Contact-type Imager (e.g., Contacts Document Surface) (epo) Patents (Class 257/E27.147)
  • Patent number: 10580896
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 3, 2020
    Assignee: ACORN SEMI, LLC
    Inventors: Paul A. Clifton, R. Stockton Gaines
  • Patent number: 7960199
    Abstract: A thin film transistor array substrate and a fabricating method thereof are disclosed. The thin film transistor array substrate protects a thin film transistor without a protective film and accordingly reduces the manufacturing cost. In the thin film transistor array substrate, a gate electrode is connected to a gate line. A source electrode is connected to a data line crossing the gate line to define a pixel area. A drain electrode is opposed to the source electrode with a channel therebetween. A semiconductor layer is in the channel. A pixel electrode in the pixel area contacts the drain electrode over substantially the entire overlapping area between the two. A channel protective film is provided on the semiconductor layer corresponding to the channel to protect the semiconductor layer.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: June 14, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Young Seok Choi, Byung Yong Ahn, Ki Su Cho, Hong Woo Yu
  • Patent number: 7923730
    Abstract: An impurity element imparting one conductivity type is included in a layer close to a gate insulating film of layers with high crystallinity, so that a channel formation region is formed not in a layer with low crystallinity which is formed at the beginning of film formation but in a layer with high crystallinity which is formed later in a microcrystalline semiconductor film. Further, the layer including an impurity element is used as a channel formation region. Furthermore, a layer which does not include an impurity element imparting one conductivity type or a layer which has an impurity element imparting one conductivity type at an extremely lower concentration than other layers, is provided between a pair of semiconductor films including an impurity element functioning as a source region and a drain region and the layer including an impurity element functioning as a channel formation region.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi Godo, Hidekazu Miyairi
  • Patent number: 7851325
    Abstract: The present invention relates to creating an active layer of strained semiconductor using a combination of buried and sacrificial stressors. That is, a process can strain an active semiconductor layer by transferring strain from a stressor layer buried below the active semiconductor layer and by transferring strain from a sacrificial stressor layer formed above the active semiconductor layer. As an example, the substrate may be silicon, the buried stressor layer may be silicon germanium, the active semiconductor layer may be silicon and the sacrificial stressor layer may be silicon germanium. Elastic edge relaxation is preferably used to efficiently transfer strain to the active layer.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: December 14, 2010
    Assignee: Acorn Technologies, Inc.
    Inventors: R. Stockton Gaines, Daniel J. Connelly, Paul A. Clifton
  • Patent number: 7586123
    Abstract: A thin film transistor array substrate and a fabricating method thereof are disclosed. The thin film transistor array substrate protects a thin film transistor without a protective film and accordingly reduces the manufacturing cost. In the thin film transistor array substrate, a gate electrode is connected to a gate line. A source electrode is connected to a data line crossing the gate line to define a pixel area. A drain electrode is opposed to the source electrode with a channel therebetween. A semiconductor layer is in the channel. A pixel electrode in the pixel area contacts the drain electrode over substantially the entire overlapping area between the two. A channel protective film is provided on-the semiconductor layer corresponding to the channel to protect the semiconductor layer.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 8, 2009
    Assignee: LG. Display Co., Ltd.
    Inventors: Young Seok Choi, Byung Yong Ahn, Ki Sul Cho, Hong Woo Yu
  • Publication number: 20070293026
    Abstract: A method of manufacturing a semiconductor device includes the step of performing an ion implantation process for implanting an impurity ion into a semiconductor substrate, and performing annealing in a state where temperature of respective portions of an annealing chamber are set differently in order to activate the impurity ion.
    Type: Application
    Filed: December 26, 2006
    Publication date: December 20, 2007
    Applicant: Hynix Semiconductor Inc.
    Inventors: Min Sik Jang, Noh Yeal Kwak