Having Bonding Material Between Chip And Die Pad (epo) Patents (Class 257/E23.04)
  • Patent number: 11935938
    Abstract: Devices, such as transistors, that use bismuth to create ohmic contacts are provided, as are methods of manufacturing the same. The transistors, such as field-effect transistors, can include one or more two-dimensional materials, and electrical contact areas can be created on the two-dimensional material(s) using bismuth. The bismuth can help to provide energy-barrier free, ohmic contacts, and the resulting devices can have performance levels that rival or exceed state-of-the-art devices that utilize three-dimensional materials, like silicon. The two-dimensional materials can include transition metal dichalcogenides, such as molybdenum disulfide.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: March 19, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Pin-Chun Shen, Jing Kong
  • Patent number: 11024598
    Abstract: A metal sintered bonding body bonds a substrate and a die. In the metal sintered bonding body, at least a center part and corner part of a rectangular region where the metal sintered bonding body faces the die have a low-porosity region whose porosity is lower than an average porosity of the rectangular region. The low-porosity region is located within a strip-shaped region whose central lines are diagonal lines of the rectangular region.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: June 1, 2021
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Tetsu Takemasa, Minoru Ueshima
  • Patent number: 9041226
    Abstract: In various embodiments, a chip arrangement is provided. The chip arrangement may include a chip carrier and a chip mounted on the chip carrier. The chip may include at least two chip contacts and an insulating adhesive between the chip and the chip carrier to adhere the chip to the chip carrier. The at least two chip contacts may be electrically coupled to the chip carrier.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 26, 2015
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Rainer Steiner, Edward Fuergut, Khalil Hosseini, Georg Meyer-Berg, Joachim Mahler
  • Patent number: 9024424
    Abstract: A stacked electronic component comprises a first electronic component adhered on a substrate via a first adhesive layer, and a second electronic component adhered by using a second adhesive layer thereon. The second adhesive layer has a two-layer structure formed by a same material and having different modulus of elasticity. The second adhesive layer of the two-layer structure has a first layer disposed at the first electronic component side and a second layer disposed at the second electronic component side. The first layer softens or melts at an adhesive temperature. The second layer maintains a layered shape at the adhesive temperature. According to the stacked electronic component, occurrences of an insulation failure and a short circuiting are prevented, and in addition, a peeling failure between the electronic components, an increase of a manufacturing cost, and so on, can be suppressed.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: May 5, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Naoyuki Komuta, Hideo Numata
  • Patent number: 8987880
    Abstract: In various embodiments, a chip module may include a first chip; and a leadframe with a first leadframe area and a second leadframe area, wherein the first leadframe area is electrically insulated from the second leadframe area; wherein the first chip is arranged at least partially on the first leadframe area and at least partially on the second leadframe area.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Infineon Technologies AG
    Inventors: Josef Hoeglauer, Ralf Otremba, Xaver Schloegel
  • Patent number: 8975176
    Abstract: The amount of gold required for bonding a semiconductor die to an electronic package is reduced by using a sheet preform tack welded to the package prior to mounting the die. The preform, only slightly larger than a semiconductor die to be attached to the package, is placed in the die bond location and tack welded to the package at two spaced locations.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 10, 2015
    Assignee: Materion Corporation
    Inventor: Ramesh Kothandapani
  • Patent number: 8936971
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a package paddle group having a first package paddle electrically isolated from a second package paddle; attaching an integrated circuit device on the first package paddle and the second package paddle; forming a standoff terminal adjacent the package paddle group and electrically connected to the integrated circuit device; connecting a paddle connector to the integrated circuit device and the first package paddle and another paddle connector to the integrated circuit device and the second package paddle; and forming an encapsulation over the integrated circuit device, the first package paddle, the second package paddle, and the standoff terminal, the encapsulation exposing a portion of the first package paddle, the second package paddle, and the standoff terminal.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: January 20, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Zigmund Ramirez Camacho, Emmanuel Espiritu, Henry Descalzo Bathan
  • Patent number: 8912635
    Abstract: A method of manufacturing an electronic device is provided. The method comprises providing a carrier sheet, etching the lead frame material sheet to form a recess on a first surface of the lead frame material sheet, placing an electronic chip into the recess of the carrier sheet, and thereafter, selectively etching a second surface of the lead frame material sheet, the second surface being opposite to the first surface.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Infineon Technologies AG
    Inventors: Chip King Tan, Boon Huan Gooi
  • Patent number: 8907471
    Abstract: A semiconductor device is described advantageously making use of the interposer principle. The semiconductor device comprises at least one semiconductor die, a window substrate being an inorganic substrate comprising at least one window-shaped cavity for mounting the at least one semiconductor die, the window substrate having interconnect structures. Furthermore, the at least one semiconductor die is positioned inside the at least one cavity and is connected to the interconnect structures, providing connections to another level of assembly or packaging of the semiconductor device. The invention also relates to a method of manufacturing such a semiconductor device.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 9, 2014
    Assignee: IMEC
    Inventors: Eric Beyne, Paresh Limaye
  • Patent number: 8779565
    Abstract: A method of manufacture of an integrated circuit mounting system includes: providing a die paddle with a component side having a die mount area and a recess with more than one geometric shape; applying an adhesive on the die mount area and in a portion of the recess; and mounting an integrated circuit device with an inactive side directly on the adhesive.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 15, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Joon Han, Byung Tai Do, Arnel Senosa Trasporto, Henry Descalzo Bathan
  • Patent number: 8736078
    Abstract: A chip package includes a PCB, a connecting pad fixed on a surface of the PCB and a chip fixed on the connecting pad. The connecting pad includes a first metal film on its surface facing away from the PCB. The chip includes a second metal film formed on its surface opposite to the PCB. The first and the second metal are connected to each other via a eutectic manner.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 27, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8735223
    Abstract: A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Wei Gao, Zhiwei Gong, Dehong Ye, Huchang Zhang
  • Patent number: 8723337
    Abstract: A semiconductor chip (101) with bond pads (110) on a substrate (103) with rows and columns of regularly pitched metal contact pads (131). A zone comprises a first pair (131a, 131b) and a parallel second pair (131c, 131d) of contact pads, and a single contact pad (131e) for ground potential; staggered pairs of stitch pads (133) connected to respective pairs of adjacent contact pads by parallel and equal-length traces (132a, 132b, etc.). Parallel and equal-length bonding wires (120a, 120b, etc.) connect bond pad pairs to stitch pad pairs, forming differential pairs of parallel and equal-length conductor lines. Two differential pairs in parallel and symmetrical position form a transmitter/receiver cell for conducting high-frequency signals.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 13, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Matthew D. Romig, Marie-Solange Anne Milleron, Souvik Mukherjee
  • Patent number: 8704238
    Abstract: A three-dimensional integrated circuit device includes a first substrate having a first crystal orientation comprising at least one or more PMOS devices thereon and a first dielectric layer overlying the one or more PMOS devices. The three-dimensional integrated circuit device also includes a second substrate having a second crystal orientation comprising at least one or more NMOS devices thereon; and a second dielectric layer overlying the one or more NMOS devices. An interface region couples the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: April 22, 2014
    Assignee: mCube Inc.
    Inventor: Xiao (Charles) Yang
  • Patent number: 8674521
    Abstract: A semiconductor device package is provided. The semiconductor device package includes a package body; a plurality of electrodes including a first electrode on the package body; a paste member on the first electrode and including inorganic fillers and metal powder; and a semiconductor device die-bonded on the paste member, wherein a die-bonding region of the first electrode includes a paste groove having a predetermined depth and the paste member is formed in the paste groove.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: March 18, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Choong Youl Kim
  • Patent number: 8674520
    Abstract: A method for manufacturing a semiconductor device includes placing a sheet containing a fibrous material having at least one outer surface having a metal on a semiconductor chip-mounting region of a substrate; forming a bonding layer containing a fusible metal on the semiconductor chip-mounting region; placing a semiconductor chip on the semiconductor chip-mounting region; and bonding the semiconductor chip to the semiconductor chip-mounting region with the fusible metal-containing bonding layer by heating.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Limited
    Inventors: Nobuhiro Imaizumi, Keishiro Okamoto, Keiji Watanabe
  • Patent number: 8614118
    Abstract: Provided is a component bonding method of bonding a semiconductor component having a thermosetting adhesive layer formed on a lower surface thereof to a circuit board having a resin layer formed on a surface thereof. In the method, wettability is improved by surface modification that performs a plasma treatment on a resin surface of the circuit board, the semiconductor component is held by a component holding nozzle having a heater, the adhesive layer is contacted to the surface-modified resin layer, and the adhesive layer is heated and thermally cured by the heater. Thereby, adhesion between the adhesive layer and the resin surface is improved, and thus the component holding nozzle can be separated from the semiconductor component without wait for completely hardening the adhesive layer. Accordingly, it is possible to improve productivity in the heat pressing process by reducing the time required for the component bonding.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: December 24, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Haji, Mitsuru Ozono, Teruaki Kasai, Masaru Nonomura
  • Patent number: 8513810
    Abstract: There is provided a semiconductor device and a manufacturing method therefor, the semiconductor device requiring flip-chip mounting of a fine pitch electrode, wherein the fine electrode is easily manufactured, resin sealing is not required, and reliability can be improved. In the semiconductor device, one or more LSI chips (1), having an insulating layer (3) surface and an electrode (2) surface on one side, and a substrate (4), having an insulating layer (6) surface and an electrode (5) surface on one side, are bonded by having surfaces of the electrodes and surfaces of the insulating layers face each other via a bonding layer (7) made in a thin film form, in a region excluding the surfaces of the electrodes (2, 5) and the surfaces of the insulating layers (3, 6) in areas surrounding the electrodes.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 20, 2013
    Assignee: NEC Corporation
    Inventor: Masamoto Tago
  • Patent number: 8471386
    Abstract: A junction body has a first member and a second member each of which is provided with a joining surface whose main component is copper. A solder member containing, in a tin-base solder material, a three-dimensional web structure whose main component is copper is provided between the first member and the second member. A copper-tin alloy whose average thickness is 2 ?m or more but 20 ?m or less is provided between the joining surfaces and the three-dimensional web structure.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Yamada, Hiroshi Osada, Yuji Yagi, Tadafumi Yoshida
  • Patent number: 8399997
    Abstract: In one embodiment, a method includes attaching a film to cover a first portion of a first semiconductor die. The first semiconductor die is attached, using the tape, to a lead frame using a first bonding method. The first bonding method places the film between the lead frame and the semiconductor die. A second semiconductor die is attached to the lead frame using a second bonding method. The second bonding method bonds the lead frame and the semiconductor die. The first semiconductor device and the second semiconductor device are encapsulated into a semiconductor package.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 19, 2013
    Assignee: Shanghai Kalhong Electronic Company Limited
    Inventors: Jiangyuan Zhang, Elite Lee, Dana Liu
  • Patent number: 8390131
    Abstract: A semiconductor device that includes an electrode of one material and a conductive material of lower resistivity formed over the electrode and a process for fabricating the semiconductor device.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 5, 2013
    Assignee: International Rectifier Corporation
    Inventors: Sven Fuchs, Mark Pavier
  • Patent number: 8368234
    Abstract: A semiconductor device is provided in which a semiconductor chip is bonded to a substrate with a sufficiently increased bonding strength and cracking is assuredly prevented which may otherwise occur due to heat shock, heat cycle and the like. The semiconductor device includes a semiconductor chip and a substrate having a bonding area to which the semiconductor chip is bonded via a metal layer. The metal layer includes an Au—Sn—Ni alloy layer and a solder layer provided on the Au—Sn—Ni alloy layer. Undulations are formed in an interface between the Au—Sn—Ni alloy layer and the solder layer.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 5, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Motoharu Haga, Yasumasa Kasuya, Hiroaki Matsubara
  • Publication number: 20120286399
    Abstract: In one embodiment, a method is provided for packaging a semiconductor die. A leadframe having a die-pad and one or more lead-pads is placed (502) on an assembly surface. The die-pad has a base portion (202) resting on the assembly surface, an upper portion (204) on the base portion extending laterally from the base portion, and a support arm (208) extending from and supporting the upper portion of die-pad. A semiconductor die (206) is wirebonded (504) to a top surface of the upper portion of the die-pad. The semiconductor die is wirebonded (506) to the one or more lead-pads (210). The semiconductor die and leadframe are encased (508) in a package material (802). The package material fills a space between the upper portion of the die-pad and the assembly surface. A portion of the support arm located in a cutting lane is removed (512).
    Type: Application
    Filed: May 8, 2012
    Publication date: November 15, 2012
    Applicant: NXP B.V.
    Inventors: Tim BOETTCHER, Sven WALCZYK, Fei-Ying WONG, Pompeo UMALI, Roelf Anco Jacob GROENHUIS, Bernd ROHRMOSER, ChiFai LEE, Markus Bjoern Erik NOREN, PaulPangHing TSANG
  • Patent number: 8299482
    Abstract: Embodiments of light sources are disclosed herein. An embodiment of the light source comprises a lead frame having a first side and a second side. A hole extends through the lead frame between the first side and the second side. An adhesive is located in the hole and extends beyond the hole, wherein the adhesive extends beyond the diameter of the hole on the first side and the second side of the first lead frame. A light emitter adhered to the adhesive proximate the first side of the first lead frame.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 30, 2012
    Assignee: Intellectual Discovery Co., Ltd.
    Inventors: Keat Chuan Ng, Lig Yi Yong, Kheng Leng Tan
  • Patent number: 8283756
    Abstract: An electronic component includes a metal substrate, a semiconductor chip configured to be attached to the metal substrate, and a buffer layer positioned between the metal substrate and the semiconductor chip configured to mechanically decouple the semiconductor chip and the metal substrate. The buffer layer extends across less than an entire bottom surface of the semiconductor chip.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: October 9, 2012
    Assignee: Infineon Technologies AG
    Inventors: Ivan Galesic, Joachim Mahler, Alexander Heinrich, Khalil Hosseini
  • Publication number: 20120241926
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a lead; mounting an integrated circuit adjacent the lead; molding an encapsulation encapsulating the lead and the integrated circuit; and forming a leveling standoff protruded from the same surface of the encapsulation as the lead with the integrated circuit between the lead and the leveling standoff electrically isolated from the lead and the integrated circuit.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Patent number: 8252633
    Abstract: The semiconductor assembly includes a first subassembly having a heat sink. Solder material is disposed on the exposed portion of a first surface of heat sink. A power semiconductor die is located on the first surface of the heat sink and is thermally coupled thereto by the solder material. A packaging patterned polymer layer is disposed on a second surface of the heat sink opposing the first surface and defines an interior surface portion of the heat sink. A semiconductor package is provided in which the first subassembly, solder material and die are located such that the interior surface portion of the second surface of the heat sink is not enclosed by the semiconductor package.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: August 28, 2012
    Assignee: Vishay General Semiconductor LLC
    Inventors: Wan-Lan Chiang, Kuang Hann Lin, Chih-Ping Peng
  • Patent number: 8236577
    Abstract: A method for fabricating an integrated electronic compass and circuit system. The fabrication method begins with providing a semiconductor substrate comprising a surface region. One or more CMOS integrated circuits are then formed on one or more portions of the semiconductor substrate. Once the CMOS circuits are formed, a thickness of dielectric material is formed overlying the one or more CMOS integrated circuits. A substrate is then joined overlying the thickness of the dielectric material. Once joined, the substrate is thinned to a predetermined thickness. Following the thinning process, an electric compass device is formed within one or more regions of the predetermined thickness of the substrate. Other mechanical devices or MEMS devices can also be formed within one or more regions of the thinned substrate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: August 7, 2012
    Assignee: MCube Inc.
    Inventors: George Hsu, Xiao “Charles” Yang
  • Publication number: 20120133042
    Abstract: A mounting structure of chip comprises a substrate having a base, a chip on the upper surface of the base, and adhesive agents which bonds the base and the first chip. The adhesive agent is applied to the upper surface of the base. The chip has a rectangular shape to have a width and a length, and is bonded at its lower surface to the base. The adhesive agents comprises the first adhesive agent, the second adhesive agent, and the third adhesive agent which are disposed on the three spots of the upper surface of the base, respectively. The three spots on the base are located on vertexes of a triangle. The first chip is bonded to the base by only the first adhesive agent, the second adhesive agent, and the third adhesive agent.
    Type: Application
    Filed: May 21, 2009
    Publication date: May 31, 2012
    Applicant: Panasonic Electric Works Co., Ltd.
    Inventors: Shintarou Hayashi, Mitsuhiko Ueda, Yoshiharu Sanagawa, Takamasa Sakai
  • Patent number: 8188579
    Abstract: In accordance with the present invention, there is provided a semiconductor package (e.g., a QFP package) including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package. More particularly, the semiconductor package includes a generally planar die pad or die paddle defining multiple peripheral edge segments. In addition, the semiconductor package includes a plurality of leads. Some of these leads include bottom surface portions which, in the completed semiconductor package, are exposed and at least partially circumvent the die pad, with other leads including portions which protrude from respective side surfaces of a package body in the completed semiconductor package. The semiconductor package also includes one or more power bars and/or one or more ground rings which are integral portions of the original leadframe used to fabricate the same.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 29, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Gi Jeong Kim, Yeon Ho Choi
  • Publication number: 20120074544
    Abstract: A semiconductor device includes, a lead frame having a die pad and a plurality of leads each disposed around the die pad, a semiconductor element rested on the die pad of the lead frame, and bonding wires for electrically interconnecting the lead of the lead frame and the semiconductor element. The lead frame, the semiconductor element, and the bonding wires are sealed with a sealing resin section. The sealing resin section includes a central region provided over and around the semiconductor device, and a marginal region provided in the periphery of the central region. Thickness of the central region is greater than that of the marginal region.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 29, 2012
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventors: Masachika MASUDA, Koji TOMITA, Tadashi OKAMOTO, Yasunori TANAKA, Hiroshi OHSAWA, Kazuyuki MIYANO, Atsushi KURAHASHI, Hiromichi SUZUKI
  • Patent number: 8115286
    Abstract: An integrated circuit (IC) device includes a lead frame having a first and a second opposing surface and a plurality of lead fingers. A first die including a signal processor is mounted on the first surface of the lead frame while a second die is mounted on the second surface of the lead frame. The second die includes at least one sensor that senses at least one non-electrical parameter and has at least one sensor output that provides a sensing signal for the parameter. The sensor output is coupled to the signal processor for processing the sensing signal.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: February 14, 2012
    Assignee: Honeywell International Inc.
    Inventors: Wenwei Zhang, Len Muslek, Jamie Boyd, Mark Nesbitt, Martyn Dalziel
  • Patent number: 8084861
    Abstract: Connection structure (5) for attaching a semiconductor chip (2) to a metal substrate (4) is provided which has a plurality of electrically conducting layers (11, 12, 13, 14) arranged in a stack. The stack has a contact layer (11) for providing an ohmic contact to a semiconductor chip (2), at least one mechanical decoupling layer (12) for mechanically decoupling the semiconductor chip (2) and the metal substrate (4), at least one diffusion barrier layer (13) and a diffusion solder layer (14) for providing a diffusion soldered mechanical bond and an electrical connection to a metal substrate (4). The mechanical decoupling layer (12) is positioned in the stack between the diffusion barrier layer (13) and the contact layer (11).
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: December 27, 2011
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Publication number: 20110298116
    Abstract: An object of the present invention is to improve the quality control of a semiconductor device. By forming an inscription comprising a culled or pixel skipping pattern of dimples on the upper surface of a die pad in a QFN, it is possible to confirm the inscription by X-ray inspection or the like even after individuation and specify a cavity of a resin molding die. Further, it is possible to specify the position of a device region in a lead frame. As a result, when a defect appears, it is possible to sort a defective QFN by appearance inspection and improve quality control in the assembly of a QFN.
    Type: Application
    Filed: May 28, 2011
    Publication date: December 8, 2011
    Inventors: Shinya MIZUSAKI, Kazuya Fukuhara
  • Patent number: 8071398
    Abstract: The present invention relates to integrating an inertial mechanical device on top of an IC substrate monolithically using IC-foundry compatible processes. The IC substrate is completed first using standard IC processes. A thick silicon layer is added on top of the IC substrate. A subsequent patterning step defines a mechanical structure for inertial sensing. Finally, the mechanical device is encapsulated by a thick insulating layer at the wafer level. Compared with the incumbent bulk or surface micromachined MEMS inertial sensors, vertically monolithically integrated inertial sensors provided by embodiments of the present invention have one or more of the following advantages: smaller chip size, lower parasitics, higher sensitivity, lower power, and lower cost.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 6, 2011
    Assignee: MCube Inc.
    Inventor: Xiao (Charles) Yang
  • Patent number: 8067826
    Abstract: A metal tab die attach paddle (DAP) disposed between the lead frame and a power device die in a power device package reduces the stress exerted on the semiconductor power device die caused by the different coefficients of thermal expansion (CTE) of the semiconductor power device die and the lead frame. In addition the power device package substantially prevents impurities from penetrating into the power device package by increasing the surface creepage distance of a sealant resulting from the metal tab DAP and an optional swaging of the lead frame.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Joon-Seo Son, O-seob Jeon, Taek-keun Lee, Byoung-ok Lee
  • Patent number: 8058719
    Abstract: A microelectronic device including a microelectronic circuit and at least one planar flexible lead. These planar flexible leads are adapted to bend and flex during mechanical stress allow direct mounting of the device to a member, and withstand extreme thermal cycling, such as ?197° C. to +150° C. such as encountered in space.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: November 15, 2011
    Inventor: Tracy Autry
  • Patent number: 8053281
    Abstract: A method is provided for forming a microelectronic package at a wafer level. Such method can include providing a semiconductor wafer having a surface with a pattern of electrical contacts thereon. An interposer component can be provided which has a compliant dielectric layer bonded to a conductive layer. A pattern of holes can be formed through the compliant dielectric layer and the conductive layer which corresponds to the pattern of electrical contacts. The compliant dielectric layer can be contacted with the semiconductor wafer surface so that the pattern of holes is in an aligned position with the pattern of contacts and the compliant dielectric layer and the semiconductor wafer surface then bonded in the aligned position to unite the semiconductor wafer and the interposer component to form a wafer level semiconductor package. The wafer level semiconductor package can be diced to form individual semiconductor chip packages.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 8, 2011
    Assignee: Tessera, Inc.
    Inventors: Kenneth Allen Honer, Belgacem Haba, David Ovrutsky, Charles Rosenstein, Guilian Gao
  • Patent number: 8039364
    Abstract: An adhesive layer of which thickness is over 25 ?m and a dicing tape are laminated on a rear surface of a semiconductor wafer. The semiconductor wafer is cut together with a part of the adhesive layer by using a first blade of which cutting depth reaches the adhesive layer. The adhesive layer is cut together with a part of the dicing tape by using a second blade of which cutting depth reaches the dicing tape and of which width is narrower than the first blade. A semiconductor element sectioned by cutting the semiconductor wafer with the adhesive layer is picked up from the dicing tape, and is adhered on another semiconductor element or a circuit board.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 18, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Tadanobu Okubo, Shigetaka Onishi
  • Publication number: 20110227207
    Abstract: The present invention is directed to a lead-frame having a stack of semiconductor dies with interposed metalized clip structure. Level projections extend from the clip structure to ensure that the clip structure remains level during fabrication.
    Type: Application
    Filed: June 18, 2010
    Publication date: September 22, 2011
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaotian Zhang, Yan Xun Xue, Anup Bhalla, Jun Lu, Kai Liu, Yueh-Se Ho, John Amato
  • Patent number: 8018042
    Abstract: A microelectronic device including a microelectronic circuit and at least one planar flexible lead. These planar flexible leads are adapted to bend and flex during mechanical stress, allowing direct mounting of the device to a member and able withstand extreme thermal cycling between ?20° C. to +80° C. encountered in terrestrial applications. Advantageously, the microelectronic device is adapted to be both weldable and solderable. The invention may comprise a solar cell diode, which is flexible and so thin that it can be affixed directly to the solar panel proximate the solar cell.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: September 13, 2011
    Assignee: Microsemi Corporation
    Inventor: Tracy Autry
  • Patent number: 8008674
    Abstract: A light emitting device has a mount with a protruding portion that has an element mounting surface on which a light emitting element is mounted and a first lead and a second lead are exposed. The light emitting element has a first electrode and a second electrode that are electrically connected to the first lead and the second lead, respectively.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 30, 2011
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Mitsuhiro Nawashiro, Hiroyuki Tajima, Hisao Yamaguchi
  • Patent number: 7982293
    Abstract: A lead frame assembly includes at least one die paddle. The die paddle includes a first landing area for receiving a first semiconductor chip and a second landing area for receiving a second semiconductor chip. One or more steps are provided between the first landing area and the second landing area.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies AG
    Inventors: Wei Kee Chan, Weng Shyan Aik
  • Patent number: 7948091
    Abstract: A mounting structure for a semiconductor element is disclosed. The semiconductor element is bonded to a die pad through an adhesive film, which is formed by applying a predetermined amount of a paste adhesive onto the surface of the die pad and placing the semiconductor element on the die pad so as to press and spread the adhesive between the lower surface of the semiconductor element and the die pad. A wire extends between the semiconductor element and a terminal pad disposed around the die pad. The die pad includes plural grooves in the surface thereof. Each of the grooves extends from the center of the die pad toward a peripheral edge of the die pad and ends at the inner side of the peripheral edge of the die pad.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 24, 2011
    Assignees: Fujitsu Component Limited, Fujitsu Limited
    Inventors: Yuko Ohse, Osamu Daikuhara, Hideki Takauchi
  • Publication number: 20110084408
    Abstract: An object of the present invention is to provide a thermosetting die-bonding film that is capable of preventing warping of an adherend by suppressing curing contraction of the film after die bonding, and a dicing die-bonding film. The present invention relates to a thermosetting die-bonding film for adhering and fixing a semiconductor element onto an adherend, comprising at least an epoxy resin and a phenol resin as a thermosetting component, wherein the ratio of the number of moles of epoxy groups to the number of moles of phenolic hydroxyl groups in the thermosetting component is in a range of 1.5 to 6.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 14, 2011
    Inventors: Yuichiro Shishido, Naohide Takamoto
  • Patent number: 7915710
    Abstract: A method of fabricating a semiconductor device includes providing a semiconductor substrate having an active surface, thinning the substrate by removing material from a second surface of the substrate opposite the active surface, bonding a metal carrier to the second surface of the thinned substrate, forming a via opening in the thinned substrate, forming a conductive member in the via opening, and patterning the metal carrier bonded to the second surface of the thinned substrate to form a metal pattern.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 29, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Ho Lee, Dong Ho Lee, Eun Chul Ahn, Yong Chai Kwon
  • Patent number: 7911067
    Abstract: A semiconductor package system includes: providing a lead frame with a lead; making a die support pad separately from the lead frame; attaching a semiconductor die to the die support pad through a die attach adhesive, the semiconductor die being spaced from the lead; and connecting a bonding pad on the semiconductor die to the lead using a bonding wire.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: March 22, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Dioscoro A. Merilo, Lionel Chien Hui Tay
  • Patent number: 7901992
    Abstract: A die bonding agent comprising (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the die bonding agent having a viscosity ratio, V1/V2, ranging (i) from 1.5 to 4 at a temperature of from room temperature to 50° C., and (ii) from 0.5 to less than 1.5 at a temperature at which the die bonding agent hardens in 0.5 hour to 1.5 hours, the viscosities being measured in 10 minutes after the die bonding agent is placed on a sample stage of a Brook Field viscometer, wherein V1 is a viscosity measured by stirring 0.5 ml of the die bonding agent with a No. 51 spindle at 0.5 rpm and V2 is a viscosity measured by stirring 0.5 ml of the die bonding agent with a No. 51 spindle at 5 rpm in the Brook Field viscometer.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 8, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Tsuyoshi Honda, Tatsuya Kanemaru
  • Publication number: 20110042792
    Abstract: A semiconductor device such as a field-effect transistor, improved to reduce device resistance, comprises a leadframe which includes a die paddle integral with a first set of leads and a second set of leads that is electrically isolated from the first set, a semiconductor die having its lower surface positioned on, and electrically connected to, the die paddle, and a conductive layer on the upper surface of the die. At least one electrically conductive wire, preferably plural wires, extend laterally across the second surface of the semiconductor die, are in electrical contact with the conductive layer, and interconnect corresponding second leads on opposite sides of the die. The plural wires may be welded to leads in succession by alternate ball and wedge bonds on each lead. The conductive layer may be an aluminized layer on which is formed a thin layer a solderable material, such as tin. A solder is deposited on the tin layer, enmeshing the wires.
    Type: Application
    Filed: November 8, 2010
    Publication date: February 24, 2011
    Applicant: LINEAR TECHNOLOGY CORPORATION
    Inventor: David Alan PRUITT
  • Patent number: 7888185
    Abstract: Semiconductor device assemblies and systems that include at least one semiconductor device assembly include two or more semiconductor devices stacked one over another. Conductive pathways that extend around at least one side of at least one of the semiconductor devices provide electrical communication between conductive elements of the semiconductor devices, and optionally, a substrate. The conductive pathways may include self-supporting conductive leads or conductive traces carried by a substrate. Methods for forming semiconductor device assemblies having more than one semiconductor device include bending or wrapping at least one conductive pathway around a side of at least one semiconductor device and providing electrical communication between semiconductor devices of the assembly through the conductive pathways.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: February 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee