With Both Source And Drain Contacts In Same Substrate Side (epo) Patents (Class 257/E29.258)
  • Patent number: 7655978
    Abstract: A semiconductor structure including a substrate, a first well, a second well, a third well, a first doped region, and a second doped region. The substrate includes a first conductive type. The first well includes a second conductive type and is formed in the substrate. The second well includes the second conductive type and is formed in the first well. The third well includes the first conductive type, is formed in the substrate, and neighbors the first well. The first doped region includes the first conductive type and is formed in the first well. The second doped region includes the first conductive type and is formed in the first well. The first well surrounds all surfaces of the first and the second doped regions.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: February 2, 2010
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Ya-Sheng Liu
  • Patent number: 7652307
    Abstract: In a semiconductor device of the present invention, a MOS transistor is disposed in an elliptical shape. Linear regions in the elliptical shape are respectively used as the active regions, and round regions in the elliptical shape is used respectively as the inactive regions. In each of the inactive regions, a P type diffusion layer is formed to coincide with a round shape. Another P type diffusion layer is formed in a part of one of the inactive regions. These P type diffusion layers are formed as floating diffusion layers, are capacitively coupled to a metal layer on an insulating layer, and assume a state where predetermined potentials are respectively applied thereto. This structure makes it possible to maintain current performance of the active regions, while improving the withstand voltage characteristics in the inactive regions.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: January 26, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shuichi Kikuchi, Kiyofumi Nakaya, Shigeaki Okawa
  • Patent number: 7629647
    Abstract: A semiconductor device has a trench (42) adjacent to a cell (18). The cell includes source and drain contact regions (26, 28), and a central body (40) of opposite conductivity type. The device is bidirectional and controls current in either direction with a relatively low on-resistance. Preferred embodiments include potential plates (60) that act together with source and drain drift regions (30, 32) to create a RESURF effect.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: December 8, 2009
    Assignee: NXP B.V.
    Inventors: Raymond J. E. Hueting, Erwin A. Hijzen
  • Patent number: 7589377
    Abstract: In accordance with an embodiment of the present invention, a gate structure for a U-shape Metal-Oxide-Semiconductor (UMOS) device includes a dielectric layer formed into a U-shape having side walls and a floor to form a trench surrounding a dielectric layer interior region, a doped poly-silicon layer deposited adjacent to the dielectric layer within the dielectric layer interior region where the doped poly-silicon layer has side walls and a floor surrounding a doped poly-silicon layer interior region, a first metal layer deposited on the doped poly-silicon layer on a side opposite from the dielectric layer where the first metal layer has side walls and a floor surrounding a first metal layer interior region, and an undoped poly-silicon layer deposited to fill the first metal layer interior region.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: September 15, 2009
    Assignee: The Boeing Company
    Inventors: Mercedes P. Gomez, Emil M. Hanna, Wen-Ben Luo, Qingchun Zhang
  • Patent number: 7576388
    Abstract: MOSFET devices for RF applications that use a trench-gate in place of the lateral gate conventionally used in lateral MOSFET devices. A trench-gate provides devices with a single, short channel for high frequency gain. Embodiments of the present invention provide devices with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Refinements to these TG-LDMOS devices include placing a source-shield conductor below the gate and placing two gates in a trench-gate region. These improve device high-frequency performance by decreasing gate-to-drain capacitance. Further refinements include adding a charge balance region to the LDD region and adding source-to-substrate or drain-to-substrate vias.
    Type: Grant
    Filed: September 26, 2004
    Date of Patent: August 18, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Peter H. Wilson, Steven Sapp
  • Patent number: 7550803
    Abstract: A vertical double-diffusion metal-oxide-semiconductor (VDMOS) transistor device includes a first conductive type semiconductor substrate, a gate structure formed in a first trench in the first conductive type semiconductor substrate, a first conductive type well surrounding the gate structure, a source region adjacent to the gate structure formed in the first conductive type well, a drain region surrounding the source region, and a trench isolation structure formed in a second trench between the source region and the drain region.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: June 23, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Chun-Yao Huang
  • Patent number: 7544558
    Abstract: This invention is forming the DMOS channel after CMOS active layer before gate poly layer to make the modular DMOS process step easily adding into the sub-micron CMOS or BiCMOS process. And DMOS source is formed by implant which is separated by a spacer self-aligned to the window for DMOS body. By this method, the performance of CMOS and bipolar devices formed original CMOS or BiCMOS process keeps no change. The product design kit, such as standard cell library of CMOS and BiCMOS, can be used continuously with no change.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: June 9, 2009
    Assignee: BCD Semiconductor Manufacturing Limited
    Inventors: Chong Ren, Xian-Feng Liu, Huang Hai Tao
  • Patent number: 7531876
    Abstract: A semiconductor device which is compact and thin in size, low in resistance of a current path and parasitic inductance and excellent in reliability is provided. This semiconductor device comprises a semiconductor substrate, a first main electrode which is formed on a front surface of the semiconductor substrate, a second main electrode which is formed on a rear surface of the semiconductor substrate, and a conducting portion which is formed in a direction to pierce through the semiconductor substrate, wherein the second main electrode is extracted to the front surface of the semiconductor substrate via the conducting portion. And, the conducting portion is a through via which has a through hole formed through the semiconductor substrate in its thickness direction and a conductive portion which is formed in the through hole and connected to the second main electrode.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: May 12, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Kenji Takahashi, Chiaki Takubo, Hideo Aoki, Hideo Numata, Mie Matsuo, Hirokazu Ezawa, Susumu Harada, Hisashi Kaneko, Hiroshi Ikenoue, Kenichi Matsushita
  • Patent number: 7511319
    Abstract: A power metal-oxide-semiconductor field effect transistor (MOSFET)(100) incorporates a stepped drift region including a shallow trench insulator (STI)(112) partially overlapped by the gate (114) and which extends a portion of the distance to a drain region (122). A silicide block extends from and partially overlaps STI (112) and drain region (122). The STI (112) has a width that is approximately 50% to 75% of the drift region.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: March 31, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ronghua Zhu, Amitava Bose, Vishnu K. Khemka, Todd C. Roggenbauer
  • Patent number: 7423315
    Abstract: The present application provides a semiconductor device including a first-conductivity type semiconductor substrate, a pillar structure portion formed on the first-conductivity type semiconductor substrate and formed of five semiconductor pillar layers arranged in one direction parallel to a main surface of the first-conductivity type semiconductor substrate, and isolation insulating portions formed on the first-conductivity type semiconductor substrate and sandwiching the pillar structure portion between the isolation insulating portions, wherein the pillar structure portion is formed of a first first-conductivity type pillar layer, a second first-conductivity type pillar layer and a third first-conductivity type pillar layer which sandwich the first first-conductivity type pillar layer, a first second-conductivity type pillar layer provided between the first first-conductivity type pillar layer and the second first-conductivity type pillar layer, and a second second-conductivity type pillar layer provided b
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: September 9, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideki Okumura, Hitoshi Kobayashi, Masanobu Tsuchitani, Satoshi Aida, Shigeo Kouzuki, Masaru Izumisawa, Satoshi Taji, Kenichi Tokano
  • Patent number: 7414287
    Abstract: A semiconductor device includes one or more LDMOS transistors and one of more SCR-LDMOS transistors. Each LDMOS transistor includes a LDMOS well of a first conductivity type, a LDMOS source region of a second conductivity type formed in the LDMOS well, and a LDMOS drain region of a second conductivity type separated from the LDMOS well by a LDMOS drift region of the second conductivity type. Each SCR-LDMOS transistor comprising a SCR-LDMOS well of the first conductivity type, a SCR-LDMOS source region of the second conductivity type formed in the SCR-LDMOS well, a SCR-LDMOS drain region of a second conductivity type, and a anode region of the first conductivity type between the SCR-LDMOS drain region and the SCR-LDMOS drift region. The anode region is separated from the SCR-LDMOS well by a SCR-LDMOS drift region of the second conductivity type.
    Type: Grant
    Filed: February 21, 2005
    Date of Patent: August 19, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Jonathan S. Brodsky
  • Publication number: 20080067585
    Abstract: All low-temperature processes are used to fabricate a variety of semiconductor devices in a substrate the does not include an epitaxial layer. The devices include a non-isolated lateral DMOS, a non-isolated extended drain or drifted MOS device, a lateral trench DMOS, an isolated lateral DMOS, JFET and depletion-mode devices, and P-N diode clamps and rectifiers and junction terminations. Since the processes eliminate the need for high temperature processing and employ “as-implanted” dopant profiles, they constitute a modular architecture which allows devices to be added or omitted to the IC without the necessity of altering the processes used to produce the remaining devices.
    Type: Application
    Filed: November 5, 2007
    Publication date: March 20, 2008
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard Williams, Donald Disney, Jun-Wei Chen, Wai Chan, Hyung Ryu
  • Patent number: 7102201
    Abstract: Semiconductor fabrication methods and structures, devices and integrated circuits characterized by enhanced operating performance. The structures generally include first and second source/drain regions formed in a body of a semiconductor material and a channel region defined in the body between the first and second source/drain regions. Disposed in at least one of the first and second source/drain regions are a plurality of plugs each formed from a volume-expanded material that transfers compressive stress to the channel region. The compressively strained channel region may be useful, for example, for improving the operating performance of p-channel field effect transistors (PFET's).
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: September 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III