Devices Being Arranged Next And On Each Other, I.e., Mixed Assemblies (epo) Patents (Class 257/E25.011)
  • Publication number: 20110248397
    Abstract: A semiconductor device includes at least one first component (5) (for example, a first integrated circuit), having a front face provided with electrical connection pads. The first component is embedded in a support layer (2) is a position such that the front face of the first component is not covered and lies parallel to a first face of the support layer. An intermediate layer (8) is formed on the front face of the first component and on the first face of the support layer. An electrical connection network (9) within the intermediate layer selectively connects to the electrical connection pads of the first component. The device further includes at least one second component (11) (for example, a second integrate circuit, having one face placed above the intermediate layer and provided with electrical connection pads selectively connected to the electrical connection network.
    Type: Application
    Filed: November 10, 2009
    Publication date: October 13, 2011
    Applicants: STMICROELECTRONICS S.R.L., STMICROELECTRONICS (GRENOBLE) SAS
    Inventors: Romain Coffy, Remi Brechignac, Carlo Cognetti De Martiis
  • Patent number: 8008759
    Abstract: A method for making a premolded clip structure is disclosed. The method includes obtaining a first clip and a second clip, and forming a molding material around the first clip comprising a first surface and the second clip comprising a second surface. The first surface of the first clip structure and the second surface of the second clip structure are exposed through the molding material, and a premolded clip structure is then formed.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: August 30, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Erwin Victor Cruz, Maria Cristina B. Estacio
  • Patent number: 7973401
    Abstract: A chip package comprises a first chip having a first side and a second side, wherein said first chip comprises a first pad, a first trace, a second pad and a first passivation layer at said first side thereof, an opening in said first passivation layer exposing said first pad, said first trace being over said first passivation layer, said first trace connecting said first pad to said second pad; a second chip having a first side and a second side, wherein said second chip comprises a first pad at said first side thereof, wherein said second side of said second chip is joined with said second side of side first chip; a substrate joined with said first side of said first chip or with said first side of said second chip; a first wirebonding wire connecting said second pad of said first chip and said substrate; and a second wirebonding wire connecting said first pad of said second chip and said substrate.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 5, 2011
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Shih-Hsiung Lin, Hsin-Jung Lo, Ying-Chih Chen, Chiu-Ming Chou
  • Patent number: 7911051
    Abstract: An electronic circuit arrangement includes a heat sink and a first circuit carrier which is thermally coupled to the heat sink, lies flat on the latter and is intended to wire electronic components of the circuit arrangement. Provided for at least one electronic component is a special arrangement which is associated with a considerably increased heat dissipation capability for the relevant component and, in addition, also affords further advantages in connection with changes in the population and/or line routing which might occur in practice. The important factor for this is that the component is arranged under a second circuit carrier which is held in a recess in the first circuit carrier. The recess passes through to the top side of the heat sink.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: March 22, 2011
    Assignee: Continental Automotive GmbH
    Inventors: Robert Ingenbleek, Erik Jung, Alfred Kolb, Andreas Rekofsky, Roland Schöllhorn, Daniela Wolf
  • Patent number: 7898067
    Abstract: Semiconductor packages that contain multiple dies and methods for making such packages are described. The semiconductor packages contain a leadframe with multiple dies and also contain a single premolded clip that connects the dies. The premolded clip connects the solderable pads of the source die and gate die to the source and gate of the leadframe via standoffs. The solderable pads on the dies and on the standoffs provide a substantially planar surface to which the premolded clip is attached. Such a configuration increases the cross-sectional area of the interconnection when compared to wirebonded connections, thereby improving the electrical (RDSon) and the thermal performance of the semiconductor package. Such a configuration also lowers costs relative to similar semiconductor packages that use wirebonded connections. Other embodiments are described.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: March 1, 2011
    Inventor: Armand Vincent C. Jereza
  • Patent number: 7892963
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an integrated circuit substrate having a non-active side and an active side; forming a recess in the integrated circuit substrate from the non-active side exposing a first contact and a second contact with the first contact and the second contact along the active side; forming a first via, having a first via extension extended beyond the non-active side and an opening at the non-active side, within the recess; forming a barrier liner within the opening with the barrier liner exposed beyond the non-active side; and forming a second via over the barrier liner and within the opening of the first via with the second via exposed beyond the non-active side.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: February 22, 2011
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Alfred Yeo, Kai Chong Chan
  • Patent number: 7796399
    Abstract: A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. The conductive patterns include a series of electrical contacts adjacent to one edge of the substrate. The substrate is bonded to two rigid frames, one on each opposite surface. Each substrate has a series of castellations on one edge that are aligned and electrically connected to the respective contacts on the substrate, preferably by soldering. The castellations can serve as a self-aligning mechanism when the module is brought into contact with a low-profile pin array, and the module may be held in place on a motherboard by guide rails in a socket that engages the edges perpendicular to the castellated edge of the module. The module may further be provided with protective heat spreading covers.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: September 14, 2010
    Assignee: Microelectronics Assembly Technologies, Inc.
    Inventors: James E. Clayton, Zakaryae Fathi
  • Patent number: 7786596
    Abstract: A sealed microelectronic structure which provides mechanical stress endurance and includes at least two chips being electrically connected to a semiconductor structure at a plurality of locations. Each chip includes a continuous bonding material along it's perimeter and at least one support column connected to each of the chips positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned over one another the support columns are in mating relation to each other. A seal between the at least two chips results from the overlapping relation of the chip to one another such that the bonding material and support columns are in mating relation to each other. Thus, the seal is formed when the at least two chips are mated together, and results in a bonded chip structure.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kuan-Neng Chen, Bruce K. Furman, Edmund J. Sprogis, Anna W. Topol, Cornelia K. Tsang, Matthew R. Wordeman, Albert M. Young
  • Patent number: 7741151
    Abstract: Integrated circuit packages are formed from a panel where the panel is separated by laser cutting the panel. In some embodiments, the panel is attached to the carrier for the formation of interconnect layers on the panel. Afterwards, the panel is cut with a laser while on the carrier to separate the integrated circuit packages. A tape or other type of structure may be attached to the top of the packages after the laser cutting. The integrated circuit packages are removed from the carrier by releasing the adhesive and removing the integrated circuit packages with the tape. The packages are then removed from the tape.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: June 22, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig S. Amrine, William H. Lytle
  • Patent number: 7714429
    Abstract: A semiconductor device that reduces the size and cost of functional macro chips used in a chip-on-chip configuration. Functional macro chips each include a macro region. The macro regions are formed adjacent to one another. A pad region for testing the functional macro chips is formed surrounding the macro regions.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 11, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Shouji Sakuma, Yoshiyuki Ishida
  • Patent number: 7663215
    Abstract: This publication discloses an electronic module and a method for manufacturing an electronic module, in which a component (6) is glued (5) to the surface of a conductive layer, from which conductive layer conductive patterns (14) are later formed. After gluing the component (6), an insulating-material layer (1), which surrounds the component (6) attached to the conductive layer, is formed on, or attached to the surface of the conductive layer. After the gluing of the component (6), feed-throughs are also made, through which electrical contacts can be made between the conductive layer and the contact zones (7) of the component. After this, conductive patterns (14) are made from the conductive layer, to the surface of which the component (6) is glued.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: February 16, 2010
    Assignee: Imbera Electronics Oy
    Inventors: Risto Tuominen, Petteri Palm
  • Patent number: 7642105
    Abstract: A manufacturing method makes memory modules from partially-good DRAM chips soldered to its substrate. The partially-good DRAM chips have a number of defective memory cells that is below a test threshold, such as 10%. Packaged DRAM chips are optionally pre-screened and considered to pass when the number of defects found is less than the test threshold. A defect table is created during testing and written to a serial-presence-detect electrically-erasable read-only memory (SPD-EEPROM) on the memory module. The memory module is finally tested on a target-system tester that reads the defect table during booting, and redirects memory access to defective memory locations identified by the defect table. The memory modules may be burned in or tested at various temperatures and voltages to increase reliability.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: January 5, 2010
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Mike Chen, David Sun
  • Patent number: 7576420
    Abstract: In a semiconductor integrated circuit device including a semiconductor integrated circuit board having a mask ROM area and an internal bus and a programmable ROM which is mounted on the semiconductor integrated circuit board and which has a plurality of ROM connecting terminals, the ROM connecting terminals are electrically connected to a plurality of bus connecting terminals connected to the internal bus, respectively. The bus connecting terminals may be disposed around periphery of the semiconductor integrated circuit board, may be formed on the mask ROM area, and may be disposed on the internal bus. In this event, the ROM connecting terminals and the bus connecting terminals are electrically connected to each other using wire bonding technique.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: August 18, 2009
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Yuichi Yuasa, Noriyoshi Watanabe
  • Patent number: 7566575
    Abstract: A method according to the present invention for producing a semiconductor-chip-mounting circuit 1 includes mainly three steps. In a first step, contacts 2 each in the form of a conical helix are formed by solder-plating the surface of connecting terminals 12 on a mounting circuit 10. In a second step, a continuity test is performed by pressing bumps 21 against the contacts 2. In a final third step, the contacts 2 pressed are melted to connect the connecting terminals 12 to the bumps 21. That is, the semiconductor chip 20 is connected to the mounting circuit 10 while maintaining a state in which they pass the continuity test, thereby significantly reducing the occurrence of defective continuity in the semiconductor-chip-mounting circuit 1.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: July 28, 2009
    Assignee: ALPS Electric Co., Ltd.
    Inventor: Shinji Murata
  • Patent number: 7544994
    Abstract: Disclosed are embodiments of a semiconductor structure with fins that are positioned on the same planar surface of a wafer and that have channel regions with different heights. In one embodiment the different channel region heights are accomplished by varying the overall heights of the different fins. In another embodiment the different channel region heights are accomplished by varying, not the overall heights of the different fins, but rather by varying the heights of a semiconductor layer within each of the fins. The disclosed semiconductor structure embodiments allow different multi-gate non-planar FETs (i.e., tri-gate or dual-gate FETs) with different effective channel widths to be formed of the same wafer and, thus, allows the beta ratio in devices that incorporate multiple FETs (e.g., static random access memory (SRAM) cells) to be selectively adjusted.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: June 9, 2009
    Assignee: International Business Machines Corporation
    Inventors: Dominic J. Schepis, Huilong Zhu
  • Patent number: 7518229
    Abstract: An apparatus is described incorporating an interposer having a cavity for a portion of an antenna structure, having conductor through vias, a top Si part having interconnection wiring and having pads for electrically mounting an integrated circuit chip thereon, wherein the top Si part mates with the interposer electrically and mechanically. The interposer and top Si part may be scaled to provide an array of functional units. The invention overcomes the problem of combining a high efficient antenna with integrated circuit chips in a Si package with signal frequencies from 1 to 100 GHz and the problem of shielding components proximate to the antenna and reduces strain arising from mismatching of TCEs.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: John Michael Cotte, Brian Paul Gaucher, Janusz Grzyb, Nils Deneke Hoivik, Christopher Vincent Jahnes, John Ulrich Knickerbocker, Duixian Liu, John Harold Magerlein, Chirag Suryakant Patel, Ullrich R. Pfeiffer, Cornelia Kang-I Tsang
  • Patent number: 7518227
    Abstract: Multiple integrated circuit devices in a stacked configuration that use a spacing element for allowing increased device density and increased thermal conduction or heat removal for semiconductor devices and the methods for the stacking thereof are disclosed.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: April 14, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 7514796
    Abstract: To prevent short-circuit due to contact of bonding wires each other and to make a semiconductor device compact. A semiconductor chip with a rectangular main surface may comprise: a first side composing the main surface; a second side opposed to the first side; a main electrode pad group composed of a plurality of main electrode pads, which plurality of main electrode pads is arranged on the main surface along the first side; a first electrode pad group composed of a plurality of first electrode pads, which plurality of first electrode pads is arranged between the first side and the main electrode pad group; a second electrode pad group composed of a plurality of second electrode pads, which plurality of second electrode pads is arranged on the main surface along the second side; a first interconnection connecting the main electrode pad with the first electrode pad; and a second interconnection connecting the main electrode pad with the second electrode pad.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 7, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Yoshihiro Saeki
  • Patent number: 7468551
    Abstract: A chip package for semiconductor chips is provided by the method of forming a chip package includes the steps of forming a printed circuit board with a window therethrough; forming semiconductor chip connections of one or more primary chips which overlie the window to the printed circuit board by solder connections, locating a suspended semiconductor chip within the window, and connecting the suspended semiconductor chip to one or more primary chips overlying the window in a chip-on-chip connection. A bypass capacitor is formed on the printed circuit board.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: December 23, 2008
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Bryan Peng
  • Patent number: 7453146
    Abstract: A structure and a manufacturing method providing improved coplanarity accommodation and heat dissipation in a multi-chip module. One of the components in a multi-chip module (MCM) is provided with a recess formed in its respective top surface; and a film is applied so as to cover the top surfaces of the components and so that any excess film can enter into the recess. The recess is preferably a peripheral groove. Then when molding material is injected, it may surround and seal the side surfaces of the components, while not substantially covering the top surfaces that are covered by the film. Since the recess receives any excess film material that may be present, it may prevent such excess film material from covering the respective side surfaces of the corresponding component and creating a void between the component and the molding material.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: November 18, 2008
    Assignee: International Rectifier Corporation
    Inventor: Christopher P. Schaffer
  • Patent number: 7436055
    Abstract: A package structure with a plurality of chips stacked on each other includes a substrate, a first chip and second chip. The substrate has a dielectric layer, a metal layer having a conducting trace area and a shielding area formed on the dielectric layer, and a solder mask formed on the conducting trace area. The first chip and the second chip are electrically connected to the conducting trace area and arranged on the solder mask respectively. The first chip has a package body connected with one surface of the metal layer for arranging the first chip between the solder mask and the shielding area of the metal layer. The second chip has a package body connected with the other surface of the metal layer for arranging the second chip between the solder mask and the shielding area of the metal layer.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: October 14, 2008
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Chieh-Chia Hu
  • Patent number: 7432585
    Abstract: A semiconductor device includes: a semiconductor substrate having an active face; a first electrode provided on or above the active face; an external connection terminal provided on or above the active face and electrically connected to the first electrode; and a connection terminal provided on or above the active face of the semiconductor substrate.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: October 7, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Publication number: 20080197470
    Abstract: A stacked electronic component comprises a first electronic component adhered on a substrate via a first adhesive layer, and a second electronic component adhered by using a second adhesive layer thereon. The second adhesive layer has a two-layer structure formed by a same material and having different modulus of elasticity. The second adhesive layer of the two-layer structure has a first layer disposed at the first electronic component side and a second layer disposed at the second electronic component side. The first layer softens or melts at an adhesive temperature. The second layer maintains a layered shape at the adhesive temperature. According to the stacked electronic component, occurrences of an insulation failure and a short circuiting are prevented, and in addition, a peeling failure between the electronic components, an increase of a manufacturing cost, and so on, can be suppressed.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 21, 2008
    Inventors: Atsushi Yoshimura, Naoyuki Komuta, Hideo Numata
  • Patent number: 7375421
    Abstract: Thinning and stacking are essential for circuit modules used for mobile devices of various kinds, smart cards, memory cards and the like. These demands make the manufacture of the circuit modules more complicated or less reliable due to delamination. A circuit module of a multilayer structure is provided which is formed by embedding semiconductor chips and passive components in a sheet made from a thermoplastic resin; folding a module sheet, which is formed of circuit blocks provided with wiring patterns thereon, at the boundaries of the circuit blocks so as to be stacked into layers; and thermal-bonding and integrating the module sheet by applying heat and pressure. As a result, a highly reliable circuit module can be manufactured in a simple manner.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: May 20, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Daisuke Sakurai, Kazuhiro Nishikawa, Norihito Tsukahara
  • Patent number: 7355272
    Abstract: A semiconductor device includes a wiring board, a first semiconductor chip (e.g. DRAM) that is flip-chip connected on the wiring board, a second semiconductor chip (e.g. DRAM) that is of the same type as the first semiconductor chip and is mounted face up on the first semiconductor chip such that the orientation of the arrangement of the pads is at 90° from that of the first semiconductor chip, a third semiconductor chip (e.g. microcomputer chip) disposed on the second semiconductor chip, wires, and a sealing medium. The wiring board has a plurality of common wiring patterns for electrically connecting first electrodes for the first semiconductor chip and second electrodes for the second semiconductor chip. The common wiring patterns can be disposed without crossing on the surface wire layer of the wiring board.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 8, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Hiroshi Kuroda, Noriaki Sakamoto, Takafumi Kikuchi
  • Patent number: 7341890
    Abstract: A circuit board with an built-in electronic component according to the present invention includes an insulating layer, a first wiring pattern provided on a first main surface of the insulating layer, a second wiring pattern provided on a second main surface different from the first main surface of the insulating layer, and an electronic component such as a semiconductor chip or the like provided in an internal portion of the insulating layer. The electronic component includes a first external connection terminal formed on a first surface and a second external connection terminal formed on a second surface different from the first surface. The first external connection terminal is connected electrically to the first wiring pattern, and the second external connection terminal is connected electrically to the second wiring pattern.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: March 11, 2008
    Assignee: Matsushita Industrial Co., Ltd.
    Inventors: Yukihiro Ishimaru, Tousaku Nishiyama, Yasuhiro Sugaya, Toshiyuki Asahi
  • Patent number: 7332808
    Abstract: A semiconductor module according to the invention includes: an island formed of a conductive material; a plurality of leads disposed in vicinity of the island; a resin sealing body which is mounted on the island and disposed such that a back surface of a circuit board on which semiconductor elements is exposed upward; a sensor which is mounted on the back surface of the circuit board; and a thin metallic wire which electrically connects the circuit board with the leads. The island, the resin sealing body, the sensor, and parts of the leads are sealed by a second sealing resin.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 19, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noriaki Sakamoto, Chikara Kaneta, Yoshihiko Yanase, Yoshiyuki Kobayashi
  • Patent number: 7317241
    Abstract: In a semiconductor apparatus of the present invention, a plurality of circuit components are provided. A first bus interconnects the circuit components. A second bus interconnects the circuit components. A switching unit outputs a select signal that causes each circuit component to select one of the first bus and the second bus when transmitting a signal from one of the circuit components to another. The second bus has a size larger than a size of the first bus.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: January 8, 2008
    Assignee: Fujitsu Limited
    Inventors: Yasurou Matsuzaki, Yasuharu Sato, Tadao Aikawa, Masafumi Yamazaki, Takaaki Suzuki
  • Patent number: 7307293
    Abstract: A direct-connect signaling system including a printed circuit board and first and second integrated circuit packages disposed on the printed circuit board. A plurality of electric signal conductors extend between the first and second integrated circuit packages suspended above the printed circuit board.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: December 11, 2007
    Assignee: Silicon Pipe, Inc.
    Inventors: Joseph C. Fjelstad, Para K. Segaram, Belgacem Haba
  • Patent number: 7282793
    Abstract: Multiple integrated circuit devices in a stacked configuration that use a spacing element for allowing increased device density and increased thermal conduction or heat removal for semiconductor devices and the methods for the stacking thereof are disclosed.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 7247932
    Abstract: A chip package for semiconductor chips is provided by the method of forming a chip package includes the steps of forming a printed circuit board with a window therethrough; forming semiconductor chip connections of one or more primary chips which overlie the window to the printed circuit board by solder connections, locating a suspended semiconductor chip within the window, and connecting the suspended semiconductor chip to one or more primary chips overlying the window in a chip-on-chip connection. A bypass capacitor is formed on the printed circuit board.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: July 24, 2007
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Bryan Peng
  • Patent number: 7227252
    Abstract: A semiconductor component includes a substrate and multiple stacked, encapsulated semiconductor dice on the substrate. A first die is back bonded to the substrate and encapsulated in a first encapsulant, and a second die is back bonded to the first encapsulant. The first encapsulant has a planar surface for attaching the second die, and can also include locking features for the second die. The component also includes a second encapsulant encapsulating the second die and forming a protective body for the component. A method for fabricating the component includes the steps of attaching the first die to the substrate, forming the first encapsulant on the first die, attaching the second die to the first encapsulant, and forming the second encapsulant on the second die.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: June 5, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Todd O. Bolken, Chad A. Cobbley
  • Patent number: 7205673
    Abstract: A bond pad structure which includes an aluminum bond pad which include one or more dopants that effectively control the growth of IMC to a nominal level in spite of high tensile stresses in the wafer. For example, aluminum can be doped with 1–2 atomic % of Mg. Alternatively, Pd or Si can be used, or elements like Cu or Si can be used as the dopant in order to reduce the overall tensile stresses in the wafer. This can control the abnormal growth of IMC, thus arresting the IMC crack formation. A combination of dopants can be used to both control the tensile stresses and also slightly alter the gold-Aluminum interface thus enabling a uniform and thin IMC formation. This tends to reduce or eliminate any voiding or cracking which would otherwise occur at the wire bond transfer.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: April 17, 2007
    Assignee: LSI Logic Corporation
    Inventors: Jayanthi Pallinti, Dilip Vijay, Hemanshu Bhatt, Sey-Shing Sun, Hong Ying, Chiyi Kao
  • Patent number: 7205646
    Abstract: The package includes a substrate, a first chip, a second chip, multiple first bumps and multiple second bumps. The substrate has a first region and a second region. The first region is substantially coplanar with the second region. The first bumps connect the first chip and the second chip. The second bumps connect the first chip and the second region of the substrate, wherein the second chip is over the first region of the substrate. The second bumps have a height greater than that of the first bumps plus the second chip. The substrate does not have an opening accommodating the second chip. The first bumps may be gold bumps or solder bumps. The second bumps may be solder bumps.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 17, 2007
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Bryan Peng
  • Patent number: 7199458
    Abstract: In the stacked semiconductor package, on a first semiconductor chip, a second semiconductor chip is stacked offset such that a portion of the first semiconductor chip is exposed. At least one first conductor electrically connects the exposed portion of the first semiconductor chip to the second semiconductor chip. The first conductor may be formed such that the first conductor does not extend beyond a periphery of the first semiconductor chip. The first conductor electrically connects at least one bond pad on the first semiconductor chip with at least one bond pad on the second semiconductor chip, and a redistribution pattern electrically connects the bond pad on the second semiconductor chip to a differently positioned bond pad on the second semiconductor chip.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: April 3, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chan-Suk Lee
  • Patent number: 7176560
    Abstract: A semiconductor device having a chip-on-chip structure wherein; a first semiconductor chip with a memory macro control circuit where a plurality of inter-chip connection terminals and a plurality of external connection terminals are formed on a surface of the chip; and a second semiconductor chip with memory macro having input/output terminals for the normal operation mode and for the test mode where a plurality of inter-chip connection terminals and a plurality of external connection terminals are formed on a surface of the chip; are adhered to each other in a form so that the surfaces of the chips are opposed to each other and so that the inter-chip connection terminals of the first semiconductor chip and the inter-chip connection terminals of the second semiconductor chip are connected to each other; is provided wherein a multiplexer circuit and a demultiplexer circuit are provided with the first semiconductor chip and the second semiconductor chip so that a signal is inputted to, or is outputted from, the
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: February 13, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Kenji Motomochi
  • Patent number: 7151013
    Abstract: A high density semiconductor package with thermally enhanced properties is described. The semiconductor package includes a pair of lead frames, each being attached to a respective semiconductor die. The dies are attached to respective lead frames via an adhering material, such as a tape. Further, the dies are each electrically connected to fingers of each lead frame. In one illustrated embodiment, the dies and portions of the fingers are encapsulated in such a way as to leave one surface of each die exposed. In another illustrated embodiment, heat dissipation for the semiconductor package occurs through exposed fingers of the lead frames which adhere semiconductor dies within a cavity located therebetween.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: December 19, 2006
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Mike Brooks, Mark S. Johnson, Larry D. Kinsman
  • Patent number: 7138723
    Abstract: A semiconductor chip is secured in a state deformed into a substantially cylinder shape by a coating material formed on its surface. The deformed semiconductor chip is flip-chip connected to an interposer and sealed with sealing resin onto the interposer. Solder balls are provided, as external terminals, on the other side of the interposer.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: November 21, 2006
    Assignee: Fujitsu Limited
    Inventors: Kazuyuki Aiba, Akira Takashima, Kaname Ozawa, Tetsuya Hiraoka, Takaaki Suzuki, Yasurou Matsuzaki
  • Patent number: 7105921
    Abstract: Methods are provided for creating lined vias in semiconductor substrates. Using electrophoretic deposition techniques, micelles of a lining material are deposited on the wall of the via, reacting with the surface of the wall until the entire wall is covered by the lining material. The lining material is then fixed in place to form a layer lining the via. The lined via may then be filled with a desired material. For example, a via lined with an insulative material may be filled with a material such as copper to create an insulated conductive via through the substrate.
    Type: Grant
    Filed: October 10, 2005
    Date of Patent: September 12, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Dale W. Collins, Steven M. McDonald
  • Publication number: 20060192265
    Abstract: A system-on-chip (SoC) that is immune to electromagnetic interference has block shield rings fabricated therein. The SoC includes a microprocessor core; an on-chip bus interface; an embedded memory block; and an analog/mixed-signal integrated circuit shielded by an EMI shield ring encircling the analog/mixed-signal integrated circuit for protecting the analog/mixed-signal integrated circuit from electromagnetic interference. The EMI shield ring is grounded and includes a metal rampart consisting of multi-layer metals and vias. A pickup diffusion is connected to the metal rampart. In one embodiment, the memory block is also shielded.
    Type: Application
    Filed: February 25, 2005
    Publication date: August 31, 2006
    Inventor: Yu-Hao Hsu
  • Patent number: 7098477
    Abstract: The present invention provides a device structure and method of forming a finFet device having stacked fins. The method of the present invention comprises: providing a substrate with a first semiconductor layer on a first insulator layer, a second insulator layer on the first semiconductor layer, and a second semiconductor layer on the second insulator layer; forming a first fin and a second fin in the second semiconductor layer; masking the first fin; and forming a third fin in the first semiconductor layer, where the second fin is stacked on the third fin. The structure of the present invention comprises: a semiconductor substrate having a first semiconductor layer on a first insulator layer, a second insulator layer on the first semiconductor layer, and a second semiconductor layer on the second insulator layer; a first and second fin formed in the second semiconductor layer; and a third fin formed in the first semiconductor layer, where the second fin is stacked on the third fin.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris
  • Patent number: 7091606
    Abstract: After a trench 54 is formed in a conductive foil 60, the circuit elements are mounted, and the insulating resin is applied on the conductive foil 60 as the support substrate. After being inverted, the conductive foil 60 is polished on the insulating resin 50 as the support substrate for separation into the conductive paths. Accordingly, it is possible to fabricate the circuit device in which the conductive paths 51 and the circuit elements 52 are supported by the insulating resin 50, without the use of the support substrate. And the interconnects L1 to L3 requisite for the circuit are formed, and can be prevented from slipping because of the curved structure 59 and a visor 58.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: August 15, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noriaki Sakamoto, Yoshiyuki Kobayashi, Junji Sakamoto, Shigeaki Mashimo, Katsumi Okawa, Eiju Maehara, Kouji Takahashi
  • Patent number: 6911723
    Abstract: Multiple integrated circuit devices in a stacked configuration that use a spacing element for allowing increased device density and increased thermal conduction or heat removal for semiconductor devices and the methods for the stacking thereof are disclosed.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: June 28, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram