Read-only Memory, Rom, Structure (epo) Patents (Class 257/E27.102)
  • Publication number: 20110248356
    Abstract: According to one disclosed embodiment, an integrated one-time programmable (OTP) semiconductor device pair includes a split-thickness dielectric under an electrode and over an isolation region formed in a doped semiconductor substrate, where a reduced-thickness center portion of the dielectric forms, in conjunction with the isolation region, programming regions of the OTP semiconductor device pair, and where the thicker, outer portions of the dielectric form dielectrics for transistor structures. In one embodiment, the split-thickness dielectric comprises a gate dielectric. In one embodiment, multiple OTP semiconductor device pairs are formed in an array that minimizes the number of connections required to program and sense states of specific OTP cells.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Inventor: Douglas Smith
  • Patent number: 8008710
    Abstract: A memory string has a semiconductor layer with a joining portion that is formed to join a plurality of columnar portions extending in a vertical direction with respect to a substrate and lower ends of the plurality of columnar portions. First conductive layers are formed in a laminated fashion to surround side surfaces of the columnar portions and an electric charge storage layer, and function as control electrodes of memory cells. A second conductive layer is formed around the plurality of columnar portions via a gate insulation film, and functions as control electrodes of selection transistors. Bit lines are formed to be connected to the plurality of columnar portions, respectively, with a second direction orthogonal to a first direction taken as a longitudinal direction.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Hideaki Aochi
  • Publication number: 20110188309
    Abstract: According to one embodiment, a semiconductor device includes a first circuit unit having first and second interconnects, a second circuit unit having third and fourth interconnects, and an intermediate unit provided therebetween and having first and second transistors juxtaposed to each other along a direction perpendicular to a direction from the first circuit unit toward the second circuit unit. A high impurity concentration region in a first connection region of one diffusion layer of the first transistor is connected to the first interconnect, and other diffusion layer is connected to the third interconnect. A distance from the first connection region to a gate is longer than a distance from the second connection region to a gate. An midpoint region with a narrower width than the first connection region is provided between the gate and the first connection region of the one diffusion layer of the first transistor.
    Type: Application
    Filed: January 26, 2011
    Publication date: August 4, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masato ENDO
  • Patent number: 7986015
    Abstract: A semiconductor device includes: a semiconductor substrate having first and second areas; an STI isolation region being made of an isolation trench formed in the semiconductor substrate and an insulating film burying the isolation trench and defining a plurality of active regions in the first and second areas; a first structure formed on an area from the active region in the first area to a nearby STI isolation region and having a first height; and a second structure formed on an area from the active region in the second area to a nearby STI isolation region and having a second height, wherein the surface of the said STI isolation region in the first area is lower than the surface of said STI isolation region in the second area.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: July 26, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Kazuhiro Mizutani
  • Publication number: 20110170330
    Abstract: The disclosed memory cell (10) comprises a graphene layer (16) having controllable resistance states representing data values of the memory cell (10) In one exemplary embodiment a non-volatile memory is provided by having a ferroelectric layer (18) control the resistance states. In the exemplary embodiment, binary ‘0’s and ‘1’s are respectively represented by low and high resistance states of the graphene layer (16), and these states are switched in a non-volatile manner by the polarization directions of the ferroelectric layer (18).
    Type: Application
    Filed: September 23, 2009
    Publication date: July 14, 2011
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Barbaros Oezyilmaz, Yi Zheng, Guang Xin Ni, Chee Tat Toh
  • Patent number: 7948023
    Abstract: A semiconductor device including a nonvolatile memory and the fabrication method of the same is described formed on a semiconductor substrate. According to the semiconductor device, a second gate electrode film is used for a gate electrode film of a logic circuit, and for a control gate electrode film of a nonvolatile memory. As the second gate electrode film is formed at a relatively later step in fabrication, subsequent thermal process may be avoided. The gate structure is suitable for miniaturization of the transistor in the logic circuit.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: May 24, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masataka Takebuchi, Fumitaka Arai
  • Patent number: 7928516
    Abstract: A semiconductor storage device include a semiconductor substrate, an insulating layer provided on the semiconductor substrate and having an opening, a semiconductor layer provided on the insulating layer, the semiconductor layer having a recess at a center of a surface thereof above the opening, a memory cell unit provided on the semiconductor layer and including a plurality of memory cells, current paths of the memory cells being connected in series, a selecting transistor adjacent to the memory cell unit and arranged on a region of the semiconductor layer including the recess, the selecting transistor including a gate insulating film provided on the region of the semiconductor layer including the recess and a gate electrode provided on the gate insulating film.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kiyohito Nishihara
  • Patent number: 7923813
    Abstract: A One Time Programmable (OTP) memory cell (10) comprising a first, metallic layer (12) coated with a second, conductive stable transition compound (14) with an insulating layer (16) there-between. The first and second layers (12, 14) are selected according to the difference in Gibbs Free Energy between them, which dictates the chemical energy that will be generated as a result of an exothermic chemical reaction between the two materials. The materials of the first and second layers (12, 14) are highly thermally stable in themselves but, when a voltage is applied to the cell (10), a localized breakdown of the insulative layer (16) results which creates a hotspot (18) that sets off an exothermic chemical reaction between the first and second layers (12, 14). The exothermic reaction generates sufficient heat (20) to create a short circuit across the cell and therefore reduce the resistance thereof.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: April 12, 2011
    Assignee: NXP B.V.
    Inventors: Paul Van Der Sluis, Andrei Mijiritskii, Pierre H. Woerlee, Victor M. G Van Acht, Nicolaas Lambert
  • Publication number: 20110068385
    Abstract: It is an object of the invention to provide semiconductor devices which can protect privacy of consumers or holders of commercial products and control the communication range according to use, even when the semiconductor device which can exchange data without contact is mounted on the commercial products. A semiconductor device of the invention includes an element group including a plurality of transistors over a substrate; a first conductive film functioning as an antenna over the element group; a second conductive film surrounding the first conductive film; an insulating film covering the first and second end portions; and a third conductive film over the insulating film. The first conductive film is provided in the shape of a coil, and each end portion of the first conductive film is connected to the element group. First and second end portions of the second conductive film are not connected to each other.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 24, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tomoyuki AOKI, Koji DAIRIKI, Yuugo GOTO
  • Patent number: 7911005
    Abstract: A semiconductor device having a DRAM region and a logic region embedded together therein, including a first transistor formed in a DRAM region, and having a first source/drain region containing arsenic and phosphorus as impurities; and a second transistor formed in a logic region, and having a second source/drain region containing at least arsenic as an impurity, wherein each of the first source/drain region and the second source/drain region has a silicide layer respectively formed in the surficial portion thereof, and the first source/drain region has a junction depth which is determined by phosphorus and is deeper than the junction depth of the second source/drain region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: March 22, 2011
    Assignee: RENESAS Electronics Corporation
    Inventor: Hiroki Shirai
  • Patent number: 7889557
    Abstract: A memory device capable of enlarging an interval between a source selection transistor and a memory cell adjacent to the source selection transistor, enlarging an interval between a drain selection transistor and a memory cell adjacent to the drain selection transistor, or enlarging the intervals between the source selection transistor and the memory cell adjacent to the source selection transistor and between the drain selection transistor and the memory cell adjacent to the drain selection transistor, prevents the memory cell adjacent to the source or drain selection transistor from being degraded in programming speed due to program disturbance.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 15, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hee Sik Park, Keon Soo Shim, Jong Soon Leem
  • Publication number: 20110031560
    Abstract: A mask-defined read-only memory array is formed on a substrate, and includes a first ROM bit and a second ROM bit of opposite polarities. The first ROM bit has a first MOS transistor and a first block layer formed over a first region of the substrate. A second source/drain region of the first MOS transistor and a first diffusion region are formed in a first region of the substrate on opposite sides of the first block layer. The second ROM bit includes a second MOS transistor.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 10, 2011
    Inventors: Ching-Hsiang Hsu, Ching-Sung Yang, Shih-Jye Shen
  • Patent number: 7872898
    Abstract: A one time programmable read only memory disposed on a substrate of a first conductive type is provided. A gate structure is disposed on the substrate. A first doped region and a second doped region are disposed in the substrate at respective sides of the gate structure, and the first doped region and the second doped region are of a second conductive type which is different from the first conductive type. A third doped region of the first conductive type is disposed in the substrate and is adjacent to the second doped region, and a junction is formed between the third doped region and the second doped region. A metal silicide layer is disposed on the substrate. An clearance is formed in the metal silicide layer, and the clearance at least exposes the junction.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 18, 2011
    Assignee: eMemory Technology Inc.
    Inventors: Wen-Hao Ching, Shih-Chen Wang, Tsung-Mu Lai
  • Publication number: 20100327341
    Abstract: A nonvolatile semiconductor memory device includes first electrodes, a second and a third electrode, a first film, a first inter layer film, a second inter layer film, and a second film. The first electrodes each have a charge storage and a control electrode. The second and the third electrodes are formed above the semiconductor substrate. The first film is formed on each sidewall of the second and third electrodes and formed on the surface of the semiconductor substrate. The first inter layer film filled in a gap between the second and third electrodes. The second inter layer film filled in a gap between the first and second electrode. The second film is formed on the first to third gate electrodes, the first film and the first inter layer film, and a second inter layer insulating film to suppress diffusion of hydrogen atoms included in the first inter layer film.
    Type: Application
    Filed: November 13, 2009
    Publication date: December 30, 2010
    Inventor: Atsuhiro SUZUKI
  • Patent number: 7855457
    Abstract: A stacked multilayer structure according to an embodiment of the present invention comprises: a stacked layer part including a plurality of conducting layers and a plurality of insulating layers, said plurality of insulating layers being stacked alternately with each layer of said plurality of conducting layers, one of said plurality of insulating layers being a topmost layer among said plurality of conducting layers and said plurality of insulating layers; and a plurality of contacts, each contact of said plurality of contacts being formed from said topmost layer and each contact of said plurality of contacts being in contact with a respective conducting layer of said plurality of conducting layers, a side surface of each of said plurality of contacts being insulated from said plurality of conducting layers via an insulating film.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Mizukami, Takeshi Kamigaichi
  • Patent number: 7847283
    Abstract: The present invention discloses a three-dimensional memory (3D-M) with polarized 3D-ROM (three-dimensional read-only memory) cells. Polarized 3D-ROM can ensure a larger unit array and therefore, a better integratibility.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: December 7, 2010
    Inventor: Guobiao Zhang
  • Patent number: 7833844
    Abstract: A disclosed method of producing a semiconductor device includes the steps of (A) forming a gate electrode and a trimming fuse on a semiconductor substrate; (B) forming a side wall insulating film covering the gate electrode and the trimming fuse; (C) forming a conductive film on the side wall insulating film and patterning the conductive film to form an etching stop layer and a resistance element; (D) forming a side wall on the sides of the gate electrode; (E) repeating, one or more times, sub-steps of forming an interlayer insulating film and of forming an upper wiring layer, and then forming a passivation film; (F) removing the passivation film and the interlayer insulating film in the trimming opening forming area until the etching stop layer is exposed; and (G) forming the trimming opening by removing the etching stop layer in the trimming opening forming area.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 16, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasunori Hashimoto
  • Patent number: 7811880
    Abstract: A memory cell of a memory device is fabricated by forming a first electrode on a substrate, positioning a photo mask at a first position relative to the substrate, and forming a first material layer on the first electrode based on a pattern on the photo mask. The photo mask is positioned at a second position relative to the substrate, and a second material layer is formed above the first material layer based on the pattern on the photo mask, the second material layer being offset from the first material layer so that a first sub-cell of the memory cell includes the first material layer and not the second material layer, and a second sub-cell of the memory cell includes both the first and second material layers. A second electrode is formed above the first and second material layers.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: October 12, 2010
    Assignee: Hong Kong Applied Science and Technology Research Institute Co., Ltd.
    Inventor: Geoffrey Wen-Tai Shuy
  • Patent number: 7808054
    Abstract: An OTP memory cell according to the present invention includes: a semiconductor substrate including a lower electrode forming region having a lower electrode formed therein, a diffusion layer forming region having a source and a drain formed therein, a first trench-type insulating region, and a second trench-type insulating region; an upper electrode being in contact with the first trench-type insulating region and formed on the lower electrode with the first insulating film interposed therebetween; and a gate electrode being in contact with the second trench-type insulating region and formed on a channel region with the second insulating film interposed therebetween, in which a shape of at least a part of an end of the lower electrode forming region in contact with the first insulating film is sharper than a shape of an end of the channel region in contact with the second insulating film.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 5, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Masahiro Wada
  • Patent number: 7804133
    Abstract: Semiconductor storage devices in which a plurality of semiconductor element devices having different functions are disposed in the appropriate region of the partial SOI substrate and the interface between each gate insulator and each gate electrode is formed to be the same level, and manufacturing methods thereof are disclosed. According to one aspect, there is provided a semiconductor storage device includes a first semiconductor region provided in a semiconductor substrate including a buried insulator having opening portions, a second semiconductor region without including buried insulator, a plurality of first semiconductor element devices disposed above the buried insulator, a plurality of second semiconductor element devices each disposed in a region including a region above the opening portion of the buried insulator, and a plurality of third semiconductor element devices disposed in the second semiconductor region.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Murata, Makoto Mizukami, Fumitaka Arai
  • Patent number: 7795643
    Abstract: A cell array includes a semiconductor substrate including an active region comprising a first region, a second region, and a transition region, the second region being separated from the first region by the transition region, wherein a top surface of the second region is at a different level than a top surface of the first region. The cell array also includes a plurality of word lines crossing over the first region. The cell array also includes a selection line crossing over the active region, wherein at least a portion of the selection line is located over the transition region.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi, Chang-Seok Kang, Chang-Hyun Lee, Jang-Sik Lee, Vie-Na Kim
  • Publication number: 20100224926
    Abstract: A plurality of NAND cells are arranged in a cell array. In each of the NAND cells, a pair of selection gate transistors is connected in series to a plurality of memory cell transistors. An inter-gate connection trench is formed in an insulating film between layers of stacked gates of the selection gate transistors. The stacked gates are electrically connected to each other. At an end part of the cell array in the row direction, an STI area is formed, and dummy NAND cells are formed at an end part in the row direction. A dummy selection gate transistor is connected in series to a plurality of dummy memory cell transistors. No inter-gate connection trench is present in an insulating film between layers of stacked gates of the dummy selection gate transistor, and the stacked gates of the dummy selection gate transistor are not electrically connected to each other.
    Type: Application
    Filed: September 21, 2009
    Publication date: September 9, 2010
    Inventors: Masanori HATAKEYAMA, Osamu Ikeda
  • Patent number: 7777281
    Abstract: A memory array has memory elements of identical topology or footprint arranged in rows and columns. Some of the memory elements are EEPROM cells and other memory elements are read only memory cells but all are made using a mask set having the same length and width dimensions. In the mask set for EEPROMs a principal mask is used for formation of a depletion implant. In the case of one type of read-only memory element, this mask is mainly blocked, leading to formation of a transistor with a non-conductive channel between source and drain. In the case of another read only memory element, the same mask is unblocked, leading to formation of a transistor with a highly conductive or almost shorted channel between source and drain. These two read only memory elements are designated as logic one and logic zero. By having rows of read-only memory elements with rows of EEPROMs on the same chip, a more versatile memory array chip may be built without sacrificing chip space.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: August 17, 2010
    Assignee: Atmel Corporation
    Inventor: Albert S. Weiner
  • Publication number: 20100200906
    Abstract: A nonvolatile semiconductor memory device includes: a semiconductor substrate; a multilayer structure; a semiconductor pillar; a third insulating film; and a fourth insulating film layer. The a multilayer structure is provided on the semiconductor substrate and including a plurality of constituent multilayer bodies stacked in a first direction perpendicular to a major surface of the semiconductor substrate. Each of the plurality of constituent multilayer bodies includes an electrode film provided parallel to the major surface, a first insulating film, a charge storage layer provided between the electrode film and the first insulating film, and a second insulating film provided between the charge storage layer and the electrode film. The semiconductor pillar penetrates through the multilayer structure in the first direction. The third insulating film is provided between the semiconductor pillar and the electrode film.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 12, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaru KIDOH, Hiroyasu Tanaka, Tomoko Fujiwara, Megumi Ishiduki, Yosuke Komori, Masaru Kito, Yoshiaki Fukuzumi, Ryota Katsumata, Ryouhei Kirisawa, Junya Matsunami, Hideaki Aochi
  • Patent number: 7764541
    Abstract: One time programmable memory devices are disclosed that are programmed using hot carrier induced degradation to alter one or more transistors characteristics. A one time programmable memory device is comprised of an array of transistors. Transistors in the array are selectively programmed using hot carrier induced changes in one or more transistor characteristics, such as changes to the saturation current, threshold voltage or both, of the transistors. The changes to the transistor characteristics are achieved in a similar manner to known hot carrier transistor aging principles. The disclosed one time programmable memory devices are small and programmable at low voltages and small current.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: July 27, 2010
    Assignee: Agere Systems Inc.
    Inventors: Ross Alan Kohler, Richard Joseph McPartland, Ranbir Singh
  • Publication number: 20100155722
    Abstract: A memory device with band gap control is described. A memory cell can include a conductive oxide layer in contact with and electrically in series with an electronically insulating layer. A thickness of the electronically insulating layer is configured to increase from an initial thickness to a target thickness. The increased thickness of the electronically insulating layer can improve resistive memory effect, increase a magnitude of a read current during read operations, and lower barrier height with a concomitant reduction in band gap of the electronically insulating layer. The memory cell can include a memory element that comprises the conductive oxide layer and the electronically insulating layer and can optionally include a non-ohmic device (NOD). The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines across which voltages for data operations are applied. The memory cell and array can be fabricated BEOL.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventor: Rene Meyer
  • Publication number: 20100148277
    Abstract: The present invention is directed to structures and methods of fabricating electromechanical memory cells having nanotube crossbar elements. Such memory cells include a substrate having transistor with a contact that electrically contacts with the transistor. A first support layer is formed over the substrate with an opening that defines a lower chamber above the electrical contact. A nanotube crossbar element is arranged to span the lower chamber. A second support layer is formed with an opening that defines a top chamber above the lower chamber, the top chamber including an extension region that extends beyond an edge of the lower chamber to expose a portion of the top surface of the first support layer. A roof layer covers the top of the top chamber and includes an aperture that exposes a portion of the extension region of the top chamber and includes a plug that extends into the aperture in the roof layer to seal the top and bottom chambers.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: Nantero, Inc.
    Inventors: Richard J. Carter, Peter A. Burke, Verne C. Hornback, Thomas Rueckes, Claude L. Bertin
  • Patent number: 7728320
    Abstract: A phase change memory (PCM) device includes a substrate, bottom electrodes disposed in the substrate, a first dielectric layer disposed on the substrate, second dielectric layers, third dielectric layers, cup-shaped thermal electrodes, top electrodes, and PC material spacers. In the PCM device, each cup-shaped thermal electrode contacts with each bottom electrode. Second and third dielectric layers are disposed over the substrate in different directions, wherein each of the second and third dielectric layers covers a portion of the area surrounded by each cup-shaped thermal electrode, and the third dielectric layers overlay the second dielectric layers. The top electrodes are disposed on the third dielectric layers, wherein a plurality of stacked structure composed of the third dielectric layers and the top electrodes are formed thereon.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: June 1, 2010
    Assignee: Industrial Technology Research Institute
    Inventor: Wei-Su Chen
  • Patent number: 7714447
    Abstract: A patterned connection plane between two semiconductor chips which are connected using face-to-face technology is patterned into first pads, second pads, and conductor strips which are alternatively connected to one of these pads. The conductor strips are connected to a read-out circuit in one of the semiconductor chips via connections.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: May 11, 2010
    Assignee: Infineon Technologies AG
    Inventors: Markus Eigner, Wolfgang Gruber, Manfred Roth, Stefan Ruping
  • Patent number: 7704825
    Abstract: A memory capable of reducing the memory cell size is provided. This memory includes a first conductive type first impurity region formed on a memory cell array region of the main surface of a semiconductor substrate for functioning as a first electrode of a diode included in a memory cell and a plurality of second conductive type second impurity regions, formed on the surface of the first impurity region at a prescribed interval, each functioning as a second electrode of the diode.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 27, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kouichi Yamada
  • Patent number: 7687361
    Abstract: Disclosed is a method for fabricating a transistor of a memory device capable of preventing voids from being created when forming a low-resistant gate electrode. The method includes the steps of forming an active area by etching a semiconductor substrate, forming a field oxide layer in the semiconductor substrate and forming a recess by etching the field oxide layer. A gate insulation layer is formed along an upper surface of the active area and an exposed portion of the active area. A gate electrode is formed on the field oxide layer such that the gate electrode extends across an upper portion of the active area while being overlapped with a channel area and the recess. The first conductive layer to be patterned has the same thickness, so the low-resistant gate electrode is easily fabricated without forming the voids.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Se Aug Jang, Yong Soo Kim, Jae Geun Oh
  • Patent number: 7687377
    Abstract: In a method of fabricating a phase change memory (PCM) device, a substrate having bottom electrodes formed therein is provided. A first dielectric layer having cup-shaped thermal electrodes is formed over the substrate. Second dielectric layers are formed on the substrate. Stacked structures are formed on the substrate. A PC material film is formed over the substrate and covers the stacked structures and the second dielectric layers. The PC material film is anisotropically etched to form PC material spacers on sidewalls of the stacked structures, and each of the PC material spacers physically and electrically contacts each of the cup-shaped thermal electrodes and top electrodes. The PC material spacers include phase change material. The PC material spacers are over-etched to remove the PC material film on the sidewalls of the second dielectric layers.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: March 30, 2010
    Assignee: Industrial Technology Research Institute
    Inventor: Wei-Su Chen
  • Patent number: 7671475
    Abstract: A nonvolatile semiconductor memory includes a cell unit having a select gate transistor and a memory cell connected in series, a select gate line connected to the select gate transistor, and a word line connected to the memory cell. One end of the word line is bent to the select gate line side, and a fringe is connected between a bent point and a distal end of the word line.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Kamigaichi, Takeshi Murata, Itaru Kawabata
  • Publication number: 20100038703
    Abstract: A memory string has a semiconductor layer with a joining portion that is formed to join a plurality of columnar portions extending in a vertical direction with respect to a substrate and lower ends of the plurality of columnar portions. First conductive layers are formed in a laminated fashion to surround side surfaces of the columnar portions and an electric charge storage layer, and function as control electrodes of memory cells. A second conductive layer is formed around the plurality of columnar portions via a gate insulation film, and functions as control electrodes of selection transistors. Bit lines are formed to be connected to the plurality of columnar portions, respectively, with a second direction orthogonal to a first direction taken as a longitudinal direction.
    Type: Application
    Filed: July 10, 2009
    Publication date: February 18, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KITO, Masaru KIDOH, Hiroyasu TANAKA, Megumi ISHIDUKI, Yosuke KOMORI, Hideaki AOCHI
  • Publication number: 20100019311
    Abstract: This semiconductor memory device comprises a semiconductor substrate, a plurality of tunnel insulator films formed on the semiconductor substrate along a first direction and a second direction orthogonal to the first direction with certain spaces in each directions, a plurality of charge accumulation layers formed on the plurality of tunnel insulator films, respectively, a plurality of element isolation regions formed on the semiconductor substrate, the plurality of element isolation regions including a plurality of trenches formed along the first direction between the plurality of tunnel insulator films, a plurality of element isolation films filled in the plurality of trenches, a plurality of inter poly insulator films formed over the plurality of element isolation regions and on the upper surface and side surfaces of the plurality of charge accumulation layer along the second direction in a stripe shape, a plurality of air gaps formed between the plurality of element isolation films filled in the plurality
    Type: Application
    Filed: July 21, 2009
    Publication date: January 28, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Atsuhiro SATO, Fumitaka Arai
  • Publication number: 20100006924
    Abstract: A one-time programmable read-only memory (OTP-ROM) including a substrate, a first doped region, a second doped region, a third doped region, a first dielectric layer, a select gate, a second dielectric layer, a first channel, a second channel and a silicide layer is provided. The first doped region, the second doped region and the third doped region are disposed apart in a substrate. The first dielectric layer is disposed on the substrate between the first doped region and the second doped region. The select gate is disposed on the first dielectric layer. The second dielectric layer is disposed on the substrate between the second doped region and the third doped region. The silicide layer is disposed on the first doped region, the second doped region and the third doped region. The OTP-ROM stores data by a punch-through effect occurring between the second doped region and the third doped region.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 14, 2010
    Applicant: EMEMORY TECHNOLOGY INC.
    Inventors: Hsin-Ming Chen, Shao-Chang Huang, Shih-Chen Wang, Tsung-Mu Lai, Ming-Chou Ho, Chrong-Jung Lin
  • Patent number: 7646069
    Abstract: An integrated circuit memory of the read-only memory type includes at least one memory cell. Each memory cell includes a storage transistor realized in a semiconductor substrate and presenting a source connected to a reference potential, a gate connected to an electrically conductive word line, and a drain connected to an electrically conductive bit line by an optional connection depending on whether the memory cell is assigned the value 0 or 1. The storage transistor of each memory cell includes a gate formed on the substrate, in the form of a window whose inner contour delimits a central drain region in the substrate, and whose outer contour delimits at least one source region in the substrate.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: January 12, 2010
    Assignee: STMicroelectronics SA
    Inventors: Jean Pierre Schoellkopf, Bertrand Borot
  • Patent number: 7642156
    Abstract: Embodiments relate to a three-dimensional flash memory cell and method of forming the same that may be improve the uniformity of flash memory cell by removing a width difference of a polysilicon pattern when forming a floating gate of flash memory device, to thereby improve the reliability of semiconductor device. The process may be simplified due to the self-alignment in the step of forming the polysilicon pattern, which may improve the yield.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: January 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Seong-Gyun Kim
  • Publication number: 20090309151
    Abstract: Some embodiments include methods of forming flash memory cells and semiconductor constructions, and some embodiments include semiconductor constructions. Some embodiments may include a method in which a semiconductor substrate is provided to have a plurality of active area locations. Floating gates are formed over the active area locations, with the floating gates having widths that are entirely sub-lithographic. Adjacent floating gates are spaced from one another by gaps. Dielectric material and control gate material are formed over the floating gates and within the gaps. Some embodiments may include a construction in which a pair of adjacent floating gates are over a pair of adjacent active areas, with the floating gates being spaced from one another by a distance which is greater than a distance that the active areas are spaced from one another.
    Type: Application
    Filed: August 20, 2009
    Publication date: December 17, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Kirk D. Prall
  • Publication number: 20090302368
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming multiple conductive patterns 13a, forming an intermediate insulating film 16 on all of device isolation insulating films 6 and the conductive patterns 13a, forming a second conductive film 17 on the intermediate insulating film 16, patterning the second conductive film 17, the intermediate insulating film 16, and the multiple conductive patterns 13a, individually, to make the conductive patterns 13a into floating gates 13c and to make the second conductive film 17 into multiple strip-like control gates 17a. In the method, an edge, in a plan layout, of at least one of each of the conductive patterns 13a and each of the device isolation insulating films 6 is bent in a region between the control gates 17a adjacent in a row direction.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Hiroki Sugawara
  • Patent number: 7626227
    Abstract: A semiconductor device is provided which includes a gate electrode (30) provided on a semiconductor substrate (10), an oxide/nitride/oxide (ONO) film (18) that is formed between the gate electrode (30) and the semiconductor substrate (10) and has a charge storage region (14) under the gate electrode (30), and a bit line (28) that is buried in the semiconductor substrate (10) and includes a low concentration diffusion region (24), a high concentration diffusion region (22) that is formed in the center of the low concentration diffusion region (24) and has a higher impurity concentration than the low concentration region, a source region, and a drain region. The semiconductor device can improve the source-drain breakdown voltage of the transistor while suppressing fluctuation of electrical characteristics or junction current between the bit line (28) and the semiconductor substrate (10).
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Spansion LLC
    Inventors: Hiroaki Kouketsu, Masahiko Higashi
  • Publication number: 20090283814
    Abstract: A non-volatile memory cell includes an ion well of a semiconductor substrate; a first half-transistor having a firs select gate, a first diffusion region in the ion well, and a first gate dielectric layer between the first select gate and the ion well; a second half-transistor disposed adjacent to the first half-transistor, wherein the second half-transistor has a second select gate spaced apart from the first select gate, a second diffusion region in the ion well, and a second gate dielectric layer between the second select gate and the ion well. The first and second half-transistors are mirror-symmetrical to each other.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Inventors: Hsin-Ming Chen, Shao-Chang Huang, Shih-Chen Wang, Wen-Hao Ching, Chrong-Jung Lin
  • Publication number: 20090283815
    Abstract: A semiconductor device including a nonvolatile memory and the fabrication method of the same is described formed on a semiconductor substrate. According to the semiconductor device, a second gate electrode film is used for a gate electrode film of a logic circuit, and for a control gate electrode film of a nonvolatile memory. As the second gate electrode film is formed at a relatively later step in fabrication, subsequent thermal process may be avoided. The gate structure is suitable for miniaturization of the transistor in the logic circuit.
    Type: Application
    Filed: July 21, 2009
    Publication date: November 19, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masataka Takebuchi, Fumitaka Arai
  • Publication number: 20090278190
    Abstract: A nonvolatile semiconductor memory according to the present invention includes memory cell units, which include data select lines formed in parallel to each other, data transfer lines crossing the data select lines and aligned in parallel to each other, and electrically rewritable memory cell transistors disposed at intersections of the data transfer lines and the data select lines. It further includes: a memory cell array block in which the memory cell units are disposed along the data select lines; first source lines, connected to one end of the memory cell units, and aligned along the data select lines; and second source lines electrically connected to the first source lines, and disposed along the data select lines.
    Type: Application
    Filed: June 18, 2009
    Publication date: November 12, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Minori Kajimoto, Mitsuhiro Noguchi, Hiroshi Maejima, Takahiko Hara
  • Publication number: 20090278184
    Abstract: A first insulation film is formed on a semiconductor substrate. A first gate electrode is formed on the first insulation film. A second insulation film is formed on an upper surface and a side surface of the first gate electrode. A second gate electrode is formed on the second insulation film. The entirety of that part of the second gate electrode, which is located above the second insulation film formed on the upper surface of the first gate electrode, is a silicide layer. At least a portion of that part of the second gate electrode, which is located on the side surface of the first gate electrode, is a silicon layer.
    Type: Application
    Filed: July 22, 2009
    Publication date: November 12, 2009
    Inventor: Toshitake YAEGASHI
  • Patent number: 7608480
    Abstract: A semiconductor device includes metal foil to which a ground potential is applied, at a semiconductor constructing body provided on the metal foil and having a semiconductor substrate and a plurality of external connection electrodes provided on the semiconductor substrate. An insulating layer is provided around the semiconductor constructing body and has a thickness substantially equal to the semiconductor constructing body. An one upper interconnecting layer is provided on the semiconductor constructing body and insulating layer, and electrically connected to the external connection electrodes. A vertical conducting portion extends through the insulating layer and electrically connects the metal foil and upper interconnecting layer.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: October 27, 2009
    Assignees: Casio Computer Co., Ltd., CMK Corporation
    Inventor: Hiroyasu Jobetto
  • Patent number: 7602010
    Abstract: In a non-volatile memory device allowing multi-bit and/or multi-level operations, and methods of operating and fabricating the same, the non-volatile memory device comprises, in one embodiment: a semiconductor substrate, doped with impurities of a first conductivity type, which has one or more fins defined by at least two separate trenches formed in the substrate, the fins extending along the substrate in a first direction; pairs of gate electrodes formed as spacers at sidewalls of the fins, wherein the gate electrodes are insulated from the semiconductor substrate including the fins and extend parallel to the fins; storage nodes between the gate electrodes and the fins, and insulated from the gate electrodes and the semiconductor substrate; source regions and drain regions, which are doped with impurities of a second conductivity type, and are separately formed at least at surface portions of the fins and extend across the first direction of the fins; and channel regions corresponding to the respective gate
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yong Choi, Tae-yong Kim, Eun-suk Cho, Suk-kang Sung, Hye-jin Cho, Dong-gun Park, Choong-ho Lee
  • Patent number: 7602004
    Abstract: A semiconductor device includes a first transistor and a second transistor formed on a substrate. Each of the first transistor and the second transistor has a first source region, first drain region of a first conductivity type and a gate. The first transistor is an off-transistor and includes a second source/drain region of the first conductivity type which surrounds at least a portion of the first source/drain region in the first transistor.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Seog Jeon, Jeong-Uk Han, Hyok-Ki Kwon
  • Patent number: 7569882
    Abstract: One embodiment of the invention comprises a first semiconductor structure in electrical contact with a first contact region, a second semiconductor structure in electrical contact with a second contact region, the first semiconductor structure and the second semiconductor structure being in electrical contact with each-other along an interface, a modulating section configured to modulate the conductivity in at least one of the semiconductor structures, so that the conductivity varies along the interface, in such a way that if current flows across the interface, the current can flow only at a predetermined position along the interface, and substantially no current can flow at either side of the predetermined position.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: August 4, 2009
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventor: Maarten Rosmeulen
  • Publication number: 20090174082
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: March 17, 2009
    Publication date: July 9, 2009
    Inventor: Glenn J Leedy