Combination Of Complementary Transistors Having A Different Structure, E.g. Stacked Cmos, High-voltage And Low-voltage Cmos (epo) Patents (Class 257/E27.064)
  • Patent number: 7579228
    Abstract: A method for making a semiconductor device is provided, comprising (a) providing a semiconductor structure comprising a first gate electrode (210); (b) forming a first set of organic spacers (213) adjacent to said first electrode; (c) depositing a first photo mask (215) over the structure; and (d) simultaneously removing the first set of organic spacers and the first photo mask.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: August 25, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul A. Grudowski, Kurt H. Junker, Thomas J. Kropewnicki, Andrew G. Nagy
  • Patent number: 7576395
    Abstract: Integrated circuit devices include a semiconductor substrate having a first doped region and a second doped region having a different doping type than the first doped region. A gate electrode structure on the semiconductor substrate extends between the first and second doped regions and has a gate insulation layer of a first high dielectric constant material in the first doped region and of a second high dielectric constant material, different from the first high dielectric constant material, in the second doped region. A gate electrode is on the gate insulation layer.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: August 18, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Suk Jung, Jong-Ho Lee, Hwa-Sung Rhee, Jae-Kwang Choi
  • Patent number: 7572684
    Abstract: Nonvolatile memory devices, and methods of forming the same are disclosed. A memory device includes a substrate having a cell region, a low voltage region and a high voltage region. A ground selection transistor, a string selection transistor and a cell transistor are in the cell region, a low voltage transistor is in the low voltage region, and a high voltage transistor is in the high voltage region. A common source contact is on the ground selection transistor and a low voltage contact is on the low voltage transistor. A bit line contact is on the string selection transistor, a high voltage contact is on the high voltage transistor, and a bit line is on the bit line contact. A first insulating layer is on the substrate, and a second insulating layer is on the first insulating layer. The common source contact and the first low voltage contact extend to a height of the first insulating layer, and the bit line contact and the first high voltage contact extend to a height of the second insulating layer.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dal Chol, Jong-Sun Sel, Chang-Seok Kang
  • Patent number: 7569898
    Abstract: A semiconductor device according to an example of the present invention includes a first semiconductor region of a first conductivity type, a first MIS transistor of a second conductivity type formed in the first semiconductor region, a second semiconductor region of a second conductivity type, and a second MIS transistor of a first conductivity type formed in the second semiconductor region. A first gate insulating layer of the first MIS transistor is thicker than a second gate insulating layer of the second MIS transistor, and a profile of impurities of the first conductivity type in a channel region of the second MIS transistor has peaks.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: August 4, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiko Kato, Shigeru Ishibashi, Mitsuhiro Noguchi
  • Publication number: 20090189225
    Abstract: A semiconductor device includes a first MIS transistor, and a second MIS transistor having a threshold voltage higher than that of the first MIS transistor. The first MIS transistor includes a first gate insulating film made of a high-k insulating film formed on a first channel region, and a first gate electrode having a first conductive portion provided on and contacting the first gate insulating film and a second conductive portion. The second MIS transistor includes a second gate insulating film made of the high-k insulating film formed on a second channel region, and a second gate electrode having a third conductive portion provided on and contacting the second gate insulating film and a fourth conductive portion. The third conductive portion has a film thickness smaller than that of the first conductive portion, and is made of the same composition material as that of the first conductive portion.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventor: Junji HIRASE
  • Patent number: 7563662
    Abstract: A process for forming an electronic device can be performed, such that as little as one gate electric layer may be formed within each region of the electronic device. In one embodiment, the electronic device can include an NVM array and other regions that have different gate dielectric layers. By protecting the field isolation regions within the NVM array and other regions while gate dielectric layer are formed, the field isolation regions may be exposed to as little as one oxide etch between the time any of the gate dielectric layers are formed the time such gate dielectric layers are covered by gate electrode layers. The process helps to reduce field isolation erosion and reduce problems associated therewith.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: July 21, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Ramachandran Muralidhar
  • Patent number: 7560779
    Abstract: A mixed voltage circuit is formed by providing a substrate (12) having a first region (20) for forming a first device (106), a second region (22) for forming a second device (108) complementary to the first device (106), and a third region (24) for forming a third device (110) that operates at a different voltage than the first device (106). A gate layer (50) is formed outwardly of the first, second, and third regions (20, 22, 24). While maintaining a substantially uniform concentration of a dopant type (51) in the gate layer (50), a first gate electrode (56) is formed in the first region (20), a second gate electrode (58) is formed in the second region (22), and a third gate electrode (60) is formed in the third region (24). The third region (24) is protected while implanting dopants (72) into the first region (20) to form source and drain features (74) for the first device (106).
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Mark S. Rodder, Jarvis B. Jacobs
  • Patent number: 7554158
    Abstract: An N-type deep well is used to protect a circuit from a noise. However, a noise with a high frequency propagates through the N-type deep well, and as a result, the circuit that should be protected malfunctions. To reduce the area of the N-type deep well. For instance, in the present invention, a semiconductor device comprises a semiconductor substrate of a first conductivity type, a digital circuit part and an analog circuit part provided on the semiconductor substrate, a plurality of wells of the first conductivity type formed in either the analog circuit part or the digital circuit part, and a first deep well of a second conductivity type, which is the opposite conductivity type to the first conductivity type, isolating some of the plurality of wells from the semiconductor substrate.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: June 30, 2009
    Assignee: NEC Electronics Corporation
    Inventors: Ryota Yamamoto, Kuniko Kikuta
  • Patent number: 7545008
    Abstract: A semiconductor device may include a substrate and an insulating layer formed on the substrate. A multi-layer fin may be formed on the insulating layer and may include two semiconducting layers isolated by an insulating layer in vertical direction. A first MOS type device comprising a first source region, a first channel region and a first drain region is arranged on the first semiconducting layer in the multi-layer fin. A second MOS type device comprising a second source region, a second channel region and a second drain region is arranged on the second semiconducting layer in the multi-layer fin. A gate electrode is provided so as to be vertically adjacent to the first and second channel regions.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: June 9, 2009
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Philip Ching Ho Chan, Man Sun Chan, Xusheng Wu, Shengdong Zhang
  • Patent number: 7541661
    Abstract: Provided is a manufacturing method of a semiconductor integrated circuit device having a plurality of first MISFETs in a first region and a plurality of second MISFETs in a second region, which comprises forming a first insulating film between two adjacent regions of the first MISFET forming regions in the first region and the second MISFET forming regions in the second region; forming a second insulating film over the surface of the semiconductor substrate between the first insulating films in each of the first and second regions; depositing a third insulating film over the second insulating film; forming a first conductive film over the third insulating film in the second region; forming, after removal of the third and second insulating films from the first region, a fourth insulating film over the surface of the semiconductor substrate in the first region; and forming a second conductive film over the fourth insulating film; wherein the third insulating film remains over the first insulating film in the se
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 2, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Yasuoka, Masami Kouketsu, Susumu Ishida, Kazunari Saitou
  • Patent number: 7537997
    Abstract: Mechanisms for ensuring the migratability of circuits into future technologies while minimizing fabrication costs and maintaining or improving power efficiency are provided. A mask layer is introduced to portions of the integrated circuit prior to a stress inducing layer being applied to the integrated circuit. In an exemplary embodiment, a tensile or compressive film is applied to the devices on the integrated circuit chip but is removed from those devices whose operation is to be modified. Thereafter, a tensile or compressive strain layer is applied to the devices whose film was removed. An additional mask layer may then be used to effect a halo or well implant to relax the strain on the devices not being protected by the mask layer. In this way, the current of the non-protected devices is reduced back to its original target design point.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: May 26, 2009
    Assignee: International Business Machines Corporation
    Inventors: Stephen L. Runyon, Scott Stiffler
  • Patent number: 7531872
    Abstract: A high voltage transistor operating through a high voltage and a method for fabricating the same are provided. The high voltage transistor includes: an insulation layer on a substrate; an N+-type drain junction region on the insulation layer; an N?-type drain junction region on the N+-type drain junction region; a P?-type body region provided in a trench region of the N?-type drain junction region; a plurality of gate patterns including a gate insulation layer and a gate conductive layer in other trench regions bordered by the P?-type body region and the N?-type drain junction region; a plurality of source regions contacted to a source electrode on the P?-type body region; and a plurality of N+-type drain regions contacted to the N?-type drain junction region and individual drain electrodes.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: May 12, 2009
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Jae-II Ju
  • Patent number: 7531878
    Abstract: There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a <110> crystal direction of a support substrate (1) with a <100> crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the <100> crystal direction of the SOI layer (3). Since hole mobility is higher in the <100> crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 12, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Shigenobu Maeda, Shigeto Maegawa, Takuji Matsumoto
  • Patent number: 7531881
    Abstract: A semiconductor device has two transistors of different structure from each other. One of transistors is P-type and the other is N-type. One of the transistors includes a gate structure in which a polysilicon layer contacts a gate insulation film while the other transistor includes a gate structure in which a metal layer contacts a gate insulation film.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: May 12, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Lan Lee, Yu-Gyun Shin, Sang-Bom Kang, Hag-Ju Cho, Seong-Geon Park, Taek-Soo Jeon
  • Patent number: 7525161
    Abstract: NMOS and PMOS device structures with separately strained channel regions and methods of their fabrication are disclosed. The source and the drain of the NMOS device is epitaxially grown of a material which causes a shift in the strain of the NMOS device channel in the tensile direction. While, the source and the drain of the PMOS device is epitaxially grown of a material which causes a shift in the strain of the PMOS device channel in the compressive direction.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Xiao Hu Liu, Qiqing Christine Ouyang, Siddhartha Panda, Haizhou Yin
  • Patent number: 7514754
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate, a first epitaxial layer, a first sinker, a first buried layer, a second epitaxial layer, a second sinker and a second buried layer. The first and second epitaxial layers are disposed sequentially on the substrate. The first sinker and the first buried layer define a first area from the first and the second epitaxial layers. The second sinker and the second buried layer define a second area from the second epitaxial layer in the first area. An active device is disposed in the second area. The first buried layer is disposed between the first area and the substrate, and is connected to the first sinker. The second buried layer is disposed between the second area and the first epitaxial layer, and is connected to the second sinker.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 7, 2009
    Assignee: Episil Technologies Inc.
    Inventors: Shih-Kuei Ma, Chung-Yeh Lee, Chun-Ying Yeh, Ker-Hsiao Huo
  • Patent number: 7514308
    Abstract: The present invention provides a complementary metal oxide semiconductor (CMOS) device, a method of manufacture therefor, and an integrated circuit including the same. The CMOS device (100), in an exemplary embodiment of the present invention, includes a p-channel metal oxide semiconductor (PMOS) device (120) having a first gate dielectric layer (133) and a first gate electrode layer (138) located over a substrate (110), wherein the first gate dielectric layer (133) has an amount of nitrogen located therein. In addition to the PMOS device (120), the CMOS device further includes an n-channel metal oxide semiconductor (NMOS) device (160) having a second gate dielectric layer (173) and a second gate electrode layer (178) located over the substrate (110), wherein the second gate dielectric layer (173) has a different amount of nitrogen located therein. Accordingly, the present invention allows for the individual tuning of the threshold voltages for the PMOS device (120) and the NMOS device (160).
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: April 7, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Ajith Varghese, Husam N. Alshareef, Rajesh Khamankar
  • Patent number: 7511348
    Abstract: The channels of first and second CMOS transistors can be selectively stressed. A gate structure of the first transistor includes a stressor that produces stress in the channel of the first transistor. A gate structure of the second transistor is disposed in contact with a layer of material that produces stress in the channel of the second transistor.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: March 31, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsin Ko, Wen-Chin Lee, Chung-Hu Ke, Hung-Wei Chen
  • Patent number: 7485517
    Abstract: A method for fabricating a semiconductor device is provided. First, a substrate is provided, and a first-type MOS (metallic oxide semiconductor) transistor, an input/output (I/O) second-type MOS transistor, and a core second-type MOS transistor are formed on the substrate. Then, a first stress layer is formed to overlay the substrate, the first-type MOS transistor, the I/O second-type MOS transistor, and the core second-type MOS transistor. Then, at least the first stress layer on the core second-type MOS transistor is removed to reserve at least the first stress layer on the first-type MOS transistor. Finally, a second stress layer is formed on the core second-type MOS transistor.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: February 3, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Chia-Wen Liang
  • Publication number: 20090020823
    Abstract: A semiconductor device of the present invention includes a first transistor, a first stress-inducing film, a first insulating film, and a second insulating film. The first transistor is formed in a first active region of a semiconductor substrate, and includes a first gate electrode. The first stress-inducing film is formed so as to cover the first gate electrode, and applies a stress to the channel region of the first transistor. The first insulating film is formed on the first stress-inducing film and has a planarized upper surface. The second insulating film is formed on the first insulating film.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 22, 2009
    Inventor: Tomohiro Fujita
  • Patent number: 7476941
    Abstract: A semiconductor integrated circuit includes an n-channel MOS transistor and a p-channel MOS transistor formed respectively in first and second device regions of a substrate, the n-channel MOS transistor including a first gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, the p-channel MOS transistor including a second gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, wherein there is provided a stressor film on the substrate over the first and second device regions such that the stressor film covers the first gate electrode including the sidewall insulation films thereof and the second gate electrode including the sidewall insulation films thereof, wherein the stressor film has a decreased film thickness in the second device region at least in the vicinity of a base part of the second gate electrode.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: January 13, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 7473946
    Abstract: A complementary metal oxide semiconductor (CMOS) structure includes a semiconductor substrate having first mesa having a first ratio of channel effective horizontal surface area to channel effective vertical surface area. The CMOS structure also includes a second mesa having a second ratio of the same surface areas that is greater than the first ratio. A first device having a first polarity uses the first mesa as a channel and benefits from the enhanced vertical crystallographic orientation. A second device having a second polarity different from the first polarity uses the second mesa as a channel and benefits from the enhanced horizontal crystallographic orientation.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Publication number: 20080283936
    Abstract: Provided is a method for manufacturing a semiconductor device that includes a substrate having a PMOS device region and NMOS device region. A first gate structure including a first hardmask and a second gate structure including a second hardmask are formed in the region and region, respectively. Epitaxial SiGe regions are created in the substrate proximate the first gate structure, the first hardmask protecting the first gate structure from the SiGe. First source/drain regions are formed proximate the first gate structure, at least a portion of each of the first source/drain regions located within one of the SiGe regions. Additionally, a raised portion is grown above the substrate proximate the second gate structure, the portion forming at least a part of second source/drain regions located on opposing sides of the second gate structure. Additionally, the first and second hardmasks protect the first and second gate structures from the growing.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 20, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Seetharaman Sridhar, Majid Mansoori
  • Patent number: 7453120
    Abstract: A method for fabricating a semiconductor structure is described. A substrate is provided, having thereon a gate structure and a spacer on the sidewall of the gate structure and having therein an S/D extension region beside the gate structure. An opening is formed in the substrate beside the spacer, and then an S/D region is formed in or on the substrate at the bottom of the opening. A metal silicide layer is formed on the S/D region and the gate structure, and then a stress layer is formed over the substrate.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 18, 2008
    Assignee: Unitd Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Tzyy-Ming Cheng
  • Patent number: 7449719
    Abstract: A gate insulating film is formed using a plasma on a three-dimensional silicon substrate surface having a plurality of crystal orientations. The plasma gate insulating film experiences no increase in interface state in any crystal orientations and has a uniform thickness even at corner portions of the three-dimensional structure. By forming a high-quality gate insulating film using a plasma, there can be obtained a semiconductor device having good characteristics.
    Type: Grant
    Filed: May 31, 2004
    Date of Patent: November 11, 2008
    Assignees: Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Akinobu Teramoto
  • Publication number: 20080272438
    Abstract: A CMOS structure is disclosed in which a first type FET contains a liner, which liner has oxide and nitride portions. The nitride portions are forming the edge segments of the liner. These nitride portions are capable of preventing oxygen from reaching the high-k dielectric gate insulator of the first type FET. A second type FET device of the CMOS structure has a liner without nitride portions. As a result, an oxygen exposure is capable to shift the threshold voltage of the second type of FET, without affecting the threshold value of the first type FET. The disclosure also teaches methods for producing the CMOS structure in which differing type of FET devices have their threshold values set independently from one another.
    Type: Application
    Filed: May 2, 2007
    Publication date: November 6, 2008
    Inventors: Bruce B. Doris, Charlotte DeWan Adams, Eduard Albert Cartier, Vijay Narayanan
  • Publication number: 20080258181
    Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7439134
    Abstract: A method for making a semiconductor device having non-volatile memory cell transistors and transistors of another type is provided. In the method, a substrate is provided having an NVM region, a high voltage (HV) region, and a low voltage (LV) region. The method includes forming a gate dielectric layer on the HV and LV regions. A tunnel oxide layer is formed over the substrate in the NVM region and the gate dielectric in the HV and LV regions. A first polysilicon layer is formed over the tunnel dielectric layer and gate dielectric layer. The first polysilicon layer is patterned to form NVM floating gates. An ONO layer is formed over the first polysilicon layer. A single etch removal step is used to form gates for the HV transistors from the first polysilicon layer while removing the first polysilicon layer from the LV region.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: October 21, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Mehul D. Shroff
  • Patent number: 7436043
    Abstract: A semiconductor device includes multiple low voltage N-well (LVNW) areas biased at different potentials and isolated from a substrate by a common N+ buried layer (NBL) and at least one high voltage N-well (HVNW) area. The LVNW areas are coupled to the common, subjacent NBL through a common P+ buried layer (PBL). The method for forming the substrate usable in a semiconductor device includes forming the NBL in a designated low voltage area of a negatively biased P-type semiconductor substrate, forming the PBL in a section of the NBL area by implanting P-type impurity ions such as indium into the PBL, and growing a P-type epitaxial layer over the PBL using conditions that cause the P-type impurity ions to diffuse into the P-type epitaxial layer such that the PBL extends into the NBL. Low-voltage P-well areas are also formed in the P-type epitaxial layer and contact the PBL.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: October 14, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Tzu-Chiang Sung, Chih Po Huang, Rann Shyan Yeh, Jun Xiu Liu, Chi-Hsuen Chang, Chung-I Chen
  • Patent number: 7436036
    Abstract: A PMOS transistor of a semiconductor device exhibiting improved characteristics, a semiconductor device incorporating the same, and a method for manufacturing the semiconductor device. The PMOS transistor incorporates a first gate insulation film formed in a predetermined region on a semiconductor substrate and comprising a hafnium-based oxide, a second gate insulation film formed on the first gate insulation film for shielding reaction between hafnium and silicon, and a gate conductive film formed on the second gate insulation film and comprising polysilicon.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: October 14, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jung Suk Lee
  • Publication number: 20080237635
    Abstract: A semiconductor device (10) comprising a substrate (12) and an oxide layer (14) formed over the substrate is provided. The semiconductor device further includes a first semiconductor layer (16) having a first lattice constant formed directly over the oxide layer. The semiconductor device further includes a second semiconductor layer (26) having a second lattice constant formed directly over the first semiconductor layer, wherein the second lattice constant is different from the first lattice constant.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Voon-Yew Thean, Bich-Yen Nguyen
  • Publication number: 20080217695
    Abstract: A substrate comprising a first region of a first semiconductor and a second region of second semiconductor, wherein the first semiconductor and the second semiconductor are different, is disclosed. The substrate is particularly supportive of p-channel MOSFETs and n-channel MOSFETs having carrier mobility that is closer than in substrates comprising a single semiconductor.
    Type: Application
    Filed: March 5, 2007
    Publication date: September 11, 2008
    Applicant: TRANSLUCENT PHOTONICS, INC.
    Inventor: Petar Atanackovic
  • Publication number: 20080217696
    Abstract: A method for manufacturing a device including an n-type device and a p-type device. In an aspect of the invention, the method involves forming a shallow-trench-isolation oxide (STI) isolating the n-type device from the p-type device. The method further involves adjusting the shallow-trench-isolation oxide corresponding to at least one of the n-type device and the p-type device such that a thickness of the shallow-trench-isolation oxide adjacent to the n-type device is different from a thickness of the shallow-trench-isolation oxide adjacent to the p-type device, and forming a strain layer over the semiconductor substrate.
    Type: Application
    Filed: April 17, 2008
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining S. YANG, Huilong Zhu
  • Publication number: 20080217657
    Abstract: A semiconductor power switch having an array of basic cells in which peripheral regions in the active drain region extend beside the perimeter of the base-drain junction, the peripheral regions being of higher dopant density than the rest of the second drain layer. Intermediate regions in the centre of the active drain region are provided of lighter dopant density than the rest of the second drain layer. This provides an improved compromise between the on-state resistance and the breakdown voltage by enlarging the current conduction path at in its active drain region. On the outer side of each edge cell of the array, the gate electrode extends over and beyond at least part of the perimeters of the base-source junction and the base-drain junction towards the adjacent edge of the die.
    Type: Application
    Filed: July 25, 2005
    Publication date: September 11, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Jean-Michel Reynes, Stephane Alves, Alain Deram, Balandino Lopes, Joel Margheritta
  • Patent number: 7423303
    Abstract: The present invention provides a strained Si directly on insulator (SSDOI) substrate having multiple crystallographic orientations and a method of forming thereof. Broadly, but in specific terms, the inventive SSDOI substrate includes a substrate; an insulating layer atop the substrate; and a semiconducting layer positioned atop and in direct contact with the insulating layer, the semiconducting layer comprising a first strained Si region and a second strained Si region; wherein the first strained Si region has a crystallographic orientation different from the second strained Si region and the first strained Si region has a crystallographic orientation the same or different from the second strained Si region. The strained level of the first strained Si region is different from that of the second strained Si region.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: September 9, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris, Huajie Chen, Patricia M. Mooney, Stephen W. Bedell
  • Publication number: 20080211033
    Abstract: A metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the exposed sides of the dielectric layer are covered with a polymer diffusion barrier.
    Type: Application
    Filed: May 7, 2008
    Publication date: September 4, 2008
    Inventors: Robert B. Turkot, Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Uday Shah, Suman Datta, Robert S. Chau
  • Publication number: 20080203489
    Abstract: Mechanisms for ensuring the migratability of circuits into future technologies while minimizing fabrication costs and maintaining or improving power efficiency are provided. A mask layer is introduced to portions of the integrated circuit prior to a stress inducing layer being applied to the integrated circuit. In an exemplary embodiment, a tensile or compressive film is applied to the devices on the integrated circuit chip but is removed from those devices whose operation is to be modified. Thereafter, a tensile or compressive strain layer is applied to the devices whose film was removed. An additional mask layer may then be used to effect a halo or well implant to relax the strain on the devices not being protected by the mask layer. In this way, the current of the non-protected devices is reduced back to its original target design point.
    Type: Application
    Filed: May 5, 2008
    Publication date: August 28, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen L. Runyon, Scott Stiffler
  • Patent number: 7408228
    Abstract: A semiconductor device is provided which is capable of avoiding malfunction and latchup breakdown resulting from negative variation of high-voltage-side floating offset voltage (VS). In the upper surface of an n-type impurity region (28), a p+-type impurity region (33) is formed between an NMOS (14) and a PMOS (15) and in contact with a p-type well (29). An electrode (41) resides on the p+-type impurity region (33) and the electrode (41) is connected to a high-voltage-side floating offset voltage (VS). The p+-type impurity region (33) has a higher impurity concentration than the p-type well (29) and is shallower than the p-type well (29). Between the p+-type impurity region (33) and the PMOS (15), an n+-type impurity region (32) is formed in the upper surface of the n-type impurity region (28). An electrode (40) resides on the n+-type impurity region (32) and the electrode (40) is connected to a high-voltage-side floating supply absolute voltage (VB).
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: August 5, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazunari Hatade, Hajime Akiyama, Kazuhiro Shimizu
  • Publication number: 20080157211
    Abstract: An integrated circuit includes a transistor of a first type with a first gate electrode and a transistor of a second type with a second gate electrode. The first gate electrode is formed in a first gate groove that is defined in a semiconductor substrate, and the second gate electrode is formed in a second gate groove defined in the semiconductor substrate. The first gate electrode completely fills a space between two adjacent first isolation trenches, and the second gate electrode partially fills a space between two adjacent second isolation trenches, with substrate portions being arranged between the second gate electrode and the adjacent second isolation trenches, respectively.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Applicant: Qimonda AG
    Inventor: Peng-Fei Wang
  • Patent number: 7390709
    Abstract: A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, a trench within the first dielectric layer, and a second dielectric layer on the substrate. The second dielectric layer has a first part that is formed in the trench and a second part. After a first metal layer with a first workfunction is formed on the first and second parts of the second dielectric layer, part of the first metal layer is converted into a second metal layer with a second workfunction.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 24, 2008
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Justin K. Brask, Jack Kavalieros, Uday Shah, Matthew V. Metz, Suman Datta, Ramune Nagisetty, Robert S. Chau
  • Publication number: 20080135879
    Abstract: In a method of fabricating a CMOS transistor, and a CMOS transistor fabricated according to the method, the characteristics of first and second conductivity type MOS transistors are both simultaneously improved. At the same time, the fabrication process is simplified by reducing the number of masks required. The method includes amorphizing the active region of only the second conductivity type MOS transistor, and performing selective etching to form a first recessed region of a first depth in the active region of the first conductivity type MOS transistor and a second recessed region of a second depth that is greater than the first depth in the active region of the second conductivity type MOS transistor.
    Type: Application
    Filed: February 12, 2008
    Publication date: June 12, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-suk Shin, Hwa-sung Rhee, Ueno Tetsuji, Ho Lee, Seung-hwan Lee
  • Patent number: 7381989
    Abstract: A stacked semiconductor device comprises a lower transistor formed on a semiconductor substrate, a lower interlevel insulation film formed on the semiconductor substrate over the lower transistor, an upper transistor formed on the lower interlayer insulation film over the lower transistor, and an upper interlevel insulation film formed on the lower interlevel insulation film over the upper transistor. The stacked semiconductor device further comprises a contact plug connected between a drain or source region of the lower transistor and a source or drain region of the upper transistor, and an extension layer connected to a lateral face of the source or drain region of the upper transistor to enlarge an area of contact between the source or drain region of the upper transistor and a side of the contact plug.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: June 3, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Su Kim, Gil-Heyun Choi, Jong-Ho Yun, Sug-Woo Jung, Eun-Ji Jung
  • Patent number: 7378318
    Abstract: A system and method for ensuring the migratability of circuits into future technologies while minimizing fabrication costs and maintaining or improving power efficiency are provided. A mask layer is introduced to portions of the integrated circuit prior to a stress inducing layer being applied to the integrated circuit. In an exemplary embodiment of the present invention, a tensile or compressive film is applied to the devices on the integrated circuit chip but is removed from those devices whose operation is to be modified. Thereafter, a tensile or compressive strain layer is applied to the devices whose film was removed. An additional mask layer may then be used to effect a halo or well implant to relax the strain on the devices not being protected by the mask layer. In this way, the current of the non-protected devices is reduced back to its original target design point.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: May 27, 2008
    Assignee: International Business Machines Corporation
    Inventors: Stephen L. Runyon, Scott Stiffler
  • Patent number: 7378713
    Abstract: Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: May 27, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Peng-Fu Hsu, Fong-Yu Yen, Yi-Shien Mor, Huan-Just Lin, Ying Jin, Hun-Jan Tao
  • Publication number: 20080116518
    Abstract: The present invention provides a device for ESD protection and voltage stabilizing in order to let chip space be put in better utilization. During different conditions (i.e. ESD current occurrences and normal operation), identical elements of the device are used both for ESD protection and for voltage stabilization. The chip size and manufacturing costs necessary for the additional voltage stabilizing capacitors are thereby saved.
    Type: Application
    Filed: November 15, 2007
    Publication date: May 22, 2008
    Applicant: Realtek Semiconductor Corp.
    Inventors: Tung-Cheng Kuo, Yi-Lin Chen
  • Patent number: 7375409
    Abstract: A semiconductor device is provided comprising a supporting substrate, an insulating layer on the substrate, and a first semiconductor layer on the insulating layer. A first high breakdown-voltage transistor is formed in the first semiconductor layer, a second semiconductor layer is formed on the insulating layer and a second high breakdown-voltage transistor is formed in the second semiconductor layer. A first element isolation region reaching the insulating layer is provided between the first and second semiconductor layers. A third semiconductor layer is formed on the insulating layer, a first low breakdown-voltage transistor is formed in the third semiconductor layer, a second low breakdown-voltage transistor is formed in the third semiconductor layer, and a second element isolation region not reaching the insulating layer is formed in the third semiconductor layer between the first and second low breakdown-voltage transistors. The first element isolation region comprises a dual-trench insulating layer.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: May 20, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Yoko Sato
  • Publication number: 20080099794
    Abstract: By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
    Type: Application
    Filed: May 15, 2007
    Publication date: May 1, 2008
    Inventors: Sven Beyer, Manfred Horstmann, Patrick Press, Wolfgang Buchholtz
  • Patent number: 7365392
    Abstract: Gate electrodes of a TLPM and gate electrodes of planar devices are formed by patterning a same polysilicon layer. Drain electrode(s) and source electrode(s) of the TLPM and drain electrodes and source electrodes of the planar devices are formed by patterning a same metal layer. Therefore, the TLPM and the planar devices can be connected electrically to each other by resulting metal wiring layers and polysilicon layers without the need for performing wire bonding on a printed circuit board.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: April 29, 2008
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Akio Sugi, Naoto Fujishima, Mutsumi Kitamura, Katsuya Tabuchi, Setsuko Wakimoto
  • Patent number: 7361932
    Abstract: A semiconductor device of a dual-gate structure including a P-channel type field-effect transistor formed at a first region of a substrate and an N-channel type field-effect transistor formed at a second region of the substrate, includes a gate electrode including a polycrystalline silicon film continuously formed on the substrate to cover the first and second regions and a metal silicide film formed on the polycrystalline silicon film. The polycrystalline silicon film has a P-type part located on the first region and an N-type part coming into contact with the P-type part and located on the second region, and the P-type part is further doped with a heavier element than a P-type impurity that determines a conductivity type of the P-type part.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: April 22, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Akihiko Tsuzumitani
  • Patent number: 7345346
    Abstract: A semiconductor device having a field effect transistor formed on a semiconductor layer on an insulator, comprising: a drain electrode wiring formed over a drain region of the field effect transistor; a source electrode wiring formed over a source region of the field effect transistor; first contact plugs connecting the drain region and the drain electrode wiring; and second contact plugs which connect the source region and the source electrode wiring, and the number of which is greater than the first contact plugs.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: March 18, 2008
    Assignee: NEC Electronics Corporation
    Inventors: Hiroyuki Hoshizaki, Hiroshi Furuta