliminary active pattern on the semiconductor substrate. The preliminary active pattern includes a barrier pattern and a non-single crystal semiconductor pattern. A sacrificial non-single crystal semiconductor layer covers the preliminary active pattern and the semiconductor substrate. By crystallizing the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern, using the semiconductor substrate as a seed layer, the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern are changed to a sacrificial crystalline semiconductor layer and a crystalline semiconductor pattern, respectively. The crystalline semiconductor pattern and the barrier pattern constitute an active pattern. The sacrificial crystalline semiconductor layer is removed.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 12, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Eun-Jung Yun
  • Patent number: 8193583
    Abstract: A voltage converter can include an output circuit having a vertical high-side device and a vertical low-side device which can be formed on a single die (i.e. a “PowerDie”). The high side device can be a PMOS transistor, while the low side device can be an NMOS transistor. The source of the PMOS transistor and the source of the NMOS transistor can be formed from the same metal structure, with the source of the high side device electrically connected to VIN and the source of the low side device electrically connected to ground. A drain of the high side PMOS transistor can be electrically shorted to the drain of the low side NMOS transistor during device operation using a metal layer which is interposed between the transistors and a semiconductor substrate.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 5, 2012
    Assignee: Intersil Americas, Inc.
    Inventor: François Hébert
  • Patent number: 8178406
    Abstract: A method of making a semiconductor device on a semiconductor layer includes forming a select gate, a recess, a charge storage layer, and a control gate. The select gate is formed have a first sidewall over the semiconductor layer. The recess is formed in the semiconductor layer adjacent to the first sidewall of the select gate. The thin layer of charge storage material is formed in which a first portion of the thin layer of charge storage material is formed in the first recess and a second portion of the thin layer of charge storage material is formed along the first sidewall of the first select gate. The control gate is formed over the first portion of the thin layer of charge storage material. The result is a semiconductor device useful a memory cell.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: May 15, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Gowrishankar L. Chindalore
  • Patent number: 8173545
    Abstract: A microelectronic method for the fabrication of a transistor gate using a precursor material that is suitable for being broken down into at least one metallic material after having been exposed to an electron beam. The invention applies in particular to the fabrication of multi-channel transistors, of the FinFET, suspended-channel, ITS or GAA type.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: May 8, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Thomas Ernst, Stéfan Landis
  • Patent number: 8158453
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: April 17, 2012
    Assignees: International Business Machines Corporation, Omnivision Technologies, Inc.
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 8138570
    Abstract: An isolation structure for a semiconductor device comprises a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate. An isolated junction field-effect transistor is formed in the isolated pocket.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 20, 2012
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 8129795
    Abstract: In a metal gate replacement process, strain may be selectively induced in the channels of NMOS and PMOS transistors. For example, a material having a higher coefficient of thermal expansion than the substrate may be used to form the gate electrodes of PMOS transistors. A material with a lower coefficient of thermal expansion than that of the substrate may be used to form the gate electrodes of NMOS transistors.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: March 6, 2012
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Justin K. Brask, Robert S. Chau, Brian S. Doyle
  • Patent number: 8049210
    Abstract: Provided is a thin film transistor including a substrate, a source electrode and a drain electrode disposed above the substrate so as to oppose each other, an organic semiconductor film disposed between the source electrode and the drain electrode to generate a channel region, and a gate electrode disposed opposite the organic semiconductor film via a gate insulating film. The gate electrode includes an aperture in the channel region.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: November 1, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Takashi Aoki, Soichi Moriya
  • Patent number: 7964465
    Abstract: A structure formation method. First, a structure is provided including (a) a fin region comprising (i) a first source/drain portion having a first surface and a third surface parallel to each other, not coplanar, and both exposed to a surrounding ambient, (ii) a second source/drain portion having a second surface and a fourth surface parallel to each other, not coplanar, and both exposed to the surrounding ambient, and (iii) a channel region disposed between the first and second source/drain portions, (b) a gate dielectric layer, and (c) a gate electrode region, wherein the gate dielectric layer (i) is sandwiched between, and (ii) electrically insulates the gate electrode region and the channel region. Next, a patterned covering layer is used to cover the first and second surfaces but not the third and fourth surfaces. Then, the first and second source/drain portions are etched at the third and fourth surfaces, respectively.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Andres Bryant, Edward Joseph Nowak
  • Patent number: 7960265
    Abstract: A method for fabricating a semiconductor device includes forming an etch target layer over a substrate including a cell region and a peripheral region, forming a first mask pattern having a first portion and a second portion over the etch target layer in the cell region and forming a second mask pattern having a first portion and a second portion over the etch target layer in the peripheral region, forming a photoresist pattern over the cell region, trimming the first portion of the second mask pattern, removing the photoresist pattern and the second portion of the first mask pattern and the second portion of the second mask pattern, and etching the etch target layer to form a pattern in the cell region and a pattern in the peripheral region.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: June 14, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin-Ki Jung
  • Patent number: 7955963
    Abstract: The present invention provides a device having an N type polysilicon gate and a P type polysilicon gate disposed therein, wherein when both gates are simultaneously etched, they are disposed in such a manner that the area of a non-doped polysilicon gate corresponding to a dummy electrode becomes larger than the total area of the N type and P type doped polysilicon gates, thereby causing non-doped polysilicon to become dominant over doped polysilicon, whereby the polysilicon gates are dry-etched.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: June 7, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Akira Takahashi
  • Publication number: 20110124165
    Abstract: A CMOS structure includes a v-shape surface in an nMOSFET region. The v-shape surface has an orientation in a (100) plane and extends into a Si layer in the nMOSFET region. The nMOSFET gate dielectric layer is a high-k material, such as Hf02. The nMOSFET has a metal gate layer, such as Ta. Poly-Si is deposited on top of the metal gate layer.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 26, 2011
    Applicant: International Business Machines Corporation
    Inventors: Huilong Zhu, Zhijiong Luo
  • Publication number: 20110108924
    Abstract: A semiconductor device includes a semiconductor substrate; an n-channel MOS transistor including a first gate insulating film provided on a p-type layer, a first gate electrode made of TiN, and a first upper gate electrode made of semiconductor doped with impurities; and a p-channel MOS transistor including a second gate insulating film provided on an n-type layer, a second gate electrode including at least as a part, a TiN layer made of TiN crystal in which a ratio of (111) orientation/(200) orientation is about 1.5 or more, and a second upper gate electrode made of semiconductor doped with impurities.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Applicant: Panasonic Corporation
    Inventors: Jun Suzuki, Hiroshi Nakagawa
  • Patent number: 7939895
    Abstract: Disclosed herein is a semiconductor device including a semiconductor substrate provided with an N-type FET and P-type FET, with a gate electrode of the N-type FET and a gate electrode of the P-type FET having undergone full-silicidation, wherein the gate electrode of the P-type FET has such a sectional shape in the gate length direction that the gate length decreases as one goes upwards from a surface of the semiconductor substrate, and the gate electrode of the N-type FET has such a sectional shape in the gate length direction that the gate length increases as one goes upwards from the surface of the semiconductor substrate.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: May 10, 2011
    Assignee: Sony Corporation
    Inventor: Katsuhiko Fukasaku
  • Patent number: 7915713
    Abstract: An integrated circuit includes a first field effect transistor of a first carrier type and a second field effect transistor of a second, different carrier type. In a conductive state, a first channel of the first field effect transistor is oriented to one of a first set of equivalent crystal planes of a semiconductor substrate and a second channel of the second field effect transistor is oriented to at least one of a second, different set of equivalent crystal planes. The first set of equivalent crystal planes is parallel to a main surface of the semiconductor substrate and the second set of equivalent crystal planes is perpendicular to the main surface.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 29, 2011
    Assignee: Qimonda AG
    Inventors: Juergen Faul, Juergen Holz
  • Patent number: 7910957
    Abstract: A semiconductor device has a first and a second active regions of a first conductivity type disposed on a semiconductor substrate, a third and a fourth active regions of a second conductivity type disposed on the semiconductor substrate, the second and the fourth active regions having sizes larger than those of the first and the third active regions respectively, a first electroconductive pattern disposed adjacent to the first active region and having a first width, a second electroconductive pattern disposed adjacent to the second active region and having a second width larger than the first width, a third electroconductive pattern disposed adjacent to the third active region and having a third width; and a fourth electroconductive pattern disposed adjacent to the fourth active region and having a fourth width smaller than the third width.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 22, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Junichi Mitani, Satoshi Nakai, Kazushi Fujita
  • Patent number: 7902058
    Abstract: In a metal gate replacement process, strain may be selectively induced in the channels of NMOS and PMOS transistors. For example, a material having a higher coefficient of thermal expansion than the substrate may be used to form the gate electrodes of PMOS transistors. A material with a lower coefficient of thermal expansion than that of the substrate may be used to form the gate electrodes of NMOS transistors.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: March 8, 2011
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Justin K. Brask, Robert S. Chau, Brian S. Doyle
  • Patent number: 7888210
    Abstract: Fabricating semiconductor-based non-volatile memory that includes composite storage elements, such as those with first and second charge storage regions, can include etching more than one charge storage layer. To avoid inadvertent shorts between adjacent storage elements, a first charge storage layer for a plurality of non-volatile storage elements is formed into rows prior to depositing the second charge storage layer. Sacrificial features can be formed between the rows of the first charge storage layer that are adjacent in a column direction, before or after forming the rows of the first charge layer. After forming interleaving rows of the sacrificial features and the first charge storage layer, the second charge storage layer can be formed. The layers can then be etched into columns and the substrate etched to form isolation trenches between adjacent columns. The second charge storage layer can then be etched to form the second charge storage regions for the storage elements.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 15, 2011
    Assignee: SanDisk Corporation
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, James Kai
  • Patent number: 7888193
    Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: February 15, 2011
    Assignees: Fujitsu Limited, Fujitsu Quantum Devices Limited
    Inventors: Kozo Makiyama, Naoya Ikechi, Takahiro Tan
  • Patent number: 7863677
    Abstract: A semiconductor device and a method of fabricating the same are provided. The semiconductor device includes a plurality of active regions which are defined in a semiconductor substrate, a plurality of gate lines which are formed as zigzag lines, extend across the active regions, are symmetrically arranged, and define a plurality of first regions and a plurality of second regions therebetween, and wherein the first regions being narrower than the second regions. The semiconductor device further includes an insulation layer which defines a plurality of contact regions by filling empty spaces in the first regions between the gate lines and, extending from the first regions, and surrounding sidewalls of portions of the gate lines in the second regions, and wherein the contact regions partially exposing the active regions and a plurality of contacts which respectively fill the contact regions.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Chul Park, Sang-Sup Jeong
  • Patent number: 7842572
    Abstract: A method of manufacturing a local recess channel transistor in a semiconductor device. A hard mask layer is formed on a semiconductor substrate that exposes a portion of the substrate. The exposed portion of the substrate is etched using the hard mask layer as an etch mask to form a recess trench. A trench spacer is formed on the substrate along a portion of sidewalls of the recess trench. The substrate along a lower portion of the recess trench is exposed after the trench spacer is formed. The exposed portion of the substrate along the lower portion of the recess trench is doped with a channel impurity to form a local channel impurity doped region surrounding the lower portion of the recess trench. A portion of the local channel impurity doped region surrounding the lower portion of the recess trench is doped with a Vth adjusting impurity to form a Vth adjusting impurity doped region inside the local channel impurity doped region. The width of the lower portion of the recess trench is expanded.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-myeong Jang, Yong-chul Oh, Makoto Yoshida
  • Patent number: 7824980
    Abstract: A semiconductor device and a method for manufacturing the same includes forming a poly-gate including a first poly-gate portion and a second poly-gate portion on and/or over a semiconductor substrate, forming a trench having a predetermined depth in the poly-gate, implanting dopant ions into the entire surface of the semiconductor substrate and the poly-gate including the trench, forming a contact barrier layer to cover a portion of the poly-gate including the trench while exposing an upper surface of the remaining portion of the poly-gate on which a contact will be formed, and forming a contact on the exposed upper surface of the poly-gate.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: November 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Mun-Sub Hwang
  • Patent number: 7759194
    Abstract: An electrically programmable device with embedded EEPROM and method for making thereof. The method includes providing a substrate including a first device region and a second device region, growing a first gate oxide layer in the first device region and the second device region, and forming a first diffusion region in the first device region and a second diffusion region and a third diffusion region in the second device region. Additionally, the method includes implanting a first plurality of ions to form a fourth diffusion region in the first device region and a fifth diffusion region in the second device region. The fourth diffusion region overlaps with the first diffusion region.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: July 20, 2010
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Yi-Peng Chan, Sheng-He Huang, Zhen Yang
  • Patent number: 7754592
    Abstract: A method for fabricating a semiconductor device includes forming an etch target layer over a substrate including a cell region and a peripheral region, forming a first mask pattern having a first portion and a second portion over the etch target layer in the cell region and forming a second mask pattern having a first portion and a second portion over the etch target layer in the peripheral region, forming a photoresist pattern over the cell region, trimming the first portion of the second mask pattern, removing the photoresist pattern and the second portion of the first mask pattern and the second portion of the second mask pattern, and etching the etch target layer to form a pattern in the cell region and a pattern in the peripheral region.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 13, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin-Ki Jung
  • Patent number: 7700428
    Abstract: Methods for fabricating a device structure for use as a memory cell in a non-volatile random access memory. The method includes forming first and second semiconductor bodies on the insulating layer that have a separated, juxtaposed relationship, doping the first semiconductor body to form a source and a drain, and partially removing the second semiconductor body to define a floating gate electrode adjacent to the channel of the first semiconductor body. The method further includes forming a first dielectric layer between the channel of the first semiconductor body and the floating gate electrode, forming a second dielectric layer on a top surface of the floating gate electrode, and forming a control gate electrode on the second dielectric layer that cooperates with the floating gate electrode to control carrier flow in the channel in the first semiconductor body.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jed H. Rankin, Yun Shi, William R. Tonti
  • Patent number: 7622767
    Abstract: In a semiconductor device, a SiN first protective insulating film is formed on a semiconductor layer. A T-shaped gate electrode is formed on the semiconductor layer. A SiN second protective insulating film spreads in an umbrella shape from above the T-shaped gate electrode. A hollow region is formed between the two SiN films. The SiN films are coated with a SiN third protective insulating film with the hollow region remaining.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: November 24, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoichi Nogami, Toshikazu Hirayama
  • Patent number: 7592684
    Abstract: A semiconductor device is provided in which high breakdown voltage transistors and low voltage driving transistors are formed on the same substrate. The device includes a semiconductor layer, first element isolation regions for defining a high breakdown voltage transistor forming region in the semiconductor layer, second element isolation regions including trench dielectric layers for defining a low voltage driving transistor forming region in the semiconductor layer, high breakdown voltage transistors formed in the high breakdown voltage transistor forming region, low voltage driving transistors formed in the low voltage driving transistor forming region, and offset dielectric layers for alleviating the electric field of the high breakdown voltage transistors formed in the high breakdown voltage transistor forming region, wherein upper ends of the offset dielectric layers are beak shaped.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 22, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Takafumi Noda, Masahiro Hayashi, Akihiko Ebina, Masahiko Tsuyuki
  • Patent number: 7586150
    Abstract: A method of manufacturing a local recess channel transistor in a semiconductor device. A hard mask layer is formed on a semiconductor substrate that exposes a portion of the substrate. The exposed portion of the substrate is etched using the hard mask layer as an etch mask to form a recess trench. A trench spacer is formed on the substrate along a portion of sidewalls of the recess trench. The substrate along a lower portion of the recess trench is exposed after the trench spacer is formed. The exposed portion of the substrate along the lower portion of the recess trench is doped with a channel impurity to form a local channel impurity doped region surrounding the lower portion of the recess trench. A portion of the local channel impurity doped region surrounding the lower portion of the recess trench is doped with a Vth adjusting impurity to form a Vth adjusting impurity doped region inside the local channel impurity doped region. The width of the lower portion of the recess trench is expanded.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Se-myeong Jang, Yong-chul Oh, Makoto Yoshida
  • Patent number: 7569445
    Abstract: A semiconductor device including a gate located over a semiconductor substrate and a source/drain region located adjacent the gate. The source/drain region is bounded by an isolation structure that includes a constricted current passage between the gate and the source/drain region.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: August 4, 2009
    Assignee: Agere Systems Inc.
    Inventor: Yehuda Smooha
  • Patent number: 7445993
    Abstract: A method of fabricating non-volatile memory is provided. A plurality of first memory cells is formed on the memory cell region of a substrate. Each first memory cell comprises a first composite layer, a first gate and a cap layer. There is a gap between two adjacent first memory cells. Then, a plurality of gates is formed in the respective gaps. The gates together with a second composite layer form a plurality of second memory cells. The second memory cells and the first memory cells together constitute a memory cell column. In the meantime, a plurality of gate structures is also formed on the peripheral circuit region. The gates in the gaps and the gates in the peripheral circuit region are fabricated using different conductive layers.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 4, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Wei-Chung Tseng, Houng-Chi Wei, Saysamone Pittikoun
  • Patent number: 7446027
    Abstract: A method for forming a gate structure with a pulled-back conductive layer and the use of the method are provided. The method conducts a local, not global, pull-back process on the conductive layer of the gate structure at the position intended for contact window formation, wherein the pull-back process is conducted after rapid thermal oxidation to prevent CBCB short, CB open and/or CBGC short.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: November 4, 2008
    Assignee: Promos Technologies Inc.
    Inventor: Chiang Yuh Ren
  • Publication number: 20080157211
    Abstract: An integrated circuit includes a transistor of a first type with a first gate electrode and a transistor of a second type with a second gate electrode. The first gate electrode is formed in a first gate groove that is defined in a semiconductor substrate, and the second gate electrode is formed in a second gate groove defined in the semiconductor substrate. The first gate electrode completely fills a space between two adjacent first isolation trenches, and the second gate electrode partially fills a space between two adjacent second isolation trenches, with substrate portions being arranged between the second gate electrode and the adjacent second isolation trenches, respectively.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Applicant: Qimonda AG
    Inventor: Peng-Fei Wang
  • Patent number: 7361932
    Abstract: A semiconductor device of a dual-gate structure including a P-channel type field-effect transistor formed at a first region of a substrate and an N-channel type field-effect transistor formed at a second region of the substrate, includes a gate electrode including a polycrystalline silicon film continuously formed on the substrate to cover the first and second regions and a metal silicide film formed on the polycrystalline silicon film. The polycrystalline silicon film has a P-type part located on the first region and an N-type part coming into contact with the P-type part and located on the second region, and the P-type part is further doped with a heavier element than a P-type impurity that determines a conductivity type of the P-type part.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: April 22, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Akihiko Tsuzumitani
  • Patent number: 7355256
    Abstract: A semiconductor device 1 according to the present invention includes a semiconductor substrate 5, a first transistor 10 which is formed on the semiconductor substrate 5 and includes a first gate electrode portion 16 constituted by a first gate insulating film 24 and a first gate electrode 26 having a first gate length L1 which are stacked, and a second transistor 12 which is formed on the semiconductor substrate 5 and includes a second gate electrode portion 20 constituted by a second gate insulating film 32 and a second gate electrode 30 having a second gate length L2 smaller than the first gate length L1, the second gate insulating film 32 and the second gate electrode 30 being stacked, wherein the grain size of poly-silicon grains forming the first gate electrode 26 is greater than the grain size of poly-silicon grains forming the second gate electrode 30.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: April 8, 2008
    Assignee: NEC Electronics Corporation
    Inventors: Mitsuhiro Togo, Eiji Hasegawa
  • Patent number: 7335542
    Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: February 26, 2008
    Assignees: Fujitsu Limited, Fujitsu Quantum Devices Limited
    Inventors: Kozo Makiyama, Naoya Ikechi, Takahiro Tan
  • Patent number: 7332775
    Abstract: A protruding spacer that protrudes above the top surface of a gate electrode structure provides enhanced resistance to exposure of the gate electrode during the etch process used to form self-aligned contacts. The protruding spacer may be formed using an amorphous carbon sacrificial layer as the top layer of the patterned gate electrode structure. Dielectric spacers are formed alongside the gate electrode structure, including alongside the sacrificial amorphous carbon layer. The dielectric spacers extend substantially to the top of the amorphous carbon layer. The amorphous carbon layer is then removed such that the remaining gate structure includes dielectric spacers that have a protruding section that protrudes above the top surface of the remaining gate structure. A nitride layer may be formed over the gate structure. Such a structure prevents exposure of the gate electrode during the formation of self-aligned contacts, and shorting, once the contact openings are filled.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: February 19, 2008
    Assignee: Agere Systems Inc.
    Inventors: Kurt George Steiner, Gerald W. Gibson, Jr., Eduardo Jose Quinones
  • Patent number: 7326609
    Abstract: A method and apparatus for manufacturing a semiconductor device is provides a substrate having a first region and a second region. A sacrificial first gate is formed in the first region. Source/drain are formed in the first region. A second region gate dielectric is formed in the second region. A second region gate is formed on the second region gate dielectric. A second region source/drain is formed in the second region. A sacrificial layer is formed over the sacrificial first gate, the source/drain, the first region, and the second region. The sacrificial first gate is exposed. A gate space is formed by removing the sacrificial first gate. A first region gate dielectric is formed in the gate space. A first region gate is formed on the first region gate dielectric. The sacrificial layer is removed.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: February 5, 2008
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Purakh Raj Verma, Liang-Choo Hsia, Dong Kyun Sohn, Guowei Zhang, Chew Hoe Ang, Yun Ling Tan, Zhao Lun, Jae Gon Lee, Yung Fu Chong
  • Patent number: 7285450
    Abstract: A method of fabricating non-volatile memory is provided. A plurality of first memory cells is formed on the memory cell region of a substrate. Each first memory cell includes a first composite layer, a first gate and a cap layer. There is a gap between two adjacent first memory cells. Then, a plurality of gates is formed in the respective gaps. The gates together with a second composite layer form a plurality of second memory cells. The second memory cells and the first memory cells together constitute a memory cell column. In the meantime, a plurality of gate structures is also formed on the peripheral circuit region. The gates in the gaps and the gates in the peripheral circuit region are formed using the same conductive layers.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: October 23, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Wei-Chung Tseng, Houng-Chi Wei, Saysamone Pittikoun