With Both Source And Drain Contacts In Same Substrate Side (epo) Patents (Class 257/E29.258)
  • Patent number: 8987813
    Abstract: A high voltage metal-oxide-semiconductor transistor device includes a substrate, at least an isolation structure formed in the substrate, a gate formed on the substrate, and a source region and a drain region formed in the substrate at respective sides of the gate. The isolation structure further includes a recess. The gate includes a first gate portion formed on a surface of the substrate and a second gate portion downwardly extending from the first gate portion and formed in the recess.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 24, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chiu-Te Lee, Ke-Feng Lin, Chih-Chien Chang, Wei-Lin Chen, Chih-Chung Wang
  • Patent number: 8946815
    Abstract: The invention includes floating body transistor constructions containing U-shaped semiconductor material slices. The U-shapes have a pair of prongs joined to a central portion. Each of the prongs contains a source/drain region of a pair of gatedly-coupled source/drain regions, and the floating bodies of the transistors are within the central portions. The semiconductor material slices can be between front gates and back gates. The floating body transistor constructions can be incorporated into memory arrays, which in turn can be incorporated into electronic systems. The invention also includes methods of forming floating body transistor constructions, and methods of incorporating floating body transistor constructions into memory arrays.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Venkatesan Ananthan
  • Patent number: 8895370
    Abstract: A vertical conduction power device includes respective gate, source and drain areas formed in an epitaxial layer on a semiconductor substrate. The respective gate, source and drain metallizations are formed by a first metallization level. The gate, source and drain terminals are formed by a second metallization level. The device is configured as a set of modular areas extending parallel to each other. Each modular area has a rectangular elongate source area perimetrically surrounded by a gate area, and a drain area defined by first and second regions. The first regions of the drain extend parallel to one another and separate adjacent modular areas. The second regions of the drain area extend parallel to one another and contact ends of the first regions of the drain area.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 25, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magri′
  • Patent number: 8866217
    Abstract: Described here are transistors and fabrication methods thereof. In one implementation, a transistor includes an n-well region implanted into a surface of a substrate, and a trench in the n-well region. The trench extends from the surface to a first depth. The trench includes a gate of conductive material in the trench, and dielectric material filling a volume of the trench not filled by the conductive material. The transistor also includes a p-type material in a first region extending from a second depth to a third depth, the second depth and the third depth being greater than the first depth. The transistor further includes a source region and a drain region.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Volterra Semiconductor LLC
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 8853780
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate, a channel region in the semiconductor substrate between the source and drain regions through which charge carriers flow during operation from the source region to the drain region, and a drift region in the semiconductor substrate, on which the drain region is disposed, and through which the charge carriers drift under an electric field arising from application of a bias voltage between the source and drain regions. A PN junction along the drift region includes a first section at the drain region and a second section not at the drain region. The drift region has a lateral profile that varies such that the first section of the PN junction is shallower than the second section of the PN junction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Won Gi Min, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 8829602
    Abstract: The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8823096
    Abstract: A device includes a semiconductor region in a semiconductor chip, a gate dielectric layer over the semiconductor region, and a gate electrode over the gate dielectric. A drain region is disposed at a top surface of the semiconductor region and adjacent to the gate electrode. A gate spacer is on a sidewall of the gate electrode. A dielectric layer is disposed over the gate electrode and the gate spacer. A conductive field plate is over the dielectric layer, wherein the conductive field plate has a portion on a drain side of the gate electrode. A deep metal via is disposed in the semiconductor region. A source electrode is underlying the semiconductor region, wherein the source electrode is electrically shorted to the conductive field plate through the deep metal via.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: September 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Ruey-Hsin Liu, Chun-Wai Ng
  • Patent number: 8816434
    Abstract: An LDMOS transistor includes a substrate of semiconductor material, an insulator layer overlying the substrate, a semiconductor layer overlying the insulator layer, a RESURF region, and a gate. The semiconductor layer includes a first conductivity type well region, a second conductivity type source region in contact with the first conductivity type well region, a second conductivity type drain region. The RESURF region includes at least one first conductivity type material portion, and at least one portion of the at least one first conductivity type material portion electrically coupled to the first conductivity type well region. A semiconductor material having a second conductivity type is located below the RESURF region. The second conductivity type semiconductor material is also located over a part of the RESURF region. The gate is located over the first conductivity type well region and over the RESURF region.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: August 26, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bernhard H. Grote, Tahir A. Khan, Vishnu K. Khemka, Ronghua Zhu
  • Patent number: 8686498
    Abstract: A semiconductor device is provided. The semiconductor device includes a gate on a substrate, a source region at a first side of the gate, a first conductive type body region under the source region, a second conductive type drain region at a second side of the gate, a device isolation region in the substrate between the source region and the drain region and overlapping part of the gate, and a first buried layer extending in a direction from the source region to the drain region, the first buried layer under the body region, overlapping part of the device isolation region, and not overlapping the drain region.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Mueng-Ryul Lee
  • Patent number: 8674471
    Abstract: A semiconductor device supplying a charging current to a charging-target element includes: a semiconductor layer of a first conductivity type; a first semiconductor region of a second conductivity type formed on a main surface of the semiconductor layer and having a first node coupled to a first electrode of the charging-target element and a second node coupled to a power supply potential node supplied with a power supply voltage; a second semiconductor region of the first conductivity type formed in a surface of the first semiconductor region at a distance from the semiconductor layer and having a third node coupled to the power supply potential node; and a charge carrier drift restriction portion restricting drift of charge carrier from the third node to the semiconductor layer.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: March 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tomohide Terashima
  • Publication number: 20140042527
    Abstract: A high voltage metal-oxide-semiconductor transistor device includes a substrate, at least an isolation structure formed in the substrate, a gate formed on the substrate, and a source region and a drain region formed in the substrate at respective sides of the gate. The isolation structure further includes a recess. The gate includes a first gate portion formed on a surface of the substrate and a second gate portion downwardly extending from the first gate portion and formed in the recess.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Inventors: Chiu-Te Lee, Ke-Feng Lin, Chih-Chien Chang, Wei-Lin Chen, Chih-Chung Wang
  • Patent number: 8624332
    Abstract: A vertical conduction electronic power device includes respective gate, source and drain areas in an epitaxial layer arranged on a semiconductor substrate. The respective gate, source and drain metallizations may be formed by a first metallization level. Corresponding gate, source and drain terminals or pads may be formed by a second metallization level. The power device is configured as a set of modular areas extending parallel to each other, each having a rectangular elongate source area perimetrically surrounded by a narrow gate area. The modular areas are separated from each other by regions with the drain area extending parallel and connected at the opposite ends thereof to a second closed region with the drain area forming a device outer peripheral edge.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: January 7, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magrì
  • Patent number: 8610206
    Abstract: A semiconductor device comprises a source region, a drain region, and a drift region between the source and drain regions. A split gate is disposed over a portion of the drift region, and between the source and drain regions. The split gate includes first and second gate electrodes separated by a gate oxide layer. A self-aligned RESURF region is disposed within the drift region between the gate and the drain region. PI gate structures including an upper polysilicon layer are disposed near the drain region, such that the upper polysilicon layer can serve as a hard mask for the formation of the double RESURF structure, thereby allowing for self-alignment of the double RESURF structure.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: December 17, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chien-Wen Chu, Wing-Chor Chan, Shyi-Yuan Wu
  • Patent number: 8598026
    Abstract: In a method of manufacturing a semiconductor device, a buried layer is formed in a region of a semiconductor substrate and an epitaxial growth layer is formed on the buried layer and the semiconductor substrate. Trenches are formed in the epitaxial growth layer so as to be arranged side by side in a gate width direction of a transistor to be formed, and so that an entire bottom surface of each trench is entirely surrounded by and disposed in contact with the buried layer. A gate electrode is formed inside and on a top surface of each of the trenches and on a surface of the epitaxial growth layer adjacent to each of the trenches via a gate insulating film. A high concentration source diffusion layer is formed on one side of the gate electrode. A high concentration drain diffusion layer is formed on another side of the gate electrode.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Masayuki Hashitani
  • Patent number: 8581344
    Abstract: A laterally diffused metal oxide semiconductor transistor. The laterally diffused metal oxide semiconductor transistor includes a substrate, a drain formed thereon, a source formed on the substrate, comprising a plurality of individual sub-sources respectively corresponding to various sides of the drain, a plurality of channels formed in the substrate between the sub-sources and the drain, a gate overlying a portion of the sub-sources and the channels, and a drift layer formed in the substrate underneath the drain.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: November 12, 2013
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Ya-Sheng Liu
  • Patent number: 8564061
    Abstract: A semiconductor device has elongate plug structures extending in the lateral direction. The plug structures serve as electrical lines in order to enable locally defined lateral current flows within the cell array, within edge regions or logic regions of the semiconductor device.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: October 22, 2013
    Assignee: Infineon Technologies AG
    Inventors: Walter Rieger, Franz Hirler, Martin Poelzl, Manfred Kotek
  • Patent number: 8536042
    Abstract: A process for forming a vertically conducting semiconductor device includes providing a semiconductor substrate having a topside surface and a backside surface. The semiconductor substrate serves as a terminal of the vertically conducting device for biasing the vertically conducting device during operation. The process also includes forming an epitaxial layer extending over the topside surface of the semiconductor substrate but terminating prior to reaching an edge of the semiconductor substrate so as to form a recessed region along a periphery of the semiconductor substrate. The method also includes forming an interconnect layer extending into the recessed region but terminating prior to reaching an edge of the semiconductor substrate. The interconnect layer electrically contacts the topside surface of the semiconductor substrate in the recessed region to thereby provide a topside contact to the semiconductor substrate.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: John T. Andrews, Hamza Yilmaz, Bruce Marchant, Ihsiu Ho
  • Patent number: 8530961
    Abstract: A method for manufacturing compatible vertical double diffused metal oxide semiconductor (VDMOS) transistor and lateral double diffused metal oxide semiconductor (LDMOS) transistor includes: providing a substrate having an LDMOS transistor region and a VDMOS transistor region; forming an N-buried region in the substrate; forming an epitaxial layer on the N-buried layer region; forming isolation regions in the LDMOS transistor region and the VDMOS transistor region; forming a drift region in the LDMOS transistor region; forming gates in the LDMOS transistor region and the VDMOS transistor region; forming PBODY regions in the LDMOS transistor region and the VDMOS transistor region; forming an N-type GRADE region in the LDMOS transistor region; forming an NSINK region in the VDMOS transistor region, where the NSINK region is in contact with the N-buried layer region; forming sources and drains in the LDMOS transistor region and the VDMOS transistor region; and forming a P+ region in the LDMOS transistor region,
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: September 10, 2013
    Assignee: CSMC Technologies FAB1 Co., Ltd.
    Inventors: Linchun Gui, Le Wang, Zhiyong Zhao, Lili He
  • Patent number: 8350327
    Abstract: A semiconductor device is provided which includes a semiconductor substrate, a gate structure formed on the substrate, sidewall spacers formed on each side of the gate structure, a source and a drain formed in the substrate on either side of the gate structure, the source and drain having a first type of conductivity, a lightly doped region formed in the substrate and aligned with a side of the gate structure, the lightly doped region having the first type of conductivity, and a barrier region formed in the substrate and adjacent the drain. The barrier region is formed by doping a dopant of a second type of conductivity different from the first type of conductivity.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Wei Vanessa Chung, Kuo-Feng Yu
  • Patent number: 8299548
    Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method can include simultaneously forming a first field insulating film and at least one second field insulating film on a front face side of a semiconductor layer. The at least one second field insulating film is separated from the first field insulating film and thinner than the first field insulating film. The method can include forming a drift region of a first conductivity type in a region of the semiconductor layer including the first field insulating film and the second field insulating film. The method can include forming a drain region of the first conductivity type in the front face of the semiconductor layer on a side of the first field insulating film. In addition, the method can include forming a source region of the first conductivity type in the front face of the semiconductor layer on a side of the second field insulating film.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: October 30, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kanako Komatsu, Tsubasa Yamada, Jun Morioka, Koji Kimura
  • Patent number: 8198677
    Abstract: MOSFET devices for RF applications that use a trench-gate in place of the lateral gate conventionally used in lateral MOSFET devices. A trench-gate provides devices with a single, short channel for high frequency gain. Embodiments of the present invention provide devices with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Refinements to these TG-LDMOS devices include placing a source-shield conductor below the gate and placing two gates in a trench-gate region. These improve device high-frequency performance by decreasing gate-to-drain capacitance. Further refinements include adding a charge balance region to the LDD region and adding source-to-substrate or drain-to-substrate vias.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: June 12, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Peter H. Wilson, Steven Sapp
  • Patent number: 8193585
    Abstract: Methods and apparatus are provided for fabricating a semiconductor device structure. The semiconductor device structure comprises a buried region having a first conductivity type, a first region having a second conductivity type overlying the buried region, a source region having the first conductivity type overlying the first region, and a drain region having the first conductivity type overlying the first region. The semiconductor device structure further comprises a second region having the first conductivity type overlying the buried region, the second region abutting the buried region to form an electrical contact with the buried region, and a first resistance configured electrically in series with the second region and the buried region. The combined series resistance of the first resistance and the second region is greater than a resistance of the buried region.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 5, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bernhard H. Grote, Vishnu K. Khemka, Tahir A. Khan, Weixiao Huang, Ronghua Zhu
  • Patent number: 8178930
    Abstract: A novel MOS transistor structure and methods of making the same are provided. The structure includes a MOS transistor formed on a semiconductor substrate of a first conductivity type with a plug region of first conductivity type formed in the drain extension region of second conductivity type (in the case of a high voltage MOS transistor) or in the lightly doped drain (LDD) region of second conductivity type (in the case of a low voltage MOS transistor). Such structure leads to higher on-breakdown voltage. The inventive principle applies to MOS transistors formed on bulky semiconductor substrate and MOS transistors formed in silicon-on-insulator configuration.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 15, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shen-Ping Wang, Tsung-Yi Huang, Wen-Liang Wang
  • Patent number: 8129783
    Abstract: A semiconductor device with high breakdown voltage and low on-resistance is provided. An embodiment comprises a substrate having a buried layer in a portion of the top region of the substrate in order to extend the drift region. A layer is formed over the buried layer and the substrate, and high-voltage N-well and P-well regions are formed adjacent to each other. Field dielectrics are located over portions of the high-voltage N-wells and P-wells, and a gate dielectric and a gate conductor are formed over the channel region between the high-voltage P-well and the high-voltage N-well. Source and drain regions for the transistor are located in the high-voltage P-well and high-voltage N-well. Optionally, a P field ring is formed in the N-well region under the field dielectric. In another embodiment, a lateral power superjunction MOSFET with partition regions located in the high-voltage N-well is manufactured with an extended drift region.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: March 6, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Yi Huang, Puo-Yu Chiang, Ruey-Hsin Liu, Shun-Liang Hsu
  • Patent number: 8125030
    Abstract: An integrated circuit containing an SCRMOS transistor. The SCRMOS transistor has one drain structure with a centralized drain diffused region and distributed SCR terminals, and a second drain structure with distributed drain diffused regions and SCR terminals. An MOS gate between the centralized drain diffused region and a source diffused region is shorted to the source diffused region. A process of forming the integrated circuit having the SCRMOS transistor is also disclosed.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer P. Pendharkar
  • Patent number: 8120108
    Abstract: An integrated circuit having an SCRMOS transistor with a RESURF region around the drain region and SCR terminal. The RESURF region is the same conductivity type as the drift region and is more heavily doped than the drift region. An SCRMOS transistor with a RESURF region around the drain region and SCR terminal. A process of forming an integrated circuit having an SCRMOS transistor with a RESURF region around the drain region and SCR terminal.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: February 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer P. Pendharkar
  • Patent number: 8053820
    Abstract: A semiconductor device has a first conductivity type semiconductor substrate, a second conductivity type buried layer formed in a predetermined region on the semiconductor substrate, and a first conductivity type epitaxial growth layer formed on the buried layer and the semiconductor substrate. Trenches are formed in the epitaxial growth layer and arranged side by side in a gate width direction of a transistor to be formed. An entire bottom surface of each trench is entirely surrounded by and disposed in contact with the buried layer. A gate electrode is formed inside and on a top surface of each of the trenches and on a surface of the epitaxial growth layer adjacent to each of the trenches via a gate insulating film. A second conductivity type high concentration source diffusion layer is formed on one side of the gate electrode. A second conductivity type high concentration drain diffusion layer formed on another side of the gate electrode.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: November 8, 2011
    Assignee: Seiko Instruments Inc.
    Inventor: Masayuki Hashitani
  • Patent number: 8039902
    Abstract: Semiconductor devices include a substrate having first and second active regions; a P-channel transistor associated with the first active region and including at least one of source and drain regions; an N-channel field-effect transistor associated with the second active region and including at least one of the source and drain regions; first and second contact pad layers each including silicon (Si) and SiGe epitaxial layers on the source and drain regions the SiGe epitaxial layers being sequentially stacked on the Si epitaxial layers; an interlayer insulating film; a first metal silicide film on the SiGe epitaxial layer of the P-channel transistor and a second metal silicide film on the Si epitaxial layer of the N-channel transistor; and contact plugs on the first and second metal silicide films.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-bum Kim, Si-young Choi, Hyung-ik Lee, Ki-hong Kim, Yong-koo Kyoung
  • Patent number: 8004040
    Abstract: Provided are a semiconductor device which can be manufactured at low cost and has a low on-resistance and a high withstand voltage, and its manufacturing method. The semiconductor device comprises an N-type well area formed on a P-type semiconductor substrate, a P-type body area formed within the well area, an N-type source area formed within the body area, an N-type drain area formed at a distance from the body area within the well area, a gate insulating film formed so as to overlay a part of the body area, a gate electrode formed on the gate insulating film and a P-type buried diffusion area which makes contact with the bottom of the body area and extends to an area beneath the drain area in a direction parallel to the surface of the semiconductor substrate within the well area.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: August 23, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hisao Ichijo, Alberto Adan, Kazushi Naruse, Atsushi Kagisawa
  • Patent number: 8004051
    Abstract: One embodiment relates to an integrated circuit that includes a lateral trench MOSFET disposed in a semiconductor body. The lateral trench MOSFET includes source and drain regions having a body region therebetween. A gate electrode region is disposed in a trench that extends beneath the surface of the semiconductor body at least partially between the source and drain. A gate dielectric separates the gate electrode region from the semiconductor body. In addition, a field plate region in the trench is coupled to the gate electrode region, and a field plate dielectric separates the field plate region from the semiconductor body. Other integrated circuits and methods are also disclosed.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Marie Denison
  • Patent number: 7986005
    Abstract: A power semiconductor device includes a semiconductor body. The semiconductor body includes a body region of a first conductivity type for forming therein a conductive channel of a second conductivity type; a gate electrode arranged next to the body region; and a floating electrode arranged between the gate electrode and the body region.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: July 26, 2011
    Assignee: Infineon Technologies Austria Ag
    Inventors: Oliver Schilling, Frank Pfirsch
  • Patent number: 7982264
    Abstract: The semiconductor device according to the present invention includes a semiconductor substrate, an insulating layer laminated on the semiconductor substrate, a semiconductor layer laminated on the insulating layer, an annular deep trench having a depth reaching the insulating layer from the surface of the semiconductor layer, a source region formed on the surface layer of the semiconductor layer in a transistor forming region enclosed with the deep trench, a drain region formed on the surface layer of the semiconductor layer in the transistor forming region, an isolation region formed between the source region and the drain region for electrically isolating the source region and the drain region from each other, and a current path formed on the transistor forming region for guiding a current from the drain region to a position opposite to the source region in the vertical direction perpendicular to the surface of the semiconductor device.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: July 19, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Naoki Izumi
  • Publication number: 20110169093
    Abstract: The present disclosure provides ESD protection devices that can effectively cope with electrostatic stress of microchips for high voltage operation. The ESD protection device is a double diffused drain N-type MOSFET (DDDNMOS) ESD protection device, in which a gate, a source region and a well-pickup region are connected to a ground terminal and a drain region is connected to a power terminal or individual input/output terminals.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Inventor: Kilho Kim
  • Patent number: 7943988
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a first doping concentration. A first semiconductor region, used as drain, of the first conductivity type has a lower doping concentration than the semiconductor layer and is over the semiconductor layer. A gate dielectric is over the first semiconductor region. A gate electrode over the gate dielectric has a metal-containing center portion and first and second silicon portions on opposite sides of the center portion. A second semiconductor region, used as a channel, of the second conductivity type has a first portion under the first silicon portion and the gate dielectric. A third semiconductor region, used as a source, of the first conductivity type is laterally adjacent to the first portion of the second semiconductor region. The metal-containing center portion, replacing silicon, increases the source to drain breakdown voltage.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 17, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Daniel Pham, Bich-Yen Nguyen
  • Patent number: 7915602
    Abstract: A phase change memory device is provided in which the area of contact between phase change material and heater electrode is reduced to suppress current required for heating and a phase change region is formed directly on a contact to raise the degree of integration. The device comprises a heater electrode in which the lower part thereof is surrounded by a side wall of a first insulating material and the upper part thereof protruding from the side wall has a sharp configuration covered by a second insulating material except for a part of the tip end thereof, and the exposed tip end is coupled to the phase change material layer.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 29, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Natsuki Sato
  • Patent number: 7915677
    Abstract: A semiconductor device with high breakdown voltage and low on-resistance is provided. An embodiment comprises a substrate having a buried layer in a portion of the top region of the substrate in order to extend the drift region. A layer is formed over the buried layer and the substrate, and high-voltage N-well and P-well regions are formed adjacent to each other. Field dielectrics are located over portions of the high-voltage N-wells and P-wells, and a gate dielectric and a gate conductor are formed over the channel region between the high-voltage P-well and the high-voltage N-well. Source and drain regions for the transistor are located in the high-voltage P-well and high-voltage N-well. Optionally, a P field ring is formed in the N-well region under the field dielectric. In another embodiment, a lateral power superjunction MOSFET with partition regions located in the high-voltage N-well is manufactured with an extended drift region.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: March 29, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yi Huang, Puo-Yu Chiang, Ruey-Hsin Liu, Shun-Liang Hsu
  • Patent number: 7906810
    Abstract: A LDMOS device for an ESD protection circuit is provided. The LDMOS device includes a substrate of a first conductivity type, a deep well region of a second conductivity type, a body region of the first conductivity type, first and second doped regions of the second conductivity type, and a gate electrode. The deep well region is disposed in the substrate. The body region and the first doped region are respectively disposed in the deep well region. The second doped region is disposed in the body region. The gate electrode is disposed on the deep well region between the first and second doped regions. It is noted that the body region does not include a doped region of the first conductivity type having a different doped concentration from the body region.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 15, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Tzu Wang, Tien-Hao Tang
  • Patent number: 7888734
    Abstract: An integrated circuit structure includes a high-voltage well (HVW) region in a semiconductor substrate; a first double diffusion (DD) region in the HVW region; and a second DD region in the HVW region. The first DD region and the second DD region are spaced apart from each other by an intermediate portion of the HVW region. A recess extends from a top surface of the semiconductor substrate into the intermediate portion of the HVW region and the second DD region. A gate dielectric extends into the recess and covers a bottom of the recess. A gate electrode is over the gate dielectric. A first source/drain region is in the first DD region. A second source/drain region is in the second DD region.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Liang Chu, Chun-Ting Liao, Tsung-Yi Huang, Fei-Yuh Chen
  • Patent number: 7851853
    Abstract: The high-withstand voltage MOSFET comprises a trench portion formed at the high-withstand voltage active region on a semiconductor substrate, two polysilicon layers formed on the high-withstand voltage active region on both sides of the trench portion by implanting an impurity of the conductivity type opposite to the high-withstand voltage active region, two impurity diffusion drift layers formed on both sides of the trench portion by implanting an impurity of the conductivity type opposite to the high-withstand voltage active region in the surface of the high-withstand voltage active region under the polysilicon layers, and a gate electrode formed through a gate oxide film on bottom and side surfaces of the trench portion and end surfaces and upper surfaces of adjacent regions of the polysilicon layers close to the trench portion, and source and drain regions are formed in the two polysilicon layers excluding the adjacent regions covered with the gate electrode.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 14, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Satoshi Hikida, Takuya Otabe, Hisashi Yonemoto
  • Patent number: 7843002
    Abstract: A semiconductor structure includes a semiconductor substrate; an n-type tub extending from a top surface of the semiconductor substrate into the semiconductor substrate, wherein the n-type tub comprises a bottom buried in the semiconductor substrate; a p-type buried layer (PBL) on a bottom of the tub, wherein the p-type buried layer is buried in the semiconductor substrate; and a high-voltage n-type metal-oxide-semiconductor (HVNMOS) device over the PBL and within a region encircled by sides of the n-type tub.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 30, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-San Wei, Kuo-Ming Wu, Yi-Chun Lin
  • Patent number: 7829408
    Abstract: The present invention discloses a laterally double-diffused metal oxide semiconductor transistor (LDMOS) and a method for fabricating the same. The LDMOS includes a substrate, a first well, a drain, a second well and a source. The substrate includes a first conductive dopant. The first well includes a second conductive dopant and formed in a part of the substrate, and the drain is located in the first well. The second well includes the first conductive dopant and formed in another part of the substrate, and the source located in the second well. The source includes a lightly doped region and a heavily doped region extending downwardly from a top surface of the substrate. The depth of the lightly doped region is more than the depth of the heavily doped region.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: November 9, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shin Su, Chien-Wen Chu, Shih-Chin Lien, Chin-Pen Yeh
  • Patent number: 7829947
    Abstract: Lateral DMOS devices having improved drain contact structures and methods for making the devices are disclosed. A semiconductor device comprises a semiconductor substrate; an epitaxial layer on top of the substrate; a drift region at a top surface of the epitaxial layer; a source region at a top surface of the epitaxial layer; a channel region between the source and drift regions; a gate positioned over a gate dielectric on top of the channel region; and a drain contact trench that electrically connects the drift layer and substrate. The contact trench includes a trench formed vertically from the drift region, through the epitaxial layer to the substrate and filled with an electrically conductive drain plug; electrically insulating spacers along sidewalls of the trench; and an electrically conductive drain strap on top of the drain contact trench that electrically connects the drain contact trench to the drift region.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 9, 2010
    Assignee: Alpha & Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 7781834
    Abstract: A semiconductor device includes a gate electrode over a semiconductor substrate, wherein the gate electrode has a gate width direction; a source/drain region in the semiconductor substrate and adjacent the gate electrode, wherein the source/drain region has a first width in a direction parallel to the gate width direction; and a bulk pick-up region in the semiconductor substrate and abutting the source/drain region. The bulk pick-up region and the source/drain region have opposite conductivity types. The bulk pick-up region has a second width in the width direction, and wherein the second width is substantially less than the first width.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-San Wei, Kuo-Ming Wu, Jian-Hsing Lee
  • Patent number: 7763893
    Abstract: A silicon carbide semiconductor device includes a semiconductor element disposed in a semiconductor substrate having a first conductive type silicon carbide layer and a silicon substrate. The device includes: a trench on the silicon carbide layer to reach the silicon substrate; and a conductive layer in the trench between the silicon carbide layer and the silicon substrate to connect to both of them. The semiconductor element is a vertical type semiconductor element so that current flows on both of a top surface portion and a backside surface portion of the semiconductor substrate. The current flows through the conductive layer.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: July 27, 2010
    Assignee: DENSO Corporation
    Inventors: Eiichi Okuno, Toshio Sakakibara
  • Patent number: 7737526
    Abstract: An isolation structure for a semiconductor device comprises a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate. A MOSFET is formed in the isolated pocket.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 15, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7718505
    Abstract: The method of forming a semiconductor structure in a substrate comprises, forming a first trench with a first width We and a second trench with a second width Wc, wherein the first width We is larger than the second width Wc, depositing a protection material, lining the first trench, covering the substrate surface and filling the second trench and removing partially the protection material, wherein a lower portion of the second trench remains filled with the protection material.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: May 18, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Nicola Vannucci, Hubert Maier
  • Patent number: 7687853
    Abstract: A semiconductor device includes one or more LDMOS transistors and one of more SCR-LDMOS transistors. Each LDMOS transistor includes a LDMOS well of a first conductivity type, a LDMOS source region of a second conductivity type formed in the LDMOS well, and a LDMOS drain region of a second conductivity type separated from the LDMOS well by a LDMOS drift region of the second conductivity type. Each SCR-LDMOS transistor comprising a SCR-LDMOS well of the first conductivity type, a SCR-LDMOS source region of the second conductivity type formed in the SCR-LDMOS well, a SCR-LDMOS drain region of a second conductivity type, and a anode region of the first conductivity type between the SCR-LDMOS drain region and the SCR-LDMOS drift region. The anode region is separated from the SCR-LDMOS well by a SCR-LDMOS drift region of the second conductivity type.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 30, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P Pendharkar, Jonathan S. Brodsky
  • Patent number: 7675120
    Abstract: A composite integrated circuit incorporating two LDMOSFETs of unlike designs, with the consequent creation of a parasitic transistor. A multipurpose resistor is integrally built into the composite integrated circuit in order to prevent the parasitic transistor from accidentally turning on. In an intended application of the composite integrated circuit to a startup circuit of a switching-mode power supply, the multipurpose resistor serves as startup resistor for limiting the flow of rush current during the startup period of the switching-mode power supply.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: March 9, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Keiichi Sekiguchi, Kazuya Aizawa
  • Patent number: 7667270
    Abstract: A semiconductor device has a substrate (50), a buried layer (55), an active area extending from a surface contact to the buried layer, an insulator (130) in a first trench extending towards the buried layer, to isolate the active area, and a second insulator (130) in a second deep trench and extending through the buried layer to isolate the buried layer and the active area from other parts of the substrate. This double trench can help reduce the area needed for the electrical isolation between the active device and the other devices. Such reduction in area can enable greater integration or more cells in a multi cell super-MOS device, and so improve performance parameters such as Ron. The double trench can be manufactured using a first mask to etch both trenches at the same time, and subsequently using a second mask to etch the second deep trench deeper.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: February 23, 2010
    Assignee: Semiconductor Components Industries LLC
    Inventors: Peter Moens, Marnix Tack, Sylvie Boonen, Paul Colson
  • Patent number: 7667268
    Abstract: Various integrated circuit devices, in particular a transistor, are formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench. Various techniques for terminating the isolation structure by extending the floor isolation region beyond the trench, using a guard ring, and a forming a drift region are described.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: February 23, 2010
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Donald R. Disney, Richard K. Williams