Tunneling Barrier (epo) Patents (Class 257/E29.042)
  • Patent number: 9040960
    Abstract: The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TFET, the drain region comprises p-doped silicon, while the source region comprises n-doped silicon carbide.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Haining S. Yang
  • Patent number: 8982614
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first ferromagnetic layer, a tunnel barrier provided on the first ferromagnetic layer, and a second ferromagnetic layer provided on the tunnel barrier. The tunnel barrier includes a nonmagnetic mixture containing MgO and a metal oxide with a composition which forms, in a solid phase, a single phase with MgO.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Nagamine, Daisuke Ikeno, Katsuya Nishiyama, Katsuaki Natori, Koji Yamakawa
  • Patent number: 8878234
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device may include a substrate having a main processing surface, a first source/drain region comprising a first material of a first conductivity type, a second source/drain region comprising a second material of a second conductivity type, wherein the second conductivity type is different from the first conductivity type, a body region electrically coupled between the first source/drain region and the second source/drain region, wherein the body region extends deeper into the substrate than the first source/drain region in a first direction that is perpendicular to the main processing surface of the substrate, a gate dielectric disposed over the body region, and a gate region disposed over the gate dielectric, wherein the gate region overlaps with at least a part of the first source/drain region and with a part of the body region in the first direction.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Harald Gossner, Ramgopal Rao, Angada Sachid, Ashish Pal, Ram Asra
  • Patent number: 8872291
    Abstract: A ferromagnetic tunnel junction structure comprising a first ferromagnetic layer, a second ferromagnetic layer, and a tunnel barrier layer that is interposed between the first ferromagnetic layer and the second ferromagnetic layer, wherein the tunnel barrier layer includes a crystalline non-magnetic material having constituent elements that are similar to those of an crystalline oxide that has spinel structure as a stable phase structure; the non-magnetic material has a cubic structure having a symmetry of space group Fm-3m or F-43m in which atomic arrangement in the spinel structure is disordered; and an effective lattice constant of the cubic structure is substantially half of the lattice constant of the oxide of the spinel structure.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: October 28, 2014
    Assignee: National Institute For Materials Science
    Inventors: Hiroaki Sukegawa, Seiji Mitani, Tomohiko Niizeki, Tadakatsu Ohkubo, Kouichiro Inomata, Kazuhiro Hono, Masafumi Shirai, Yoshio Miura, Kazutaka Abe, Shingo Muramoto
  • Patent number: 8659069
    Abstract: A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sung-Ho Heo, Jae-Ho Choi, Hun-Hyeong Lim, Ki-Hyun Hwang, Woo-Sung Lee
  • Patent number: 8648406
    Abstract: A single poly EEPROM (Electrically Erasable Programmable Read Only Memory), which may include at least one of the following: (1) A second conductive type well formed on and/or over a semiconductor substrate. (2) A first conductive type source and drain regions formed in the second conductive type well. The single poly EEPROM may include at least one of: (a) A tunnel oxide layer formed on and/or over the second conductive type well. (b) A floating gate formed on and/or over the tunnel oxide layer and doped with second conductive type impurity ions. (c) A first conductive type impurity region formed in the second conductive type well adjacent to the floating gate. The floating gate may be configured such that a concentration of a region of the floating gate adjacent to the drain region is higher than that of the other region of the floating gate adjacent to the impurity region.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: February 11, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hangeon Kim
  • Patent number: 8637921
    Abstract: A method for forming a tunneling layer of a nonvolatile trapped-charge memory device and the article made thereby. The method includes multiple oxidation and nitridation operations to provide a dielectric constant higher than that of a pure silicon dioxide tunneling layer but with a fewer hydrogen and nitrogen traps than a tunneling layer having nitrogen at the substrate interface. The method provides for an improved memory window in a SONOS-type device. In one embodiment, the method includes an oxidation, a nitridation, a reoxidation and a renitridation. In one implementation, the first oxidation is performed with O2 and the reoxidation is performed with NO.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: January 28, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick B. Jenne
  • Patent number: 8637851
    Abstract: Disclosed herein is a graphene device having a structure in which a physical gap is provided so that the off-state current of the graphene device can be significantly reduced without having to form a band gap in graphene, and thus the on/off current ratio of the graphene device can be significantly increased while the high electron mobility of graphene is maintained.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: January 28, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Byung Jin Cho, Jeong Hun Mun
  • Patent number: 8614124
    Abstract: Scaling a nonvolatile trapped-charge memory device and the article made thereby. In an embodiment, scaling includes multiple oxidation and nitridation operations to provide a tunneling layer with a dielectric constant higher than that of a pure silicon dioxide tunneling layer but with a fewer hydrogen and nitrogen traps than a tunneling layer having nitrogen at the substrate interface. In an embodiment, scaling includes forming a charge trapping layer with a non-homogenous oxynitride stoichiometry. In one embodiment the charge trapping layer includes a silicon-rich, oxygen-rich layer and a silicon-rich, oxygen-lean oxynitride layer on the silicon-rich, oxygen-rich layer. In an embodiment, the method for scaling includes a dilute wet oxidation to density a deposited blocking oxide and to oxidize a portion of the silicon-rich, oxygen-lean oxynitride layer.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 24, 2013
    Assignee: Cypress Semiconductor Corporation
    Inventors: Fredrick B. Jenne, Sagy Charel Levy
  • Patent number: 8575674
    Abstract: Disclosed is a ferromagnetic tunnel junction structure which is characterized by having a tunnel barrier layer that comprises a non-magnetic material having a spinel structure. The ferromagnetic tunnel junction structure is also characterized in that the non-magnetic material is substantially MgAl2O4. The ferromagnetic tunnel junction is also characterized in that at least one of the ferromagnetic layers comprises a Co-based full Heusler alloy having an L21 or B2 structure. The ferromagnetic tunnel junction structure is also characterized in that the Co-based full Heusler alloy comprises a substance represented by the following formula: Co2FeAlxSi1-x (0?x?1). Also disclosed are a magnetoresistive element and a spintronics device, each of which utilizes the ferromagnetic tunnel junction structure and can achieve a high TMR value, that cannot be achieved by employing conventional tunnel barrier layers other than a MgO barrier.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: November 5, 2013
    Assignee: National Institute for Materials Science
    Inventors: Hiroaki Sukegawa, Koichiro Inomata, Rong Shan, Masaya Kodzuka, Kazuhiro Hono, Takao Furubayashi, Wenhong Wang
  • Patent number: 8519488
    Abstract: A hafnium oxide layer, between a III-V semiconductor layer and a metal oxide layer is used to prevent interaction between the III-V semiconductor layer and the metal oxide layer.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 27, 2013
    Assignee: National Chiao Tung University
    Inventors: Edward Yi Chang, Yueh-Chin Lin
  • Patent number: 8487450
    Abstract: Some embodiments include vertical stacks of memory units, with individual memory units each having a memory element, a wordline, a bitline and at least one diode. The memory units may correspond to cross-point memory, and the diodes may correspond to band-gap engineered diodes containing two or more dielectric layers sandwiched between metal layers. Tunneling properties of the dielectric materials and carrier injection properties of the metals may be tailored to engineer desired properties into the diodes. The diodes may be placed between the bitlines and the memory elements, or may be placed between the wordlines and memory elements. Some embodiments include methods of forming cross-point memory arrays. The memory arrays may contain vertical stacks of memory unit cells, with individual unit cells containing cross-point memory and at least one diode.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 16, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8441000
    Abstract: The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TPET, the drain region comprises p-doped silicon, while the source region comprises n-doped SiC.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Haining S. Yang
  • Patent number: 8405121
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device may include a substrate having a main processing surface, a first source/drain region comprising a first material of a first conductivity type, a second source/drain region comprising a second material of a second conductivity type, wherein the second conductivity type is different from the first conductivity type, a body region electrically coupled between the first source/drain region and the second source/drain region, wherein the body region extends deeper into the substrate than the first source/drain region in a first direction that is perpendicular to the main processing surface of the substrate, a gate dielectric disposed over the body region, and a gate region disposed over the gate dielectric, wherein the gate region overlaps with at least a part of the first source/drain region and with a part of the body region in the first direction.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: March 26, 2013
    Assignee: Infineon Technologies AG
    Inventors: Harald Gossner, Ramgopal Rao, Angada Sachid, Ashish Pal, Ram Asra
  • Patent number: 8399918
    Abstract: An electronic device can include a tunnel structure that includes a first electrode, a second electrode, and tunnel dielectric layer disposed between the electrodes. In a particular embodiment, the tunnel structure may or may not include an intermediate doped region that is at the primary surface, abuts a lightly doped region, and has a second conductivity type opposite from and a dopant concentration greater than the lightly doped region. In another embodiment, the electrodes have opposite conductivity types. In a further embodiment, an electrode can be formed from a portion of a substrate or well region, and the other electrode can be formed over such portion of the substrate or well region.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: March 19, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Thierry Coffi Herve Yao, Gregory James Scott
  • Publication number: 20120068159
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a first memory portion. The first memory portion includes a first base semiconductor layer, a first electrode, a first channel semiconductor layer, a first base tunnel insulating film, a first channel tunnel insulating, a first charge retention layer and a first block insulating film. The first channel semiconductor layer is provided between the first base semiconductor layer and the first electrode, and includes a first channel portion. The first base tunnel insulating film is provided between the first base semiconductor layer and the first channel semiconductor layer. The first channel tunnel insulating film is provided between the first electrode and the first channel portion. The first charge retention layer is provided between the first electrode and the first channel tunnel insulating film. The first block insulating film is provided between the first electrode and the first charge retention layer.
    Type: Application
    Filed: March 23, 2011
    Publication date: March 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Jun FUJIKI, Naoki Yasuda, Daisuke Matsushita
  • Patent number: 7981735
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 19, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yark Yeon Kim, Seong Jae Lee, Moon Gyu Jang, Chel Jong Choi, Myung Sim Jun, Byoung Chul Park
  • Publication number: 20110133169
    Abstract: A method for forming a nanowire tunnel field effect transistor (FET) device includes forming a nanowire suspended by first and second pad regions over a semiconductor substrate, the nanowire including a core portion and a dielectric layer, forming a gate structure around a portion of the dielectric layer, forming a first spacer around portions of the nanowire extending from the gate structure, implanting ions in a first portion of the nanowire, implanting ions in the dielectric layer of a second portion of the nanowire, removing the dielectric layer from the second portion of the nanowire, removing the core portion of the second portion of the exposed nanowire to form a cavity, and epitaxially growing a doped semiconductor material in the cavity from exposed cross sections of the nanowire and the second pad region to connect the exposed cross sections of the nanowire to the second pad region.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 9, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sarunya Bangsaruntip, Josephine B. Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 7947557
    Abstract: The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Haining S. Yang
  • Patent number: 7897412
    Abstract: In a magnetic random access memory (MRAM) having a transistor and a magnetic tunneling junction (MTJ) layer in a unit cell, the MTJ layer includes a lower magnetic layer, an oxidation preventing layer, a tunneling oxide layer, and an upper magnetic layer, which are sequentially stacked. The tunneling oxide layer may be formed using an atomic layer deposition (ALD) method. At least the oxidation preventing layer may be formed using a method other than the ALD method.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-jin Park, Tae-wan Kim, Jung-hyun Lee, Wan-jun Park, I-hun Song
  • Patent number: 7875958
    Abstract: Structures include a tunneling device disposed over first and second lattice-mismatched semiconductor materials. Process embodiments include forming tunneling devices over lattice-mismatched materials.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: January 25, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhiyuan Cheng, Calvin Sheen
  • Patent number: 7843033
    Abstract: An integrated circuit pad structure includes a ground strip (206) positioned below a pad (101). In one example a conductive element (102) is coupled to the pad (101), and at least two tiled layers, positioned below the first conductive element (102) and positioned above the ground strip (206) are included. A conductor (203), may run beneath the ground strip (206). In a second example, a pad (101) is seated on a ground shield cage having a bottom conductive ground element (302) including several ground strips where at least one ground strip (116) is along a signal routing path. The ground shield cage further includes a set of stacked conductive ground elements, stacked to form sidewalls (209, 210) of the cage. The top conductive ground element (301) of the stacked elements has an inner perimeter and an outer perimeter, such that the inner perimeter surrounds the pad (101) and the top conductive ground element (301) is in the plane of the conductive element (102) coupled to the pad (101).
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jyoti P. Mondal, David B. Harr
  • Publication number: 20100258787
    Abstract: Provided is a field effect transistor including a graphene channel layer, and capable of increasing an on/off ratio of an operating current by using the graphene of the graphene channel layer. The field effect transistor includes: a substrate; the graphene channel layer which is disposed on a portion of the substrate and includes graphene; a first electrode disposed on a first region of the graphene channel layer and a portion of the substrate; an interlayer disposed on a second region of the graphene channel layer, which is apart from the first region, and a portion of the substrate; a second electrode disposed on the interlayer; a gate insulation layer disposed on a portion of the graphene channel layer, the first electrode, and the second electrode; and a gate electrode disposed on a portion of the gate insulation layer.
    Type: Application
    Filed: December 29, 2009
    Publication date: October 14, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Byung-Gyu CHAE, Hyun Tak KIM
  • Patent number: 7768035
    Abstract: A semiconductor device has a semiconductor base of a first conductivity type; a hetero semiconductor region in contact with the semiconductor base; a gate electrode adjacent to a portion of a junction between the hetero semiconductor region and the semiconductor base across a gate insulating film; a source electrode connected to the hetero semiconductor region; and a drain electrode connected to the semiconductor base. The hetero semiconductor region has a band gap different from that of the semiconductor base. The hetero semiconductor region includes a first hetero semiconductor region and a second hetero semiconductor region. The first hetero semiconductor region is formed before the gate insulating film is formed. The second hetero semiconductor region is formed after the gate insulating film is formed.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: August 3, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yoshio Shimoida, Tetsuya Hayashi, Masakatsu Hoshi, Hideaki Tanaka, Shigeharu Yamagami
  • Patent number: 7683364
    Abstract: A gated resonant tunneling diode (GRTD) is disclosed including a metal oxide semiconductor (MOS) gate over a gate dielectric layer which is biased to form an inversion layer between two barrier regions, resulting in a quantum well less than 15 nanometers wide. Source and drain regions adjacent to the barrier regions control current flow in and out of the quantum well. The GRTD may be integrated in CMOS ICs as a quantum dot or a quantum wire device. The GRTD may be operated in a negative conductance mode, in a charge pump mode and in a radiative emission mode.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: March 23, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Chris Bowen, Tathagata Chatterjee
  • Patent number: 7602009
    Abstract: A non-volatile memory is described having memory cells with a gate dielectric. The gate dielectric is a multilayer charge trapping dielectric between a control gate and a channel region of a transistor to trap positively charged holes. The multilayer charge trapping dielectric comprises at least one layer of high-K.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: October 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7595500
    Abstract: A detector includes a voltage source for providing a bias voltage and first and second non-insulating layers, which are spaced apart such that the bias voltage can be applied therebetween and form an antenna for receiving electromagnetic radiation and directing it to a specific location within the detector. The detector also includes an arrangement serving as a transport of electrons, including tunneling, between and to the first and second non-insulating layers when electromagnetic radiation is received at the antenna. The arrangement includes a first insulating layer and a second layer configured such that using only the first insulating in the arrangement would result in a given value of nonlinearity in the transport of electrons while the inclusion of the second layer increases the nonlinearity above the given value. A portion of the electromagnetic radiation incident on the antenna is converted to an electrical signal at an output.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: September 29, 2009
    Assignee: University Technology Center Corp
    Inventors: Garret Moddel, Blake J. Eliasson
  • Patent number: 7592268
    Abstract: A method for fabricating a semiconductor device is provided. The method includes: forming a plurality of gate lines on a substrate by performing an etching process; forming an oxide layer on the gate lines and the substrate by employing an atomic layer deposition (ALD) method; and sequentially forming a buffer oxide layer and a nitride layer on the oxide layer.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: September 22, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki-Won Nam, Kyung-Won Lee
  • Patent number: 7534710
    Abstract: The present invention relates to a device structure that contains two or more conducting layers, two peripheral insulating layers, one or more intermediate insulating layers, and two or more conductive contacts. The two or more conducting layers are sandwiched between the two peripheral insulating layers, and they are spaced apart by the intermediate insulating layers to form two or more quantum wells. Each of the conductive contacts is directly and selectively connected with one of the conducting layers, so the individual quantum wells can be selectively accessed through the conductive contacts. Such a device structure preferably contains a coupled quantum well devices having two or more quantum wells that can be coupled together by inter-well tunneling effect at degenerate energy levels. More preferably, the device structure contains a memory cell having three quantum wells that can be arranged and constructed to define two different memory states.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 19, 2009
    Assignee: International Business Machines Corporation
    Inventors: Yasunao Katayama, Dennis M. Newns, Chang C. Tsuei
  • Patent number: 7476927
    Abstract: A multi-functional and multi-level memory cell is comprised of a tunnel layer formed over a substrate. In one embodiment, the tunnel layer is comprised of two layers such as HfO2 and LaAlO3. A charge blocking layer is formed over the tunnel layer. In one embodiment, this layer is formed from HfSiON. A control gate is formed over the charge blocking layer. A discrete trapping layer is embedded in either the tunnel layer or the charge blocking layer, depending on the desired level of non-volatility. The closer the discrete trapping layer is formed to the substrate/insulator interface, the lower the non-volatility of the device. The discrete trapping layer is formed from nano-crystals having a uniform size and distribution.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: January 13, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7396777
    Abstract: Methods of fabricating high-k dielectric layers having reduced impurities for use in semiconductor applications are disclosed. The methods include the steps of: forming a stacked dielectric layer having a first dielectric layer and a second dielectric layer formed on a semiconductor substrate using an ALD method, in combination with a post-treatment step performed to the stacked dielectric layer. The steps of forming the stacked dielectric layer and performing the post-treatment are repeated at least once, thereby fabricating the high-k dielectric layer.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Suk Jung, Jong-Ho Lee, Ha-Jin Lim, Jae-Eun Park, Yun-Seok Kim, Jong-Ho Yang
  • Publication number: 20080068895
    Abstract: An intergrated circuit having a drive circuit is disclosed. One embodiment provides an intergrated memory circuit arrangement with a drive circuit for an EEPROM. In one embodiment, the drive circuit contains tunnel field effect transistors and can be produced in particular on a small chip area.
    Type: Application
    Filed: July 8, 2005
    Publication date: March 20, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Ronald Kakoschke, Thomas Nirschl, Doris Schmitt-Landsiedel
  • Patent number: 7323709
    Abstract: The present invention comprises a tunneling device in which the collector electrode is modified so that tunneling of higher energy electrons from the emitter electrode to the collector electrode is enhanced. In one embodiment, the collector electrode is contacted with an insulator layer, preferably aluminum oxide, disposed between the collector and emitter electrodes. The present invention additionally comprises a method for enhancing tunneling of higher energy electrons from an emitter electrode to a collector electrode, the method comprising the step of contacting the collector electrode with an insulator, preferably aluminum oxide, and placing the insulator between the collector electrode and the emitter electrode.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: January 29, 2008
    Assignee: Borealis Technical Limited
    Inventors: Avto Tavkhelidze, Leri Tsakadze
  • Publication number: 20070295965
    Abstract: A thin film transistor includes a gate electrode, a gate insulation layer on the gate electrode, source and drain electrodes formed on the gate insulation layer, a polysilicon channel layer overlapping the ohmic contact layers and on the gate insulation layer between the source and drain electrodes, ohmic contact regions over the source and drain electrodes for contacting the polysilicon channel to the source and drain electrodes, and doping layers over the source and drain electrodes.
    Type: Application
    Filed: May 23, 2007
    Publication date: December 27, 2007
    Applicant: LG.PHILIPS LCD CO., LTD.
    Inventors: Gee Sung Chae, Seung Hwan Cha
  • Publication number: 20070252130
    Abstract: A transistor-like electronic device operates somewhat as a triode vacuum tube. Two electrodes (source and drain) sandwich an intermediate layer of organic semiconductor material in which fine metallic particles are dispersed. Due to the fineness and number of the particles, they are close enough to each other that electrons can tunnel from one to the nest, so that a voltage impressed at the edge of the intermediate layer causes current to flow through the dispersed particles, and causes the entire layer to reach the impressed voltage. By varying the impressed voltage, the voltage of the intermediate layer is caused to vary, which controls conduction between the source and drain. By making the particles small, the proportion of open area between the particles remains large so the electrons have room to move around the particles and through the organic material in intermediate layer, allowing high currents to flow through the device.
    Type: Application
    Filed: September 1, 2005
    Publication date: November 1, 2007
    Applicants: The Regents of the University of California, FUJI ELECTRONIC HOLDINGS CO., LTD.
    Inventors: Yang Yang, Haruo Kawakami
  • Patent number: 7259437
    Abstract: The invention generally relates to the field of spintronics, a branch of electronics using the magnetic spin properties of electrons. More particularly, the invention relates to the field of spin-valve transistors which can be used in numerous fields of electronics. The invention aims to propose an original arrangement for producing high-level and high-contrast collector currents simultaneously. The inventive spintronics transistor comprises a semiconductor emitter, a base fanning a spin valve and a metallic collector separated from the base by an insulating deposit. The emitter/base interface constitutes a Schottky barrier and the base/collector interface constitutes a tunnel-effect barrier.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: August 21, 2007
    Assignee: Thales
    Inventor: Frédéric Nguyen Van Dau
  • Publication number: 20070190727
    Abstract: A method of manufacturing a nonvolatile semiconductor memory device including at least one MOS transistor in a peripheral circuit and also including forming a first well for a memory cell and a second well for the MOS transistor in a semiconductor substrate.
    Type: Application
    Filed: April 9, 2007
    Publication date: August 16, 2007
    Inventors: Hiroaki Hazama, Seiichi Mori, Hirohisa Iizuka, Norio Ootani, Kazuhito Narita
  • Patent number: 7166881
    Abstract: The present disclosure provides an improved magnetic memory cell. The magnetic memory cell includes a switching element and two magnetic tunnel junction (MTJ) devices. A conductor connects the first and second MTJ devices in a parallel configuration, and serially connecting the parallel configuration to an electrode of the switching element. The resistance of the first MTJ device is different from the resistance of the second.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: January 23, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen Chin Lin, Denny D. Tang, Chien-Chung Hung