Making Word Line (epo) Patents (Class 257/E21.659)
  • Patent number: 11823738
    Abstract: A resistive memory apparatus including bit lines, word lines, a memory array, bypass paths, select circuits, and a switch circuit is provided. The word lines are respectively crossed with the bit lines. The memory array includes memory elements. One end of each of the memory elements is coupled to the corresponding word line, and another end of each of the memory elements is coupled between a first node and a second node on the corresponding bit line. Each of the bypass paths is connected in parallel with the corresponding bit line between the first node point and the second node. Each of the select circuits is coupled to the corresponding bit line and bypass path, and configured to select the coupled bit line or bypass path. The switch circuit is coupled to the word lines, and configured to select one of the word lines.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: November 21, 2023
    Assignee: Winbond Electronics Corp.
    Inventors: Frederick Chen, Hsiu-Han Liao, Po-Yen Hsu, Chi-Shun Lin
  • Patent number: 11652451
    Abstract: A power amplifier device includes: a first power supply terminal for inputting a first power supply voltage; a first transistor for power amplification that (i) includes a first gate to which a bias voltage is applied, and (ii) is supplied with power from the first power supply terminal; a second power supply terminal for inputting a second power supply voltage lower than the first power supply voltage; a second transistor for monitoring that (i) includes a second gate to which the bias voltage is applied, (ii) is supplied with power from the first power supply terminal or the second power supply terminal, and (iii) imitates an operation of the first transistor; and a bias circuit that is supplied with power from the second power supply terminal and generates and adjusts the bias voltage according to a drain current or a source current of the second transistor.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: May 16, 2023
    Assignee: NUVOTON TECHNOLOGY CORPORATION JAPAN
    Inventors: Takashi Saji, Kaname Motoyoshi, Shingo Matsuda
  • Patent number: 11631452
    Abstract: A memory apparatus and an initialization method thereof are provided. The initialization method includes the following steps. A power-up operation is performed on the memory apparatus to provide an internal voltage to a memory array. After the internal voltage is stabilize, a refresh operation is performed on all storage cells.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: April 18, 2023
    Assignee: Winbond Electronics Corp.
    Inventor: Kuen-Huei Chang
  • Patent number: 11532351
    Abstract: A memory device is provided. The memory device includes a plurality of memory cells arranged in a matrix of a plurality of rows and a plurality of columns. A first column of the plurality of columns of the matrix includes a first plurality of memory cells of the plurality of memory cells, a first pair of bit lines connected to each of the first plurality of bit cells, and a second pair of bit lines connectable to the first pair of bit lines through a plurality of switches.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hidehiro Fujiwara, Chia-En Huang, Yen-Huei Chen, Jui-Che Tsai, Yih Wang
  • Patent number: 11520531
    Abstract: A system may include a synchronization device and an emulation chip including a processor and a memory. The processor may evaluate, during a first cycle, at least one of a set of one or more execution instructions in the memory or evaluation primitives configured to emulate a circuit, and evaluate, during a second cycle, at least one of the set of one or more execution instructions or a set of configured logic primitives. The synchronization device may interpose a gap period interposed between the first cycle and the second cycle such that during the gap period, the processor does not evaluate one or more instructions from the set of one or more execution instructions or re-evaluate primitives. The synchronization device may cause, during the first gap period, the emulation chip to perform refreshes on the memory of the emulation chip.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: December 6, 2022
    Assignee: CADENCE DESIGN SYSTEMS, INC.
    Inventors: Mitchell G. Poplack, Justin Schmelzer, Aruna Aluri
  • Patent number: 10923190
    Abstract: According to one embodiment, a device includes: a memory cell between the first and second interconnects; a first circuit in a domain having a range of a first voltage to a second voltage higher than the first voltage, the first circuit controlling supply of the second voltage to the first interconnect; a second circuit in a domain having a range of a third voltage lower than the first voltage to the first voltage, the second circuit controlling supply of the third voltage to the second interconnect; and a third circuit in a domain having a range of a fourth voltage lower than the first voltage to a fifth voltage higher than the first voltage, the third circuit controlling supply of a sixth voltage to the first and second interconnects.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: February 16, 2021
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Yutaka Shirai
  • Patent number: 10878867
    Abstract: A circuit includes a plurality of memory cells, a first tracking word line driver, and a second tracking word line driver. The first tracking word line driver outputs a first signal in response to a first region of the plurality of memory cells being accessed, the first signal having a first pulse width. The second tracking word line driver outputs a second signal in response to a second region of the plurality of memory cells being accessed, the second signal having a second pulse width, the second pulse width being different from the first pulse width.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Atul Katoch, Hyunsung Hong
  • Patent number: 10878886
    Abstract: Devices and methods include, for a memory device, generating a main input-output line signal on a main input-output line using driving circuitry. The main input-output line is coupled to multiple sensing amplifiers. Each of the sensing amplifiers each locally generate a local data line from the main data line. Each of the sensing amplifiers also includes multiple local sensing amplifiers that are selectively coupled to the generated local data line for overwriting data in the respective local sensing amplifiers.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Harish N. Venkata
  • Patent number: 10395700
    Abstract: Embodiments of the present disclosure provide a circuit structure including: first PMOS and second PMOS each including a gate, source, and drain; wherein sources of first and second PMOS are coupled to first voltage source, gate of first PMOS is cross coupled to drain of second PMOS, gate of second PMOS is cross coupled to drain of first PMOS, drain of the first PMOS is coupled to first bit-line node, and wherein drain of second PMOS is coupled to second bit-line node; write bit-switch having first NMOS coupled to first bit-line node and second NMOS coupled to second bit-line node, wherein first and second NMOS of write bit-switch are respectively coupled to a pair of data nodes each receiving one of a pair of data inputs; and write driver, having a pair of transistor stacks each coupled to between one of the pair of data nodes and ground.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 27, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Venkatraghavan Bringivijayaraghavan, Sreenivasa Chaitanya Kumar Vavilla
  • Patent number: 10304507
    Abstract: A memory for providing a signal buffering scheme for array and periphery signals and the operating method of the same are provided. The memory includes a plurality of columns of memory cells, a control circuit, and a control logic unit. The plurality of columns of memory cells may be connected to a local array signal generator via local control lines, which are connected to a global array signal generator via global control lines for receiving array signals. The control circuit may be connected to the memory cells for providing periphery signals. The control logic unit may be connected to the memory cells through a hierarchical structure of the global control lines and the local control lines. The control logic unit may be configured to provide the array signals and periphery signals having the same polarity to the global control lines and the local control lines.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: May 28, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Manish Chandra Joshi, Parvinder Kumar Rana, Akash Kumar Gupta
  • Patent number: 10284362
    Abstract: Methods and systems are described for receiving a signal to be sampled and responsively generating, at a pair of common nodes, a differential current representative of the received signal, receiving a plurality of sampling interval signals, each sampling interval signal received at a corresponding sampling phase of a plurality of sampling phases, for each sampling phase, pre-charging a corresponding pair of output nodes using a pre-charging FET pair receiving the sampling interval signal, forming a differential output voltage by discharging the corresponding pair of output nodes via a discharging FET pair connected to the pair of common nodes, the FET pair receiving the sampling interval signal and selectively enabling the differential current to discharge the corresponding pair of output nodes, and latching the differential output voltage.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 7, 2019
    Assignee: KANDOU LABS, S.A.
    Inventor: Armin Tajalli
  • Patent number: 10255957
    Abstract: A semiconductor integrated circuit including first semiconductor chip and second semiconductor chip that are vertically stacked, wherein the first semiconductor chip includes a first column data driving circuit configured to transmit internal data to the second semiconductor chip in a DDR (double data rate) scheme based on an internal strobe signal, and a first column strobe signal driving circuit configured to generate first column strobe signals that are source-synchronized with first column data transmitted to the second semiconductor chip by the first column data driving circuit, based on the internal strobe signal, and transmit the first column strobe signals to the second semiconductor chip.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: April 9, 2019
    Assignee: SK hynix Inc.
    Inventors: Dong-Uk Lee, Young-Ju Kim, Keun-Soo Song
  • Patent number: 10224094
    Abstract: A semiconductor device includes an array of memory cells, and a reference voltage generation circuit including a first set of reference memory cells coupled to a first bit line, a second set of reference memory cells coupled to a second bit line, a first capacitor having a first terminal coupled to the first bit line, and a second terminal, a second capacitor having a first terminal coupled to the second terminal of the first capacitor at a first node and a second terminal coupled to the second bit line, an amplifier including a first input selectively coupled to the first node and a second input coupled to an output of the amplifier that provides reference voltage used by sense amplifiers, and a third capacitor including a first terminal coupled to the output of the amplifier and a second terminal coupled to a first supply voltage.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: March 5, 2019
    Assignee: NXP USA, Inc.
    Inventors: Perry Pelley, Anirban Roy
  • Patent number: 10127975
    Abstract: A determination circuit of one embodiment includes first and second inverter circuits, a first transistor which turns on when receiving an asserted first signal, and a first capacity component including a first end which receives an inversion signal of the first signal. The second inverter circuit includes an input coupled to an output of the first inverter circuit, and includes an output coupled to an input of the first inverter circuit. The first node is coupled to a first potential node, the first transistor is coupled between the second node and a second potential node having a lower potential than a potential of the first potential node, and a second end of the first capacity component is coupled to the second node.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: November 13, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshiaki Dozaka
  • Patent number: 9792978
    Abstract: A semiconductor memory device includes a memory cell array and a first buffer. The memory cell array includes a plurality of bank arrays. Each of the plurality of bank arrays includes a plurality of memory cells. The memory cell array and the first buffer are configured for performing a first internal read operation, which represents operations of retrieving first data from a first region of the memory cell array and of storing the first data into the first buffer, based on a first read command and a first read address. The first internal read operation is performed based on a deterministic interface in which the first data is stored into the first buffer within a predetermined first duration after the first read command is received and a generation of a first acknowledgement signal is unnecessary after storing the first data into the first buffer is completed.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 17, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-Pil Son, Ho-Young Song
  • Patent number: 9773555
    Abstract: A semiconductor memory device includes a first block of memory cells that includes a first word line above a substrate, a second word line above the first word line, and a third word line above the second word line, a first control line electrically connected to the first word line, a second control line electrically connected to the second word and between the first control line and the first block, and a third control line electrically connected to the third word line and between the second control line and the first block.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: September 26, 2017
    Assignee: Toshiba Memory Corporation
    Inventors: Sanad Bushnaq, Masanobu Shirakawa
  • Patent number: 9627034
    Abstract: Provided is an electronic device including a circuit for reading data from a memory cell that can store multilevel data. The electronic device includes a memory cell array region, N sense amplifier regions, and switching elements. The memory cell array region includes memory cells that store, when (N+1)-level data is stored, the (N+1)-level data as different potentials. Each of the N sense amplifier regions compares a read potential, which depends on a charge released to a bit line and a wiring or the like connected thereto, with a reference potential and performs amplification. Each of the switching elements electrically isolates a sense amplifier region from the other sense amplifier regions after all of the N sense amplifier regions are electrically connected to the bit line. Each of the sense amplifier regions can output a write potential to the bit line.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: April 18, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takanori Matsuzaki
  • Patent number: 9281028
    Abstract: A method and circuit for reducing a glitch in a memory read latch is disclosed. A read latch circuit includes a first logic gate having a first input coupled to a read bit line and a second input. The read latch circuit further includes a second logic gate coupled to receive as inputs a first enable signal and a delayed version of the first enable signal. The second logic gate is configured to provide a second enable signal to the second input of the first logic gate. The second logic gate is configured to provide a rising edge of the second enable signal after a predetermined delay without a corresponding delay of a falling edge of the second enable signal. The first logic gate provides an output corresponding to a data value received on the read bit line responsive to receiving the rising edge of the second enable signal.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: March 8, 2016
    Assignee: Oracle International Corporation
    Inventors: Taejin Pyon, Yong Qin, Thu Hanh Nguyen
  • Patent number: 9023723
    Abstract: A method of fabricating a self-aligned buried wordline in a structure which contains a self-aligned buried bit line, where the overall structure which makes up a portion of a vertical channel DRAM. The materials and processes used enable self-alignment of elements of the buried wordline during the fabrication process. In addition, the materials and processes used enable for formation of individual DRAM cells which have a buried bit line width which is 16 nm or less and a perpendicular buried wordline width which is 24 nm or less.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Chorng-Ping Chang, Er-Xuan Ping, Judon Tony Pan
  • Patent number: 8895400
    Abstract: A semiconductor device includes a semiconductor substrate having a cell region and a peripheral circuit region defined therein. A buried word line is disposed in the substrate in the cell region and has a top surface lower than top surfaces of cell active regions in the cell region. A gate line is disposed on the substrate in the peripheral circuit region. A word line interconnect is disposed in the substrate in the peripheral circuit region, the word line interconnect including a first portion contacting the buried word line and having a top surface lower than a top surfaces of the cell active regions and a second portion that is overlapped by and in contact with the gate line.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Yun-Gi Kim, Young-Woong Son, Bong-Soo Kim
  • Patent number: 8871574
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8786014
    Abstract: A vertical channel transistor array includes a plurality of embedded bit lines, a plurality of bit line contacts, a plurality of embedded word lines, and a current leakage isolation structure. An active area of a vertical channel transistor is defined by the semiconductor pillars. The embedded bit lines are disposed in parallel in a semiconductor substrate and extended in a column direction. Each of the bit line contacts is respectively disposed at a side of one of the embedded bit lines. The embedded word lines are disposed in parallel above the embedded bit lines and extended in a row direction. Besides, the embedded word lines and the semiconductor pillars in the same row are connected but spaced by a gate dielectric layer. The current leakage isolation structure is disposed at ends of the embedded bit lines to prevent current leakage between the adjacent bit line contacts.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 22, 2014
    Assignee: Powerchip Technology Corporation
    Inventor: Yukihiro Nagai
  • Patent number: 8698233
    Abstract: A method for fabricating a semiconductor memory apparatus is provided to minimize failure of the semiconductor memory apparatus and to secure a processing margin. The method also provides for minimizing the deterioration of an operating speed and the operational stability, and minimizing the increase of resistance occurring as a result of a reduced processing margin when forming a gate pattern in a peripheral region of the semiconductor memory apparatus. The method includes forming a connection pad in a peripheral region while forming a buried word line in a cell region, and forming a gate pattern in the peripheral region while forming a bit line in the cell region.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 15, 2014
    Assignee: SK Hynix Inc.
    Inventors: Hyoung Soon Yune, Joo Hong Jeong
  • Patent number: 8525270
    Abstract: The methods and structures described are used to prevent protrusion of contact metal (such as W) horizontally into gate stacks of neighboring devices to affect the work functions of these neighboring devices. The metal gate under contact plugs that are adjacent to devices and share the (or are connected to) metal gate is defined and lined with a work function layer that has good step coverage to prevent contact metal from extruding into gate stacks of neighboring devices. Only modification to the mask layout for the photomask(s) used for removing dummy polysilicon is involved. No additional lithographical operation or mask is needed. Therefore, no modification to the manufacturing processes or additional substrate processing steps (or operations) is involved or required. The benefits of using the methods and structures described above may include increased device yield and performance.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lee-Wee Teo, Ming Zhu, Chi-Ju Lee, Sheng-Chen Chung, Kai-Shyang You, Harry-Hak-Lay Chuang
  • Patent number: 8502291
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8431971
    Abstract: Crisscrossing spacers formed by pitch multiplication are used to form isolated features, such as contacts vias. A first plurality of mandrels are formed on a first level and a first plurality of spacers are formed around each of the mandrels. A second plurality of mandrels is formed on a second level above the first level. The second plurality of mandrels is formed so that they cross the first plurality of mandrels, when viewed in a top down view. A second plurality of spacers is formed around each of the second plurality of mandrels. The first and the second mandrels are selectively removed to leave a pattern of voids defined by the crisscrossing first and second pluralities of spacers. These spacers can be used as a mask to transfer the pattern of voids to a substrate. The voids can be filled with conductive material to form conductive contacts.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: April 30, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 8383515
    Abstract: The method of forming a wordline is provided in the present invention. The proposed method includes steps of: (a) providing a plurality of SASTIs with a plurality of first POLY cells deposited thereon; and (b) depositing a first fill-in material having a relatively high etching rate oxide-like material in the plurality of SASTIs and on each side wall of the plurality of first POLY cells.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: February 26, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Tuung Luoh, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen
  • Patent number: 8338253
    Abstract: A method for fabricating a semiconductor memory apparatus is provided to minimize failure of the semiconductor memory apparatus and to secure a processing margin. The method also provides for minimizing the deterioration of an operating speed and the operational stability, and minimizing the increase of resistance occurring as a result of a reduced processing margin when forming a gate pattern in a peripheral region of the semiconductor memory apparatus. The method includes forming a connection pad in a peripheral region while forming a buried word line in a cell region, and forming a gate pattern in the peripheral region while forming a bit line in the cell region.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 25, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyoung Soon Yune, Joo Hong Jeong
  • Patent number: 8309448
    Abstract: Provided is a method for forming a buried word line in a semiconductor device. The method includes forming a trench by etching a pad layer and a substrate, forming a conductive layer to fill the trench, planarizing the conductive layer until the pad layer is exposed, performing an etch-back process on the planarized conductive layer, and performing an annealing process in an atmosphere of a nitride-based gas after at least one of the forming of the conductive layer, the planarizing of the conductive layer, and the performing of the etch-back process on the planarized conductive layer.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Sun-Hwan Hwang, Se-Aug Jang, Kee-Joon Oh, Soon-Young Park
  • Patent number: 8247860
    Abstract: A nonvolatile semiconductor memory device includes: a substrate; a stacked body with a plurality of dielectric films and electrode films alternately stacked therein, the stacked body being provided on the substrate and having a step in its end portion for each of the electrode films; an interlayer dielectric film burying the end portion of the stacked body; a plurality of semiconductor pillars extending in the stacking direction of the stacked body and penetrating through a center portion of the stacked body; a charge storage layer provided between one of the electrode films and one of the semiconductor pillars; and a plug buried in the interlayer dielectric film and connected to a portion of each of the electrode films constituting the step, a portion of each of the dielectric films in the center portion having a larger thickness than a portion of each of the dielectric films in the end portion.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 21, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Tadashi Iguchi
  • Patent number: 8134194
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode including metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 13, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8071449
    Abstract: A semiconductor storage device has a plurality of word lines formed with a predetermined interval on a semiconductor substrate, a selection transistor provided at an end portion of the plurality of word lines, a first insulating film formed so as to cover side surfaces of the word lines, a side surface of the selection transistor, and a surface of the semiconductor substrate between the word lines, a high-permittivity film formed on the first insulation film, a second insulating film formed so as to cover the upper surface of the word lines and the selection transistor, a first air-gap portion located between the word lines and surrounded by the high-permittivity film and the second insulating film, and a second air-gap portion formed via the first insulating film and the high-permittivity film at a sidewall portion, which opposes the selection transistor, of the word line adjacent to the selection transistor, an upper portion of the second air-gap portion being covered by the second insulating film.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Aoyama, Hisataka Meguro, Satoshi Nagashima
  • Patent number: 8039896
    Abstract: In a semiconductor memory device having a vertical channel transistor a body of which is connected to a substrate and a method of fabricating the same, the semiconductor memory device includes a semiconductor substrate including a plurality of pillars arranged spaced apart from one another, and each of the pillars includes a body portion and a pair of pillar portions extending from the body portion and spaced apart from each other. A gate electrode is formed to surround each of the pillar portions. A bitline is disposed on the body portion to penetrate a region between a pair of the pillar portions of each of the first pillars arranged to extend in a first direction. A wordline is disposed over the bitline, arranged to extend in a second direction intersecting the first direction, and configured to contact the side surface of the gate electrode. A first doped region is formed in the upper surface of each of the pillar portions of the pillar.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Kang-yoon Lee, Dong-gun Park, Bong-soo Kim, Seong-goo Kim
  • Patent number: 7968419
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    Type: Grant
    Filed: September 21, 2008
    Date of Patent: June 28, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, David R. Evans
  • Patent number: 7947607
    Abstract: A virtual ground array structure uses inversion bit lines in order to eliminate the need for implanted bit lines. As a result, the cell size can be reduced, which can provide greater densities and smaller packaging.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: May 24, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Chao-I Wu
  • Patent number: 7928504
    Abstract: A semiconductor memory device and a method for manufacturing the same are disclosed, which reduce parasitic capacitance generated between a storage node contact and a bit line of a high-integration semiconductor device. A method for manufacturing a semiconductor memory device includes forming a buried word line in an active region of a cell region, forming an insulation layer in the cell region and a lower electrode layer of a gate in a peripheral region so that a height of the insulation layer is substantially equal to that of the lower electrode layer, and providing a first conductive layer over the cell region and the peripheral region to form a bit line layer and an upper electrode layer.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Woong Choi
  • Patent number: 7906435
    Abstract: A semiconductor device includes at least two adjacent memory cell blocks, each of the memory cell blocks having a plurality of memory cell units, each of memory cell units having a plurality of electrically reprogrammable and erasable memory cells connected in series, a plurality of cell gates for selecting the plurality of memory cells within the two adjacent memory cell blocks, each of the plurality of cell gates being formed with roughly rectangular closed loops or roughly U shaped open loops, each of the loops being connected to a corresponding cell of the memory cells in a corresponding memory cell unit of the plurality of memory cell units within one of the two adjacent memory cell blocks and being connected to a corresponding memory cell of the memory cells in a corresponding memory cell unit of the plurality of memory cell units within the other memory cell block of the two adjacent memory cell blocks and a plurality of pairs of first and second selection gates for selecting the memory cell block, the
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Nobuyasu Nishiyama
  • Patent number: 7902573
    Abstract: A semiconductor device includes: a plurality of vertical MOS transistors sharing a gate electrode (2) of a first conductivity type; first semiconductor pillars (3, 4 and 5) with a gate insulating film (18) formed therearound, across the gate insulating film (18) the vertical MOS transistors facing the gate electrode; and a second semiconductor pillar (8) being of the first conductivity type which is the same as the conductivity type of the gate electrode and being in contact with the gate electrode at a portion thereof from which at least a part of the gate insulating film is removed, wherein potential supply (6) to the shared gate electrode (2) is effected through the second semiconductor pillar (8).
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 8, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Kiyonori Oyu
  • Patent number: 7821058
    Abstract: According to an aspect of the present invention, there is provided a nonvolatile semiconductor memory including: a columnar semiconductor; a charge storage insulating film including: a first insulating film formed around the columnar semiconductor, a charge storage film formed around the first insulating film, and a second insulating film formed around the charge storage film; an electrode extending two-dimensionally to surround the charge storage insulating film, the electrode having a groove; and a metal silicide formed on a sidewall of the groove.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Hideaki Aochi, Hiroyasu Tanaka, Yasuyuki Matsuoka, Yoshio Ozawa, Mitsuru Sato
  • Patent number: 7812399
    Abstract: The present invention provides a semiconductor device which includes a gate electrode shaped in the form of an approximately quadrangular prism, including a laminated body of a gate oxide layer, a gate polysilicon layer and a gate silicon nitride layer provided in a first conduction type substrate, a second conduction type implantation region provided in a region outside the gate electrode, a sidewall that exposes a top face of the gate electrode and is formed by laminating a sidewall mask oxide layer covering side surfaces, an electron storage nitride layer and a sidewall silicon oxide layer, and a source/drain diffusion layer provided in the first conduction type substrate exposed from the gate electrode and the sidewall.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: October 12, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Takashi Yuda
  • Patent number: 7768061
    Abstract: A self-aligned 1 bit silicon oxide nitride oxide silicon (SONOS) cell and a method of fabricating the same has high uniformity between adjacent SONOS cells, since the lengths of nitride layers do not vary due to misalignment when etching word lines of the 1 bit SONOS cells. An insulating layer pattern that forms a sidewall of a word line is formed on a semiconductor substrate, and a word line for a gate is formed on the sidewall thereof. Etching an ONO layer using a self-aligned etching spacer provides uniform adjacent SONOS cells.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 3, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-seog Jeon, Seung-beom Yoon, Yong-tae Kim
  • Patent number: 7713875
    Abstract: The present invention facilitates memory devices and operation of dual bit and single bit memory devices by providing systems and methods that employ a salicide block to vary and equalize the resistance of a memory array during fabrication. The present invention includes utilizing a common charge dissipation region to mitigate charge-loss by providing protection against charging up of the various lines as a result of further plasma etching processes. The salicide block equalizes the charge dissipation in the memory array by providing each wordline path with a varied amount of resistance in addition to the total path resistance. Because the charge protection provided to each wordline otherwise varies depending on the resistance path to a common discharge element, a salicide block for resistance equalization provides greater reliability and predictability during processing. Other such shapes conducive for any desired resistance path fall within the scope of the invention.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: May 11, 2010
    Assignee: Spansion LLC
    Inventors: Michael Brennan, Yi He, Mark Randolph, Ming-Sang Kwan
  • Patent number: 7709299
    Abstract: An embodiment of the present invention is method of forming an array of 2 transistor DRAM cells organized in rows and columns in which the rows represent words and columns represent bits of the words, each bit column having a pair of balanced, true and complement bit lines, the bit lines being connected in a hierarchical bit line structure, comprising at least one local bit line pair and one global bit line pair, a sensing circuit connected to the global bit line pair detects a differential voltage transition on either line during a read access and provides a sensing strobe signal.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Richard E. Matick, Stanley E. Schuster
  • Patent number: 7608514
    Abstract: A metal/semiconductor/metal (MSM) binary switch memory device and fabrication process are provided. The device includes a memory resistor bottom electrode, a memory resistor material over the memory resistor bottom electrode, and a memory resistor top electrode over the memory resistor material. An MSM bottom electrode overlies the memory resistor top electrode, a semiconductor layer overlies the MSM bottom electrode, and an MSM top electrode overlies the semiconductor layer. The MSM bottom electrode can be a material such as Pt, Ir, Au, Ag, TiN, or Ti. The MSM top electrode can be a material such as Pt, Ir, Au, TiN, Ti, or Al. The semiconductor layer can be amorphous Si, ZnO2, or InO2.
    Type: Grant
    Filed: September 15, 2007
    Date of Patent: October 27, 2009
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Tingkai Li
  • Patent number: 7595262
    Abstract: A manufacturing method for an integrated semiconductor structure and a corresponding semiconductor structure is disclosed. The method includes forming a peripheral circuitry in a peripheral device region, wherein the peripheral circuitry includes a peripheral transistor at least partially formed in the semiconductor substrate and having a first gate dielectric formed in a first high temperature process step. The method further includes forming a plurality of memory cells in a memory cell region, each of said memory cells including an access transistor at least partially formed in a semiconductor substrate and having a second gate dielectric formed in a second high temperature process step and having a metallic gate conductor. The first and second high temperature process steps are performed before a step of forming the metallic gate conductor.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: September 29, 2009
    Assignee: Qimonda AG
    Inventor: Till Schlösser
  • Patent number: 7592218
    Abstract: A vertical transistor forming method includes forming a first pillar above a first source/drain and between second and third pillars, providing a first recess between the first and second pillars and a wider second recess between the first and third pillars, forming a gate insulator over the first pillar, forming a front gate and back gate over opposing sidewalls of the first pillar by depositing a gate conductor material within the first and second recesses and etching the gate conductor material to substantially fill the first recess, forming the back gate, and only partially fill the second recess, forming the front gate, forming a second source/drain elevationally above the first source/drain, and providing a transistor channel in the first pillar. The channel is operationally associated with the first and second sources/drains and with the front and back gates to form a vertical transistor configured to exhibit a floating body effect.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 22, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Kris K. Brown
  • Patent number: 7575992
    Abstract: A method of forming a micro pattern in a semiconductor device is disclosed. An oxide film mask is divided into a cell oxide film mask and a peri oxide film mask. Therefore, a connection between the cell and the peri region can be facilitated. A portion of a top surface of a first oxide film pattern between a region in which a word line will be formed and a region in which a select source line will be formed is removed. Accordingly, the space can be increased and program disturbance in the region in which the word line will be formed can be prevented. Furthermore, a pattern having a line of 50 nm and a space of 100 nm or a pattern having a line of 100 nm and a space of 50 nm, which exceeds the limitation of the ArF exposure equipment, can be formed using a pattern, which has a line of 100 nm and a space of 200 nm and therefore has a good process margin and a good critical dimension regularity.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 18, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Woo Yung Jung, Jong Hoon Kim
  • Patent number: 7470586
    Abstract: According to embodiments of the invention, a bit line interlayer insulating layer is placed over a semiconductor substrate. A plurality of parallel bit line patterns are placed on the bit line interlayer insulating layer. Each of the bit line patterns has a bit line and a bit line capping layer pattern stacked thereon. Bit line spacers covers side walls of the bit line patterns, buried holes penetrate predetermined regions of the bit line interlayer insulating layer between the bit line patterns. And a plurality of storage node contact plugs are placed between the bit line patterns surrounding by the bit line spacers. At this time, the storage node contact plugs fill the buried holes.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: December 30, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jun-Shik Bae
  • Patent number: 7446010
    Abstract: A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: November 4, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, David R. Evans
  • Patent number: 7427531
    Abstract: Phase change memory devices having cell diodes and related methods are provided, where the phase change memory devices include a semiconductor substrate of a first conductivity type and a plurality of parallel word lines disposed on the semiconductor substrate, the word lines have a second conductivity type different from the first conductivity type and have substantially flat top surfaces, a plurality of first semiconductor patterns are one-dimensionally arrayed on each word line along a length direction of the word line, the first semiconductor patterns have the first conductivity type or the second conductivity type, second semiconductor patterns having the first conductivity type are stacked on the first semiconductor patterns, an insulating layer is provided on the substrate having the second semiconductor patterns, the insulating layer fills gap regions between the word lines, gap regions between the first semiconductor patterns and gap regions between the second semiconductor patterns, a plurality of p
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: September 23, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Yeong Cho, Du-Eung Kim, Yun-Seung Shin, Hyun-Geun Byun, Sang-Beom Kang, Beak-Hyung Cho, Choong-Keun Kwak