With Specified Crystalline Planes Or Axis (epo) Patents (Class 257/E29.004)
  • Publication number: 20100264465
    Abstract: An integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in semiconductor material with one crystal orientation and the SRAM cells are formed in a second semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in a top semiconductor layer with one crystal orientation and the SRAM cells are formed in an epitaxial semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the SRAM cells are formed in a top semiconductor layer with one crystal orientation and the logic transistors are formed in an epitaxial semiconductor layer with another crystal orientation.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 21, 2010
    Applicant: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Publication number: 20100260224
    Abstract: A primary surface 23a of a supporting base 23 of a light-emitting diode 21a tilts by an off-angle of 10 degrees or more and less than 80 degrees from the c-plane. A semiconductor stack 25a includes an active layer having an emission peak in a wavelength range from 400 nm to 550 nm. The tilt angle “A” between the (0001) plane (the reference plane SR3 shown in FIG. 5) of the GaN supporting base and the (0001) plane of a buffer layer 33a is 0.05 degree or more and 2 degrees or less. The tilt angle “B” between the (0001) plane of the GaN supporting base (the reference plane SR4 shown in FIG. 5) and the (0001) plane of a well layer 37a is 0.05 degree or more and 2 degrees or less. The tilt angles “A” and “B” are formed in respective directions opposite to each other with reference to the c-plane of the GaN supporting base.
    Type: Application
    Filed: May 13, 2010
    Publication date: October 14, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Masaki UENO, Fumitake NAKANISHI
  • Publication number: 20100252866
    Abstract: By appropriately orienting the channel length direction with respect to the crystallographic characteristics of the silicon layer, the stress-inducing effects of strained silicon/carbon material may be significantly enhanced compared to conventional techniques. In one illustrative embodiment, the channel may be oriented along the <100> direction for a (100) surface orientation, thereby providing an electron mobility increase of approximately a factor of four.
    Type: Application
    Filed: June 23, 2010
    Publication date: October 7, 2010
    Inventors: Igor Peidous, Thorsten Kammler, Andy Wei
  • Publication number: 20100244054
    Abstract: A method for manufacturing a semiconductor device, includes: a step of etching a Si (111) substrate along a (111) plane of the Si (111) substrate to separate a Si (111) thin-film device having a separated surface along the (111) plane.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Applicant: OKI DATA CORPORATION
    Inventors: Mitsuhiko OGIHARA, Tomohiko SAGIMORI, Takahito SUZUKI, Masataka MUTO
  • Publication number: 20100245970
    Abstract: A light control device includes: a single crystal substrate (10); an electro-optic thin film (20) which is provided on the single crystal substrate (10) and has an electro-optic effect; and a plurality of electrodes (30, 40) which are provided along a crystal axis of the electro-optic thin film and apply an electrical field along the crystal axis of the electro-optic thin film (20).
    Type: Application
    Filed: November 20, 2008
    Publication date: September 30, 2010
    Applicant: Rohm Co., Ltd.
    Inventors: Yoshikazu Fujimori, Tsuyoshi Fujii
  • Patent number: 7804130
    Abstract: Forming a high-?/metal gate field effect transistor using a gate last process in which the channel region has a curved profile thus increasing the effective channel length improves the short channel effect. During the high-?/metal gate process, after the sacrificial materials between the sidewall spacers are removed, the exposed semiconductor substrate surface at the bottom of the gate trench cavity is etched to form a curved recess. Subsequent deposition of high-? gate dielectric layer and gate electrode metal into the gate trench cavity completes the high-?/metal gate field effect transistor having a curved channel region that has a longer effective channel length.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: September 28, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Ka-Hing Fung
  • Publication number: 20100237474
    Abstract: Unpolished semiconductor wafers are produced by: (a) pulling a single crystal of a semiconductor material, (b) grinding the single crystal round, (c) separating a semiconductor wafer from this crystal, (d) rounding the edge of the semiconductor wafer, (e) surface-grinding at least one side of the semiconductor wafer, (f) treating the semiconductor wafer with an etchant, and (g) cleaning the semiconductor wafer. The unpolished semiconductor wafers have, on at least the front side, a reflectivity of 95% or more, a surface roughness of 3 nm or less, have a thickness of 80-2500 ?m, an overall planarity value GBIR of 5 ?m or less with an edge exclusion of 3 mm and a photolithographic resolution of at least 0.8 ?m, and which furthermore contain a native oxide layer with a thickness of 0.5-3 nm on both sides.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: SILTRONIC AG
    Inventors: Wolfgang Hensel, Rudolf Lehner, Helmut Schwenk
  • Patent number: 7800202
    Abstract: In order to obtain substantially the same operating speed of a p-type MOS transistor and an n-type MOS transistor forming a CMOS circuit, the n-type MOS transistor has a three-dimensional structure having a channel region on both the (100) plane and the (110) plane and the p-type MOS transistor has a planar structure having a channel region only on the (110) plane. Further, both the transistors are substantially equal to each other in the areas of the channel regions and gate insulating films. Accordingly, it is possible to make the areas of the gate insulating films and so on equal to each other and also to make the gate capacitances equal to each other.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: September 21, 2010
    Assignees: Tohoku University, Foundation for Advancement of International Science
    Inventors: Tadahiro Ohmi, Akinobu Teramoto
  • Publication number: 20100233539
    Abstract: A method is described of selectively etching a silicon substrate in small local areas in order to form columns or pillars in the etched surface. The silicon substrate is held in an etching solution of hydrogen fluoride, a silver salt and an alcohol. The inclusion of the alcohol provides a greater packing density of the silicon columns.
    Type: Application
    Filed: January 23, 2007
    Publication date: September 16, 2010
    Inventors: Mino Green, Feng-Ming Liu
  • Publication number: 20100224914
    Abstract: Provided is a semiconductor device including: a first n-channel fin-type field effect transistor formed on a first crystal plane; and a second n-channel fin-type field effect transistor formed on the first crystal plane and having a gate length longer than that of the first n-channel fin-type field effect transistor. A side surface of a fin of the first n-channel fin-type field effect transistor and a side surface of a fin of the second n-channel fin-type field effect transistor are both formed on a second crystal plane having a carrier mobility lower than that of the first crystal plane. The width of the fin of the second n-channel fin-type field effect transistor is greater than the width of the fin of the first n-channel fin-type field effect transistor.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 9, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Toshiyuki IWAMOTO, Gen TSUTSUI, Kiyotaka IMAI
  • Patent number: 7785939
    Abstract: A method utilizing localized amorphization and recrystallization of stacked template layers is provided for making a planar substrate having semiconductor layers of different crystallographic orientations. Also provided are hybrid-orientation semiconductor substrate structures built with the methods of the invention, as well as such structures integrated with various CMOS circuits comprising at least two semiconductor devices disposed on different surface orientations for enhanced device performance.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, John A. Ott, Alexander Reznicek, Katherine L. Saenger
  • Publication number: 20100213516
    Abstract: On a surface of a semiconductor substrate, a plurality of terraces formed stepwise by an atomic step are formed in the substantially same direction. Using the semiconductor substrate, a MOS transistor is formed so that no step exists in a carrier traveling direction (source-drain direction).
    Type: Application
    Filed: October 6, 2008
    Publication date: August 26, 2010
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Tomoyuki Suwa, Rihito Kuroda, Hideo Kudo, Yoshinori Hayamizu
  • Publication number: 20100207172
    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventors: Fujio Masuoka, Keon Jae Lee
  • Publication number: 20100207253
    Abstract: It is an object of the present invention to control the plane orientation of crystal grains obtained by using a laser beam, into a direction that can be substantially regarded as one direction in an irradiation region of the laser beam. After forming a cap film over a semiconductor film, the semiconductor film is crystallized by using a CW laser or a pulse laser having a repetition rate of greater than or equal to 10 MHz. The obtained semiconductor film has a plurality of crystal grains having a width of greater than or equal to 0.01 ?m and a length of greater than or equal to 1 ?m. In a surface of the obtained semiconductor film, a ratio of an orientation {211} is greater than or equal to 0.4 within the range of an angle fluctuation of ±10°.
    Type: Application
    Filed: March 17, 2010
    Publication date: August 19, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Tomoaki Moriwaka
  • Publication number: 20100200962
    Abstract: Provided is a method applicable to the production of silicon wafers having crystal orientation <100> or <110> and consisting in specifying wafer-supporting positions on the occasion of heat treatment in a vertical heat treatment furnace as well as a heat treatment jig for use in carrying out that method. It becomes possible to suppress the shear stress which contributes to the extension of the slip generated at each wafer-supporting element contact point as an initiation, suppress slip growth and thus markedly improve the yield of heat-treated silicon wafers. The heat-treated wafer obtained by using the supporting method and the heat treatment jig has few slip, in particular has no long and large slip, and is high in quality.
    Type: Application
    Filed: October 15, 2007
    Publication date: August 12, 2010
    Inventor: Takayuki Kihara
  • Publication number: 20100200896
    Abstract: A method for growing an epitaxial layer on a substrate wherein the substrate includes a surface having a Miller index of (110) for the beneficial properties. The method comprises using a direct silicon bonded wafer with a substrate having a first Miller index and a surface having a second Miller index. An element such as a gate for a PFET may be deposited onto the surface. The area not under the gate may then be etched away to expose the substrate. An epitaxial layer may then be grown on the surface providing optimal growth patterns. The Miller index of the substrate may be (100). In an alternative embodiment the surface may have a Miller index of (100) and the surface is etched where an element such as a gate for a PFET may be placed.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Jinghong Li, Thomas A. Wallner, Haizhou Yin
  • Publication number: 20100193795
    Abstract: Methods for forming semiconductor devices include providing a crystalline template having an initial grain size, annealing the crystalline template, the annealed template having a final grain size larger than the initial grain size, forming a buffer layer over the annealed template, and forming a semiconductor layer over the buffer layer.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 5, 2010
    Inventors: Leslie G. Fritzemeier, Christopher J. Vineis
  • Publication number: 20100193846
    Abstract: A semiconductor device includes: a semiconductor substrate having a p-MOS region; an element isolation region formed in a surface portion of the semiconductor substrate and defining p-MOS active regions in the p-MOS region; a p-MOS gate electrode structure formed above the semiconductor substrate, traversing the p-MOS active region and defining a p-MOS channel region under the p-MOS gate electrode structure; a compressive stress film selectively formed above the p-MOS active region and covering the p-MOS gate electrode structure; and a stress released region selectively formed above the element isolation region in the p-MOS region and releasing stress in the compressive stress film, wherein a compressive stress along the gate length direction and a tensile stress along the gate width direction are exerted on the p-MOS channel region. The performance of the semiconductor device can be improved by controlling the stress separately for the active region and element isolation region.
    Type: Application
    Filed: April 6, 2010
    Publication date: August 5, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Shigeo Satoh
  • Publication number: 20100187660
    Abstract: A 3-D stacked semiconductor device is formed by forming a trench is formed through a top surface in a dielectric layer to expose the crystalline silicon layer having a (100) crystal plane, such that the trench walls are parallel to a <100> direction. Epitaxial silicon is grown between the trench walls to a level that is below the top surface of the dielectric layer. Epitaxial silicon is laterally grown using the top portion of the epitaxially grown silicon as a seed to form a laterally grown epitaxial layer having a (100) crystal plane on the dielectric layer.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Inventors: Sanh Tang, David Wells, Eric Blomiley
  • Publication number: 20100187575
    Abstract: Some embodiments comprise a plurality of fins, wherein at least a first fin of the plurality of fins comprises a different fin width compared to a fin width of another fin of the plurality of fins. At least a second fin of the plurality of fins comprises a different crystal surface orientation compared to another fin of the plurality of fins.
    Type: Application
    Filed: January 28, 2009
    Publication date: July 29, 2010
    Inventors: Peter Baumgartner, Domagoj Siprak
  • Publication number: 20100187661
    Abstract: Provided is a sintered silicon wafer, wherein the ratio [I(220)/I(111) . . . (1)] of intensity of a (220) plane and intensity of a (111) plane measured by X-ray diffraction is 0.5 or more and 0.8 or less, and the ratio [I(311)/I(111) . . . (2)] of intensity of a (311) plane and intensity of a (111) plane is 0.3 or more and 0.5 or less. The provided sintered silicon wafer has a smooth surface in which its surface roughness is equivalent to a single crystal silicon.
    Type: Application
    Filed: July 4, 2008
    Publication date: July 29, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Ryo Suzuki, Hiroshi Takamura
  • Patent number: 7759205
    Abstract: Methods for producing a semiconductor device are provided. In one embodiment, a method includes the steps of: (i) fabricating a partially-completed semiconductor device including a substrate, a source/drain region in the substrate, a gate stack overlaying the substrate, and a sidewall spacer adjacent the gate stack; (ii) utilizing an anisotropic etch to remove an upper portion of the sidewall spacer while leaving intact a lower portion of the sidewall spacer overlaying the substrate; (iii) implanting ions in the source/drain region; and (iv) annealing the semiconductor device to activate the implanted ions. The step of annealing is performed with the lower portion of the sidewall spacer intact to deter the ingress of oxygen into the substrate and minimize under-oxide regrowth proximate the gate stack.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: July 20, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kingsuk Maitra, John Iacoponi
  • Publication number: 20100176424
    Abstract: A semiconductor structure includes of a plurality of semiconductor fins overlying an insulator layer, a gate dielectric overlying a portion of said semiconductor fin, and a gate electrode overlying the gate dielectric. Each of the semiconductor fins has a top surface, a first sidewall surface, and a second sidewall surface. Dopant ions are implanted at a first angle (e.g., greater than about 7°) with respect to the normal of the top surface of the semiconductor fin to dope the first sidewall surface and the top surface. Further dopant ions are implanted with respect to the normal of the top surface of the semiconductor fin to dope the second sidewall surface and the top surface.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 15, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Ping-Wei Wang, Hao-Yu Chen, Fu-Liang Yang, Chenming Hu
  • Patent number: 7755172
    Abstract: A method for growing III-V nitride films having an N-face or M-plane using an ammonothermal growth technique. The method comprises using an autoclave, heating the autoclave, and introducing ammonia into the autoclave to produce smooth N-face or M-plane Gallium Nitride films and bulk GaN.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: July 13, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Tadao Hashimoto, Hitoshi Sato, Shuji Nakamura
  • Patent number: 7755104
    Abstract: A semiconductor device that has a pMOS double-gate structure, has a substrate, the crystal orientation of the top surface of which is (100), a semiconductor layer that is made of silicon or germanium, formed on the substrate such that currents flow in a direction of a first <110> crystal orientation, and channels are located at sidewall of the semiconductor layer, a source layer that is formed on the substrate adjacent to one end of the semiconductor layer in the direction of first <110> crystal orientation and is made of a metal or metal silicide to form a Schottky junction with the semiconductor layer; a drain layer that is formed on the substrate adjacent to the other end of the semiconductor layer in the direction of first <110> crystal orientation and is made of a metal or metal silicide to form a Schottky junction with the semiconductor layer; a gate electrode that is formed on the semiconductor layer in a direction of a second <110> crystal orientation perpendicular to the curre
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Atsushi Yagishita
  • Publication number: 20100155788
    Abstract: Embodiments of the invention provide a substrate with a first layer having a first crystal orientation on a second layer having a second crystal orientation different than the first crystal orientation. The first layer may have a uniform thickness.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 24, 2010
    Inventors: Mohamad A. Shaheen, Jack T. Kavlieros, Been-Yih Jin, Brian S. Doyle
  • Publication number: 20100148319
    Abstract: A three-dimensional thin-film semiconductor substrate having a plurality of ridges on the surface of the semiconductor substrate which define a base opening of an inverted pyramidal cavity and walls defining the inverted pyramidal cavity is provided. And a fabrication method for a 3-D TFSS by forming a porous silicon layer on a silicon template having a top surface aligned along a (100) crystallographic orientation plane of the silicon template and a plurality of walls each aligned along a (111) crystallographic orientation plane of the silicon template and forming an inverted pyramidal cavity. The porous silicon layer forms substantially conformal on the silicon template. Then forming a substantially conformal epitaxial silicon layer on the porous silicon layer and releasing the epitaxial silicon layer from the silicon template.
    Type: Application
    Filed: November 13, 2009
    Publication date: June 17, 2010
    Applicant: SOLEXEL, INC.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi
  • Publication number: 20100148223
    Abstract: A semiconductor device includes an insulated-gate field-effect transistor which is disposed on a semiconductor substrate having an element formation plane in a (110) plane direction, and which has a channel length direction in a <?110> direction, and a first element isolation insulation film which is buried in a trench in an element isolation region of the semiconductor substrate and has a positive expansion coefficient, the first element isolation insulation film applying a compressive stress by operation heat to the insulated-gate field-effect transistor in the channel length direction.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 17, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Zhengwu Jin
  • Publication number: 20100148320
    Abstract: A III-V nitride, e.g., GaN, substrate including a (0001) surface offcut from the <0001> direction predominantly toward a direction selected from the group consisting of <10-10> and <11-20> directions, at an offcut angle in a range that is from about 0.2 to about 10 degrees, wherein the surface has a RMS roughness measured by 50×50 ?m2 AFM scan that is less than 1 nm, and a dislocation density that is less than 3E6 cm?2. The substrate may be formed by offcut slicing of a corresponding boule or wafer blank, by offcut lapping or growth of the substrate body on a corresponding vicinal heteroepitaxial substrate, e.g., of offcut sapphire. Both upper and lower surfaces may be offcut. The substrate is usefully employed for homoepitaxial deposition in the fabrication of III-V nitride-based microelectronic and opto-electronic devices.
    Type: Application
    Filed: February 26, 2010
    Publication date: June 17, 2010
    Applicant: CREE, INC.
    Inventors: Xueping Xu, Robert P. Vaudo, Jeffrey S. Flynn, George R. Brandes
  • Publication number: 20100148318
    Abstract: A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template.
    Type: Application
    Filed: November 13, 2009
    Publication date: June 17, 2010
    Applicant: SOLEXEL, INC.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi
  • Publication number: 20100140671
    Abstract: A method of manufacturing a semiconductor device includes forming silicon pillar 11 on substrate 10, forming a protective film which covers an upper end portion and a lower end portion of a side surface of silicon pillar 11, forming a constricted portion by anisotropic etching in a portion of the side surface of silicon pillar 11 which is not covered with the protective film after forming the protective film, removing the protective film after forming the constricted portion, forming gate oxide film 12 which covers the side surface of silicon pillar 11 in which the constricted portion is formed, and forming gate electrode 13 which covers gate oxide film 12.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 10, 2010
    Applicant: Elpida Memory, Inc.
    Inventor: Kazuhiro NOJIMA
  • Publication number: 20100133663
    Abstract: A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 3, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Troy J. Baker, Benjamin A. Haskell, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamua
  • Patent number: 7728364
    Abstract: The present invention provides structures and methods for a transistor formed on a V-shaped groove. The V-shaped groove contains two crystallographic facets joined by a ridge. The facets have different crystallographic orientations than what a semiconductor substrate normally provides such as the substrate orientation or orientations orthogonal to the substrate orientation. Unlike the prior art, the V-shaped groove is formed self-aligned to the shallow trench isolation, eliminating the need to precisely align the V-shaped grooves with lithographic means. The electrical properties of the new facets, specifically, the enhanced carrier mobility, are utilized to enhance the performance of transistors. In a transistor with a channel on the facets that are joined to form a V-shaped profile, the current flows in the direction of the ridge joining the facets avoiding any inflection in the direction of the current.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Thomas W. Dyer
  • Publication number: 20100117125
    Abstract: A semiconductor structure includes a semiconductor mesa located upon an isolating substrate. The semiconductor mesa includes a first end that includes a first doped region separated from a second end that includes a second doped region by an isolating region interposed therebetween. The first doped region and the second doped region are of different polarity. The semiconductor structure also includes a channel stop dielectric layer located upon a horizontal surface of the semiconductor mesa over the second doped region. The semiconductor structure also includes a first device located using a sidewall and a top surface of the first end as a channel region, and a second device located using the sidewall and not the top surface of the second end as a channel. A related method derives from the foregoing semiconductor structure. Also included is a semiconductor circuit that includes the semiconductor structure.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 13, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Publication number: 20100117203
    Abstract: A process for forming an oxide-containing film from silicon is provided that includes heating the silicon substrates to a process temperature of between 250° C. and 1100° C. with admission into the process chamber of diatomic reductant source gas Z-Z? where Z and Z? are each H, D and T and a stable source of oxide ion. Multiple exhaust ports exist along the vertical extent of the process chamber to create reactant across flow. A batch of silicon substrates is provided having multiple silicon base layers, each of the silicon base layers having exposed <110> and <100> planes and a film residual stress associated with the film being formed at a temperature of less than 600° C. and having a <110> film thickness that exceeds a <100> film thickness on the <100> crystallographic plane by less than 20%, or a film characterized by thickness anisotropy less than 18% and an electrical breakdown field of greater than 10.5 MV/cm.
    Type: Application
    Filed: January 30, 2007
    Publication date: May 13, 2010
    Applicant: Aviza Technology, Inc.
    Inventors: Robert Jeffrey Bailey, Hood Chatham, Derrick Foster, Olivier Laparra, Martin Mogaard, Cole Porter, Taiquing T. Qiu, Helmuth Treichel
  • Publication number: 20100109055
    Abstract: MOS transistors having an optimized channel plane orientation are provided. The MOS transistors include a semiconductor substrate having a main surface of a (100) plane. An isolation layer is provided in a predetermined region of the semiconductor substrate to define an active region. A source region and a drain region are disposed in the active region. The source and drain regions are disposed on a straight line parallel to a <100> orientation. An insulated gate electrode is disposed over a channel region between the source and drain regions. Methods of fabricating the MOS transistors are also provided.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 6, 2010
    Inventor: Il-Gweon Kim
  • Publication number: 20100102323
    Abstract: A method is provided for forming a directionally crystallized (100)-normal crystallographic orientation silicon (Si) film. The method provides a substrate including Si. An amorphous Si (a-Si) layer is formed overlying the substrate, and a silicon oxide cap layer is formed overlying the a-Si layer. In response to scanning a laser in a first direction along a top surface of the silicon oxide cap layer, the a-Si layer is transformed into a crystalline Si film having a (100)-normal crystallographic orientation, with crystal grains elongated in the first direction. That is, the crystalline Si film has grain boundaries between crystal grains, aligned in parallel with the first direction.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 29, 2010
    Inventors: Robert S. Sposili, Apostolos T. Voutsas
  • Publication number: 20100090256
    Abstract: A semiconductor structure with stress regions includes a substrate defining a first and a second device zone; a first and a second stress region formed in each of the first and second device zones to yield stress different in level; and a barrier plug separating the two device zones from each other. Due to the stress yielded at the stress regions, increased carrier mobility and accordingly, increased reading current can be obtained, and a relatively lower reading voltage is needed to obtain initially required reading current. As a result, the probability of stress-induced leakage current (SILC) is reduced and the semiconductor memory structure may have enhanced data retention ability.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Inventors: Hung-Wei Chen, Yider Wu
  • Publication number: 20100090258
    Abstract: Provided is a semiconductor device which can reduce on-resistance by improving hole mobility of a channel region. A trench gate type MOSFET (semiconductor device) is provided with a p+-type silicon substrate whose crystal plane of a main surface is a (110) plane; an epitaxial layer formed on the silicon substrate; a trench, which is formed on the epitaxial layer and includes a side wall parallel to the thickness direction (Z direction) of the silicon substrate; a gate electrode formed inside the trench through a gate dielectric film; an n-type channel region formed along the side wall of the trench; and a p+-type source region and a p?-type drain region which are formed to sandwich the channel region in the thickness direction (Z direction) of the silicon substrate. The trench is formed to have the crystal plane of the side wall as a (110) plane.
    Type: Application
    Filed: April 28, 2008
    Publication date: April 15, 2010
    Applicant: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Publication number: 20100090257
    Abstract: A channel is formed at a recessed portion or a projecting portion of a substrate, and a gate insulating film is formed so as to have first to third insulating regions along the channel. Each of the gate insulating films of the first and third insulating regions has a first gate insulating film containing no electric charge trap formed on a plane different from a principal surface of the substrate, an electric charge accumulating film containing an electric charge trap, and a second gate insulating film containing no electric charge trap. The gate insulating film of the second insulating region at the middle is formed on a plane parallel to the principal surface of the substrate and is composed of only a third gate insulating film containing no electric charge trap.
    Type: Application
    Filed: October 23, 2007
    Publication date: April 15, 2010
    Inventors: Masayuki Terai, Shinji Fujieda, Akio Toda
  • Publication number: 20100084691
    Abstract: The invention relates to a semiconductor component with stress-absorbing semiconductor layer (SA) and an associated fabrication method, a crystalline stress generator layer (SG) for generating a mechanical stress being formed on a carrier material (1). An insulating stress transmission layer (2), which transmits the mechanical stress which has been generated to a stress-absorbing semiconductor layer (SA), is formed at the surface of the stress generator layer (SG), with the result that in addition to improved charge carrier mobility, improved electrical properties of the semiconductor component are also obtained.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 8, 2010
    Applicant: Infineon Technologies AG
    Inventor: Georg Tempel
  • Patent number: 7691688
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Publication number: 20100078687
    Abstract: A semiconductor process and apparatus includes forming <100> channel orientation CMOS transistors (24, 34) with enhanced hole mobility in the NMOS channel region and reduced channel defectivity in the PMOS region by depositing a first tensile etch stop layer (51) over the PMOS and NMOS gate structures, etching the tensile etch stop layer (51) to form tensile sidewall spacers (62) on the exposed gate sidewalls, and then depositing a second hydrogen rich compressive or neutral etch stop layer (72) over the NMOS and PMOS gate structures (26, 36) and the tensile sidewall spacers (62). In other embodiments, a first hydrogen-rich etch stop layer (81) is deposited and etched to form sidewall spacers (92) on the exposed gate sidewalls, and then a second tensile etch stop layer (94) is deposited over the NMOS and PMOS gate structures (26, 36) and the sidewall spacers (92).
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Da Zhang, Voon-Yew Thean, Christopher V. Baiocco, Jie Chen, Weipeng Li, Young Way Teh, Jin Wallner
  • Publication number: 20100072476
    Abstract: A pixel structure includes a substrate, a first and a second patterned conductive layers, and a pixel electrode. The first patterned conductive layer, disposed on the substrate, includes at least one scan line, at least one gate, and at least one common electrode line. The second patterned conductive layer, disposed on the first patterned conductive layer, includes at least one data line, at least one source/drain, and at least one first patterned layer partly disposed on the common electrode line. The pixel electrode, disposed on the second patterned conductive layer, includes at least one first part and one second part. The first part partly covers the first patterned layer and the common electrode line. The second part, connected to the source/drain, covers the other part of the first patterned layer. The first and second patterned layers compose at least one first capacitance.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 25, 2010
    Applicant: AU OPTRONICS CORPORATION
    Inventor: Chin-An Tseng
  • Publication number: 20100072519
    Abstract: In a P-channel power MIS field effect transistor formed on a silicon surface having substantially a (110) plane, a gate insulation film is used which provides a gate-to-source breakdown voltage of 10 V or more, and planarizes the silicon surface, or contains Kr, Ar, or Xe.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 25, 2010
    Applicants: Yazaki Corporation, Tadahiro Ohmi
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Hiroshi Akahori, Keiichi Nii, Takanori Watanabe
  • Publication number: 20100072580
    Abstract: A multi-layered substrate with bulk substrate characteristics and processes for the fabrication of such substrates are herein disclosed. The multi-layered substrate can include a first layer, a second layer and an interfacial layer therebetween. The first and second layers can be silicon, germanium, or any other suitable material of the same or different crystal orientations. The interfacial layer can be an oxide layer from about 5 Angstroms to about 50 Angstroms.
    Type: Application
    Filed: November 17, 2009
    Publication date: March 25, 2010
    Applicant: INTEL CORPORATION
    Inventors: Mohamad A. Shaheen, Willy Rachmady, Peter Toichinsky
  • Patent number: 7682888
    Abstract: A method of forming an integrated circuit includes selectively forming active channel regions for NMOS and PMOS transistors on a substrate parallel to a <100> crystal orientation thereof and selectively forming source/drain regions of the NMOS transistors with Carbon (C) impurities therein.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho Lee, Tetsuji Ueno, Hwa-Sung Rhe
  • Publication number: 20100065893
    Abstract: A semiconductor memory structure with stress regions includes a substrate defining a first and a second device zone; a first and a second stress region formed in each of the first and second device zone to yield stress different in level; a barrier plug separating the two device zones from each other; and a plurality of oxide spacers being located between the first stress regions and the barrier plug while in direct contact with the first stress regions. Due to the stress yielded at the stress regions, increased carrier mobility and accordingly, increased reading current can be obtained, and only a relatively lower reading voltage is needed to obtain an initially required reading current. As a result, the probability of stress-induced leakage current is reduced to enhance the data retention ability.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Applicant: EON SILICON SOLUTION INC.
    Inventors: Hung-Wei Chen, Yider Wu
  • Publication number: 20100059797
    Abstract: A method of forming a field effect transistor having a heavily doped p-type (110) semiconductor layer over a metal substrate starts with providing a heavily doped p-type (110) silicon layer, and forming a lightly doped p-type (110) silicon layer on the P heavily doped-type (110) silicon layer. The method also includes forming a p-channel MOSFET which has a channel region along a (110) crystalline plane in the lightly doped p-type (110) silicon layer to allow a current conduction in a <110> direction. The p-channel MOSFET also includes a gate dielectric layer having a high dielectric constant material lining the (110) crystalline plane. The method further includes forming a top conductor layer overlying the lightly doped p-type (110) silicon layer and a bottom conductor layer underlying the heavily doped p-type (110) silicon layer.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Inventors: TAT NGAI, QI WANG
  • Publication number: 20100052113
    Abstract: There are disclosed an epitaxial film, comprising: heating an Si substrate provided with an SiO2 layer with a film thickness of 1.0 nm or more to 10 nm or less on a surface of the substrate; and forming on the SiO2 layer by use of a metal target represented by the following composition formula: yA(1?y)B??(1), in which A is one or more elements selected from the group consisting of rare earth elements including Y and Sc, B is Zr, and y is a numeric value of 0.03 or more to 0.20 or less, the epitaxial film represented by the following composition formula: xA2O3?(1?x)BO2??(2), in which A and B are respectively same elements as A and B of the composition formula (1), and x is a numeric value of 0.010 or more to 0.035 or less.
    Type: Application
    Filed: March 5, 2008
    Publication date: March 4, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Jumpei Hayashi, Takanori Matsuda, Tetsuro Fukui, Hiroshi Funakubo