Memory Structures (epo) Patents (Class 257/E21.645)
  • Publication number: 20130328117
    Abstract: A solid-state non-volatile memory (NVM) device includes a memory bit cell. The memory bit cell includes a field effect transistor (FET) fabricated on a substrate and having a floating gate. The floating gate includes a thick oxide layer. The FET includes drain and source, each fabricated within the substrate and coupled to the floating gate and a channel region with native doping. The drain is fabricated to have a halo region. A method for fabricating a solid-state NVM device includes fabricating solid state device including NVM bit cell which provides multiple storage and includes an FET on substrate. The method also includes fabricating floating gate of the FET including thick gate oxide layer, and fabricating drain and source of FET within the substrate, drain and source coupled to the floating gate and channel region with native doping. Further, the method includes fabricating halo region within the substrate at the drain.
    Type: Application
    Filed: June 9, 2012
    Publication date: December 12, 2013
    Applicant: SYNOPSYS INC.
    Inventors: Mads HOMMELGAARD, Andrew HORCH, Martin NISET
  • Patent number: 8604557
    Abstract: A semiconductor memory device includes: a first n-type transistor; a first p-type transistor; a first wiring layer having a first interconnecting portion for connecting a drain of the first n-type transistor and a drain of the first p-type transistor; and a second wiring layer having a first conductive portion electrically connected to the first interconnecting portion.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: December 10, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Narumi Ohkawa
  • Patent number: 8604532
    Abstract: A dynamic random access memory cell is disclosed that comprises a capacitive storage device and a write access transistor. The write access transistor is operatively coupled to the capacitive storage device and has a gate stack that comprises a high-K dielectric, wherein the high-K dielectric has a dielectric constant greater than a dielectric constant of silicon dioxide. Also disclosed are a memory array using the cells, a computing apparatus using the memory array, a method of storing data, and a method of manufacturing.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Win K. Luk, Jin Cai
  • Patent number: 8603876
    Abstract: A dynamic random access memory cell is disclosed that comprises a capacitive storage device and a write access transistor. The write access transistor is operatively coupled to the capacitive storage device and has a gate stack that comprises a high-K dielectric, wherein the high-K dielectric has a dielectric constant greater than a dielectric constant of silicon dioxide. Also disclosed are a memory array using the cells, a computing apparatus using the memory array, a method of storing data, and a method of manufacturing.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Win K. Luk, Jin Cai
  • Patent number: 8598643
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device comprises a first conductive layer, a second conductive layer, a first inter-electrode insulating film, and a third conductive layer stacked above the first conductive layer, a memory film, a semiconductor layer, an insulating member, and a silicide layer. The memory film and the semiconductor layer is formed on the inner surface of through hole provided in the second conductive layer, the first inter-electrode insulating film, and the third conductive layer. The insulating member is buried in a slit dividing the second conductive layer, the first inter-electrode insulating film, and the third conductive layer. The silicide layer is formed on surfaces of the second conductive layer and the third conductive layer in the slit. The distance between the second conductive layer and the third conductive layer along the inner surface of the slit is longer than that of along the stacking direction.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kawasaki, Yoshiaki Fukuzumi, Masaru Kito, Tomoko Fujiwara, Takeshi Imamura, Ryouhei Kirisawa, Hideaki Aochi
  • Patent number: 8599616
    Abstract: A three-dimensional (3D) non-volatile memory (NVM) array including spaced-apart horizontally-disposed bitline structures arranged in vertical stacks, each bitline structures including a mono-crystalline silicon beam and a charge storage layer entirely surrounding the beam. Vertically-oriented wordline structures are disposed next to the stacks such that each wordline structure contacts corresponding portions of the charge storage layers. NVM memory cells are formed at each bitline/wordline intersection, with corresponding portions of each bitline structure forming each cell's channel region. The bitline structures are separated by air gaps, and each charge storage layer includes a high-quality thermal oxide layer that entirely covers (i.e., is formed on the upper, lower and opposing side surfaces of) each of the mono-crystalline silicon beams.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 3, 2013
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Avi Strum
  • Publication number: 20130313502
    Abstract: A high density variable resistive random access memory device and a method of fabricating the same are provided. The device includes first word lines, each separated from each other by a width of first word line; bit lines, each separated from each other by a width of bit line; and second word lines, each located between two adjacent first word lines, wherein the widths of first word line and the bit line are substantially same, and the bit lines are located over the first and second word lines.
    Type: Application
    Filed: August 31, 2012
    Publication date: November 28, 2013
    Inventor: Nam Kyun PARK
  • Patent number: 8592882
    Abstract: According to one embodiment, there is disclosed a magnetic random access memory comprising: a semiconductor substrate; a selective transistor formed at the surface region of the semiconductor substrate and having a gate electrode, a gate insulating film, a source and a drain; and a magnetoresistive element formed on the drain including a magnetic storage layer in which a magnetization direction is variable, a magnetic reference layer in which a magnetization direction is fixed, and a nonmagnetic layer sandwiched between the magnetic storage layer and the magnetic reference layer.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akiko Nomachi
  • Publication number: 20130299764
    Abstract: A device is disclosed. The device includes a gate disposed on a substrate in a device region, the gate having first and second sidewalls. The gate includes a gate electrode and a resistive layer disposed between the gate electrode and substrate. First doped regions of a first polarity type are disposed in the substrate adjacent to the first and second sidewalls of the gate. The gate overlaps the first doped regions by a first distance to form overlap portions. A portion of the resistive layer between the gate electrode and overlap portions form first and second storage elements of a multi-bit resistive memory cell.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng TAN, Eng Huat TOH, Elgin QUEK
  • Patent number: 8581346
    Abstract: A semiconductor memory device includes a first conductive line, a second conductive line crossing over the first conductive line, a resistance variation part disposed at a position in which the second conductive line intersects with the first conductive line and electrically connected to the first conductive line and the second conductive line and a mechanical switch disposed between the resistance variation part and the second conductive line. The mechanical switch includes a nanotube.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: November 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: HongSik Yoon, Jinshi Zhao, Ingyu Baek, Hyunjun Sim, Minyoung Park
  • Publication number: 20130292626
    Abstract: Resistive memory having confined filament formation is described herein. One or more method embodiments include forming an opening in a stack having a silicon material and an oxide material on the silicon material, and forming an oxide material in the opening adjacent the silicon material, wherein the oxide material formed in the opening confines filament formation in the resistive memory cell to an area enclosed by the oxide material formed in the opening.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Eugene P. Marsh, Jun Liu
  • Publication number: 20130294152
    Abstract: Some embodiments include apparatuses and methods having a memory cell, first and second conductive lines configured to access the memory cell, and a switch configured to apply a signal to one of the first and second conductive lines. In at least one of such embodiments, the switch can include a phase change material. Other embodiments including additional apparatuses and methods are described.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: DerChang Kau, Gianpaolo Spadini
  • Publication number: 20130292625
    Abstract: Some embodiments include a memory cell having a data storage region between a pair of conductive structures. The data storage region is configured to support a transitory structure which alters resistance through the memory cell. The data storage region includes two or more portions, with one of the portions supporting a higher resistance segment of the transitory structure than another of the portions. Some embodiments include a method of forming a memory cell. First oxide and second oxide regions are formed between a pair of conductive structures. The oxide regions are configured to support a transitory structure which alters resistance through the memory cell. The oxide regions are different from one another so that one of the oxide regions supports a higher resistance segment of the transitory structure than the other.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, Sumeet C. Pandey
  • Publication number: 20130292633
    Abstract: Methods and memory devices formed using etch bias homogenization are provided. One example method of forming a memory device using etch bias homogenization includes forming conductive material at respective levels over a substrate. Each respective level of conductive material is electrically coupled to corresponding circuitry on the substrate during patterning of the respective level of conductive material so that each respective level of conductive material has a homogenized etch bias during patterning thereof. Each respective level of conductive material electrically coupled to corresponding circuitry on the substrate is patterned.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fabio Pellizzer, Hernan A. Castro, Eddie T. Flores
  • Patent number: 8574926
    Abstract: According to one embodiment, a manufacturing method of a magnetic memory includes forming a magnetoresistive element in a cell array section on a semiconductor substrate, forming a dummy element in a peripheral circuit section on the semiconductor substrate, the dummy element having the same stacked structure as the magnetoresistive element and being arranged at the same level as the magnetoresistive element, collectively flattening the magnetoresistive element and the dummy element, applying a laser beam to the dummy element to form the dummy element into a non-magnetic body, and forming an upper electrode on the flattened magnetoresistive element.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Noma, Hiroshi Watanabe, Shinya Kobayashi
  • Patent number: 8574985
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
  • Publication number: 20130277731
    Abstract: Various embodiments include methods and apparatuses, such as memory cells formed on two or more stacked decks. A method includes forming a first deck with first levels of conductor material and first levels of dielectric material over a substrate. Each level of the conductor material is separated from an adjacent level of conductor material by at least one of the first levels of dielectric material. A first opening is formed through the first levels of conductor material and dielectric material. A sacrificial material is formed at least partially filling the first opening. A second deck is formed over the first deck. The second deck has second levels of conductor material and second levels of dielectric material with each level of the conductor material being separated from an adjacent level of conductor material by at least one of the second levels of dielectric material. Additional apparatuses and methods are disclosed.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: Akira Goda, Roger W. Lindsay
  • Patent number: 8564045
    Abstract: Memory arrays and methods of their formation are disclosed. One such memory array has memory-cell strings are formed adjacent to separated substantially vertical, adjacent semiconductor structures, where the separated semiconductor structures couple the memory cells of the respective strings in series. For some embodiments, two dielectric pillars may be formed from a dielectric formed in a single opening, where each of the dielectric pillars has a pair of memory-cell strings adjacent thereto and where at least one memory cell of one of the strings on one of the pillars and at least one memory cell of one of the strings on the other pillar are commonly coupled to an access line.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 22, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Zengtao Liu
  • Patent number: 8564038
    Abstract: According to one embodiment, a second conductive layer is provided on a second insulating film and connected to a first conductive layer via an opening portion in the second insulating film. A first contact is connected to the second conductive layer. A third conductive layer is provided on the second insulating film and connected to the first conductive layer via an opening portion in the second insulating film. A second contact is connected to the third conductive layer. A fourth conductive layer is provided on the second insulating film and connected to the first conductive layer via an opening portion in the second insulating film. A third contact is connected to the fourth conductive layer. The floating gate layer and the first conductive layer are made of the same material, and the control gate layer, the second, third and fourth conductive layers are made of the same material.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: October 22, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masato Sugawara
  • Patent number: 8557658
    Abstract: The present disclosure provides a multi-transistor element including a substrate, a first floating gate disposed on the substrate, a second floating gate disposed on the substrate and coupled to the first floating gate, and a first active region disposed in the substrate and coupled to the first and second floating gates.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacting Company, Ltd.
    Inventors: Shih Wei Wang, Chun Juang Lin
  • Patent number: 8558297
    Abstract: Disclosed herein is an improved memory device, and related methods of manufacturing, wherein the area occupied by a conventional landing pad is significantly reduced to around 50% to 10% of the area occupied by conventional landing pads. This is accomplished by removing the landing pad from the cell structure, and instead forming a conductive via structure that provides the electrical connection from the memory stack or device in the structure to an under-metal layer. By forming only this via structure, rather than separate vias formed on either side of a landing pad, the overall width occupied by the connective via structure from the memory stack to an under-metal layer is substantially reduced, and thus the via structure and under-metal layer may be formed closer to the memory stack (or conductors associated with the stack) so as to reduce the overall width of the cell structure.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jhon Jhy Liaw, Yu-Jen Wang, Chia-Shiung Tsai
  • Publication number: 20130264533
    Abstract: A resistive random access memory (ReRAM) includes a first metal layer having a first metal and a metal-oxide layer on the first metal layer. The metal-oxide layer inlcudes the first metal. The ReRAM further includes a second metal layer over the metal-oxide layer and a first continuous conductive barrier layer in physical contact with sidewalls of the first metal layer and of the metal-oxide layer.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventors: CHEONG Min HONG, Ko-Min Chang, Feng Zhou
  • Patent number: 8552537
    Abstract: A semiconductor device according to an embodiment, includes a dielectric film and an Si semiconductor part. The dielectric film is formed by using one of oxide, nitride and oxynitride. The Si semiconductor part is arranged below the dielectric film, having at least one element of sulfur (S), selenium (Se), and tellurium (Te) present in an interface with the dielectric film, and formed by using silicon (Si).
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Satoshi Itoh, Hideyuki Nishizawa
  • Patent number: 8551838
    Abstract: A nonvolatile semiconductor memory device that have a new structure are provided, in which memory cells are laminated in a three dimensional state so that the chip area may be reduced. The nonvolatile semiconductor memory device of the present invention is a nonvolatile semiconductor memory device that has a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; the second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory strings and the other first or nth electrodes of the memory strings are respectively the first or nth conductor layers that are spread in a two dimensional state.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Akihiro Nitayama, Masaru Kidoh, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Yasuyuki Matsuoka, Mitsuru Sato
  • Patent number: 8551875
    Abstract: According to one embodiment, an opening pattern is formed in the core film above a processing target, and a mask film is conformably formed above the processing target. Next, etch-back of the mask film is performed so that the mask film remains on a side surface of the core film. After that, line-and-space shaped core patterns, made of the core film, is formed in an area other than an area forming the opening pattern. Next, sidewall patterns are formed around the core patterns, and the core patterns are removed. Next, the processing target is patterned by using the mask film and the sidewall patterns.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Seiji Kajiwara
  • Patent number: 8546869
    Abstract: Methods of forming nonvolatile memory devices according to embodiments of the invention include techniques to form highly integrated vertical stacks of nonvolatile memory cells. These vertical stacks of memory cells can utilize dummy memory cells to compensate for process artifacts that would otherwise yield relatively poor functioning memory cell strings when relatively large numbers of memory cells are stacked vertically on a semiconductor substrate using a plurality of vertical sub-strings electrically connected in series.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changhyun Lee, Sunil Shim, Jaehoon Jang, Sunghoi Hur, Hansoo Kim, Kihyun Kim
  • Patent number: 8546251
    Abstract: A method of manufacturing a read only memory cell includes connecting electrically a drain of the transistor to the bit line with a first conductor and a via. The method also includes generating a logic zero at a source of the transistor by electrically connecting the source of the transistor to a ground line with the first conductor. Further, the method includes, programming the read only memory cell to logic zero. A method of manufacturing a read only memory cell includes connecting electrically a drain of the transistor to the bit line with a first conductor and a via. The method also includes, connecting electrically a source of the transistor to the drain with the first conductor. Further, the method includes programming the read only memory cell to logic one.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: October 1, 2013
    Assignee: Synopsys, Inc.
    Inventors: Vineet Kumar Sachan, Amit Khanuja, Deepak Sabharwal
  • Publication number: 20130248798
    Abstract: A variable resistance memory device includes active regions defined by an isolation layer in a semiconductor substrate, trenches in the semiconductor substrate, which extend in a direction crossing the active regions, junction regions formed in the active regions on both sides of the trenches, and variable resistance patterns interposed between the word lines and the junction regions.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 26, 2013
    Inventors: Jae-Yun YI, Seok-Pyo SONG, Seung-Hwan LEE
  • Publication number: 20130248797
    Abstract: Some embodiments include methods of forming memory cells. An opening is formed over a first conductive structure to expose an upper surface of the first conductive structure. The opening has a bottom level with a bottom width. The opening has a second level over the bottom level, with the second level having a second width which is greater than the bottom width. The bottom level of the opening is filled with a first portion of a multi-portion programmable material, and the second level is lined with the first portion. The lined second level is filled with a second portion of the multi-portion programmable material. A second conductive structure is formed over the second portion. Some embodiments include memory cells.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, Scott E. Sills
  • Patent number: 8541828
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer includes at least a portion of rutile titanium oxide.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 24, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Edward L. Haywood, Sandra G. Malhotra, Xiangxin Rui, Sunil Shanker
  • Publication number: 20130240963
    Abstract: An STT MTJ cell is formed with a magnetic anisotropy of its free and reference layers that is perpendicular to their planes of formation. The reference layer of the cell is an SAF multilayered structure with a single magnetic domain to enhance the bi-stability of the magnetoresistive states of the cell. The free layer of the cell is etched back laterally from the reference layer, so that the fringing stray field of the reference layer is no more than 15% of the coercivity of the free layer and has minimal effect on the free layer.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Robert Beach, Guenole Jan, Yu-Jen Wang, Witold Kula, Po-Kang Wang
  • Publication number: 20130240821
    Abstract: Disclosed herein are various embodiments of novel three dimensional RRAM devices, and various methods of making such devices. In one example, a device disclosed herein includes a first electrode for a first bit line comprising a variable resistance material, a second electrode for a second bit line comprising a variable resistance material and a third electrode positioned between the variable resistance material of the first bit line and the variable resistance material of the second bit line.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE LTD
    Inventors: Eng Huat Toh, Elgin Quek, Shyue Seng Tan
  • Patent number: 8525243
    Abstract: A semiconductor device has a gate multiple doping regions on both sides of the gate. The gate can be shared by a transistor and a capacitor.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 3, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Patent number: 8524599
    Abstract: Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the first conductive material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 3, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Scott E. Sills, Whitney L. West, Rob B. Goodwin, Nishant Sinha
  • Publication number: 20130221313
    Abstract: The present invention discloses an ultra high density resistive memory structure and a method for fabricating the same. The memory structure comprises a plurality of memory cells. Each memory cell further comprises two separate upper sub-electrodes fabricated from an upper electrode, two separate lower sub-electrodes fabricated from a lower electrode and intersecting the upper sub-electrodes, and a resistive layer arranged between the upper sub-electrodes and the lower sub-electrodes. Thereby, four sub-memory cells are formed in the intersections of the two upper sub-electrodes, the two lower sub-electrodes, and the resistive layer. Thus is increased the density of a memory structure in an identical area.
    Type: Application
    Filed: April 20, 2012
    Publication date: August 29, 2013
    Inventors: Ming-Daou LEE, ChiaHua HO, Cho-Lun HSU, Wen-Cheng CHIU
  • Publication number: 20130214346
    Abstract: A first conductive layer and an underlying charge storage layer are patterned to form a control gate in an NVM region. A first dielectric layer is formed over the control gate. A sacrificial layer is formed over the first dielectric layer and planarized. A patterned masking layer is formed over the sacrificial layer which includes a first portion which defines a select gate location laterally adjacent the control gate in the NVM region and a second portion which defines a logic gate in a logic region. Exposed portions of the sacrificial layer are removed such that a first portion remains at the select gate location. A second dielectric layer is formed over the first portion and planarized to expose the first portion. The first portion is removed to result in an opening at the select gate location. A gate dielectric layer and a select gate are formed in the opening.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Inventors: Mark D. Hall, Mehul D. Shroff
  • Patent number: 8513076
    Abstract: A non-volatile memory device includes a peripheral circuit region and a cell region. A method for fabricating the non-volatile memory device includes forming gate patterns over a substrate, the gate pattern including a tunnel insulation layer, a floating gate electrode, a charge blocking layer and a control gate electrode, and removing the control gate electrode and the charge blocking layer of the gate pattern formed in the peripheral circuit region.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 20, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Nam-Jae Lee
  • Patent number: 8513064
    Abstract: Some embodiments include methods of forming memory arrays. A stack of semiconductor material plates may be patterned to subdivide the plates into pieces. Electrically conductive tiers may be formed along sidewall edges of the pieces. The pieces may then be patterned into an array of wires, with the array having vertical columns and horizontal rows. Individual wires may have first ends joining to the electrically conductive tiers, may have second ends in opposing relation to the first ends, and may have intermediate regions between the first and second ends. Gate material may be formed along the intermediate regions. Memory cell structures may be formed at the second ends of the wires. A plurality of vertically-extending electrical interconnects may be connected to the wires through the memory cell structures, with individual vertically-extending electrical interconnects being along individual columns of the array. Some embodiments include memory arrays incorporated into integrated circuitry.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Janos Fucsko
  • Patent number: 8513051
    Abstract: Phase-changeable memory devices include a lower electrode electrically connected to an impurity region of a transistor in a substrate and a programming layer pattern including a first phase-changeable material on the lower electrode. An adiabatic layer pattern including a material having a lower thermal conductivity than the first phase-changeable material is on the programming layer pattern and an upper electrode is on the adiabatic layer pattern.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Ho Ha, Bong-Jin Kuh, Ji-Hye Yi, Jun-Soo Bae
  • Publication number: 20130210193
    Abstract: Systems and methods for preparing resistive switching memory devices such as resistive random access memory (ReRAM) devices wherein both oxide and nitride layers are deposited in a single chamber are provided. Various oxide and nitride based layers in the ReRAM device such as the switching layer, current-limiting layer, and the top electrode (and optionally the bottom electrode) are deposited in the single chamber. By fabricating the ReRAM device in a single chamber, throughput is increased and cost is decreased. Moreover, processing in a single chamber reduces device exposure to air and to particulates, thereby minimizing device defects.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Albert Lee, Chien-Lan Hsueh
  • Patent number: 8507353
    Abstract: A conductive pattern on a substrate is formed. An insulating layer having an opening exposing the conductive pattern is formed. A bottom electrode is formed on the conductive pattern and a first sidewall of the opening. A spacer is formed on the bottom electrode and a second sidewall of the opening. The spacer and the bottom electrode are formed to be lower than a top surface of the insulating layer. A data storage plug is formed on the bottom electrode and the spacer. The data storage plug has a first sidewall aligned with a sidewall of the bottom electrode and a second sidewall aligned with a sidewall of the spacer. A bit line is formed on the data storage plug.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyu-Hwan Oh, Sung-Lae Cho, Byoung-Jae Bae, Ik-Soo Kim, Dong-Hyun Im, Doo-Hwan Park, Kyoung-Ha Eom, Sung-Un Kwon, Chul-Ho Shin, Sang-Sup Jeong
  • Patent number: 8507343
    Abstract: In a variable resistance memory device and a method of manufacturing the variable resistance memory device, the generation of a seam, or void, is avoided in the device that, if present, may otherwise reduce the reliability of the resulting device.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics, Co., Ltd.
    Inventor: Jung-in Kim
  • Publication number: 20130200330
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line and placed on both sides of the gate contact over a layer of insulating material. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars over an insulating material on the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 8501581
    Abstract: The invention includes floating body transistor constructions containing U-shaped semiconductor material slices. The U-shapes have a pair of prongs joined to a central portion. Each of the prongs contains a source/drain region of a pair of gatedly-coupled source/drain regions, and the floating bodies of the transistors are within the central portions. The semiconductor material slices can be between front gates and back gates. The floating body transistor constructions can be incorporated into memory arrays, which in turn can be incorporated into electronic systems. The invention also includes methods of forming floating body transistor constructions, and methods of incorporating floating body transistor constructions into memory arrays.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Venkatesan Ananthan
  • Patent number: 8501609
    Abstract: A method for generating three-dimensional (3D) non-volatile memory (NVM) arrays includes forming multiple parallel horizontally-disposed mono-crystalline silicon beams that are spaced apart and arranged in a vertical stack (e.g., such that an elongated horizontal air gap is defined between each adjacent beam in the stack), forming separate charge storage layers on each of the mono-crystalline silicon beams such that each charge storage layer includes a high-quality thermal oxide layer that entirely covers (i.e., is formed on the upper, lower and opposing side surfaces of) each of the mono-crystalline silicon beams, and then forming multiple vertically-disposed poly-crystalline silicon wordline structures next to the stack such that each wordline structure is connected to each of the bitline structures in the stack by way of corresponding portions of the separate charge storage layers. The memory cells are accessed during read/write operations by way of the corresponding wordline and bitline structures.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: August 6, 2013
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Avi Strum
  • Patent number: 8502296
    Abstract: A method includes forming at least one control gate over a semiconductor substrate. The method also includes depositing a layer of conductive material over the at least one control gate and the semiconductor substrate. The method further includes etching the layer of conductive material to form multiple spacers adjacent to the at least one control gate, where at least one of the spacers forms a floating gate in at least one memory cell. Two spacers could be formed adjacent to the at least one control gate, and one of the spacers could be etched so that a single memory cell includes the control gate and the remaining spacer. Also, two spacers could be formed adjacent to the at least one control gate, and the at least one control gate could be etched and separated to form multiple control gates associated with different memory cells.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 6, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Andre P. Labonte, Jiankang Bu, Mark Rathmell
  • Patent number: 8502291
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8497182
    Abstract: A memory device includes an array of electrodes that includes thin film plates of electrode material. Multilayer strips are arranged as bit lines over respective columns in the array of electrodes, including a layer of memory material and a layer of top electrode material. The multilayer strips have a primary body and a protrusion having a width less than that of the primary body and is self-aligned with contact surfaces on the thin film plates. Memory material in the protrusion contacts surfaces on the distal ends of thin film plates of electrodes in the corresponding column in the array. The device can be made using a damascene process in self-aligned forms over the contact surfaces.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: July 30, 2013
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Patent number: 8497542
    Abstract: The use of atomic layer deposition (ALD) to form a nanolaminate dielectric of zirconium oxide (ZrO2), hafnium oxide (HfO2) and tin oxide (SnO2) acting as a single dielectric layer with a formula of Zrx Hfy Sn1-x-y O2, and a method of fabricating such a dielectric layer is described that produces a reliable structure with a high dielectric constant (high k). The dielectric structure is formed by depositing zirconium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing hafnium oxide onto the substrate using precursor chemicals, followed by depositing tin oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. Such a dielectric may be used as a gate insulator, a capacitor dielectric, or as a tunnel insulator in non-volatile memories, because the high dielectric constant (high k) provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 30, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20130187117
    Abstract: Some embodiments include memory cells which contain, in order; a first electrode material, a first metal oxide material, a second metal oxide material, and a second electrode material. The first metal oxide material has at least two regions which differ in oxygen concentration relative to one another. One of the regions is a first region and another is a second region. The first region is closer to the first electrode material than the second region, and has a greater oxygen concentration than the second region. The second metal oxide material includes a different metal than the first metal oxide material. Some embodiments include methods of forming memory cells in which oxygen is substantially irreversibly transferred from a region of a metal oxide material to an oxygen-sink material. The oxygen transfer creates a difference in oxygen concentration within one region of the metal oxide material relative to another.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, Bhaskar Srinivasan