With Multiple Gates (epo) Patents (Class 257/E29.275)
  • Patent number: 9614017
    Abstract: The present invention provides an AMOLED backplane structure and a manufacturing method thereof. In each sub-pixel, a TFT substrate (TS) includes a corrugation structure (4) formed in an area corresponding to an opening (71) of a pixel definition layer (7). The corrugation structure (4) includes a plurality of raised sections (41) and a recessed section (42) formed between every two adjacent ones of the raised sections (41). An upper surface of a portion of the planarization layer (5) and a portion of a pixel electrode (6) that correspond to and are located above the corrugation structure (4) include curved surfaces corresponding to the corrugation structure (4). The AMOLED backplane structure helps ensure the planarization layer (5) is smooth and free of abrupt change sites and also makes the pixel electrode (6) in a form of a curved surface to increase an effective displaying surface, extend the lifespan of the OLED, reduce difficulty of manufacturing, and improve resolution.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: April 4, 2017
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLODY CO., LTD.
    Inventors: Wenhui Li, Yifan Wang
  • Patent number: 8987828
    Abstract: A finFET block architecture uses end-to-end finFET blocks in which the fin lengths are at least twice the contact pitch, whereby there is enough space for interlayer connectors to be placed on the proximal end and the distal end of a given semiconductor fin, and on the gate element on the given semiconductor fin. A first set of semiconductor fins having a first conductivity type and a second set of semiconductor fins having a second conductivity type can be aligned end-to-end. Interlayer connectors can be aligned over corresponding semiconductor fins which connect to gate elements.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 24, 2015
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Deepak D. Sherlekar
  • Patent number: 8987719
    Abstract: An organic light emitting diode (OLED) display includes: a substrate; an organic light emitting element formed on the substrate; a first thin film transistor connected to the organic light emitting element and including an amorphous silicon channel region; and at least one other thin film transistor connected to the first thin film transistor and including a polysilicon channel region.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: March 24, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sung-Hoon Moon
  • Patent number: 8963214
    Abstract: A thin film transistor for an organic light emitting display device is disclosed. In one embodiment, the thin film transistor includes: a substrate, an active layer formed over the substrate, wherein the active layer is formed of an oxide semiconductor, a gate insulating layer formed over the substrate and the active layer, and source and drain electrodes formed on the gate insulating layer and electrically connected to the active layer. The transistor may further include a gate electrode formed on the gate insulating layer and formed between the source and drain electrodes, wherein the gate electrode is spaced apart from the source electrode so as to define a first offset region therebetween, and wherein the gate electrode is spaced apart from the drain electrode so as to define a second offset region therebetween.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 24, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Roman Kondratyuk, Ki-Ju Im, Dong-Wook Park, Yeon-Gon Mo, Hye-Dong Kim
  • Patent number: 8957411
    Abstract: An object is to improve reliability of a light-emitting device. A light-emitting device has a driver circuit portion including a transistor for a driver circuit and a pixel portion including a transistor for a pixel over one substrate. The transistor for the driver circuit and the transistor for the pixel are inverted staggered transistors each including an oxide semiconductor layer in contact with part of an oxide insulating layer. In the pixel portion, a color filter layer and a light-emitting element are provided over the oxide insulating layer. In the transistor for the driver circuit, a conductive layer overlapping with a gate electrode layer and the oxide semiconductor layer is provided over the oxide insulating layer. The gate electrode layer, a source electrode layer, and a drain electrode layer are formed using metal conductive films.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: February 17, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Masayuki Sakakura, Yoshiaki Oikawa, Kenichi Okazaki, Hotaka Maruyama
  • Patent number: 8952447
    Abstract: A non-linear element (e.g., a diode) with small reverse saturation current is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and a third electrode provided in contact with the gate insulating film and adjacent to a side surface of the oxide semiconductor film with the gate insulating film interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrode is connected to the first electrode or the second electrode.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8952355
    Abstract: Embodiments of the present invention provide methods for forming layers that comprise electropositive metals through ALD (atomic layer deposition) and or CVD (chemical vapor deposition) processes, layers comprising one or more electropositive metals, and semiconductor devices comprising layers comprising one or more electropositive metals. In embodiments of the invention, the layers are thin or ultrathin (films that are less than 100 {acute over (?)} thick) and or conformal films. Additionally provided are transistor devices, metal interconnects, and computing devices comprising metal layers comprising one or more electropositive metals.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: February 10, 2015
    Assignee: Intel Corporation
    Inventors: Patricio E. Romero, Scott B. Clendenning
  • Patent number: 8921864
    Abstract: The present invention provides a TFT-LCD array substrate having a gate-line metal layer, a data-line metal layer crossing the gate-line metal layer and a plurality of layers covering a periphery of the gate-line metal layer and the data-line metal layer; the gate-line metal layer has first gate lines and second gate lines parallel and alternately arranged, the date-line metal layer has first data lines and second data lines parallel and alternately arranged; the first gate line and the second gate line are electrically connected; the first data line and the second data line are electrically connected. The present invention further provides a manufacturing method of the TFT-LCD array substrate. Implementing the TFT-LCD array substrate and the manufacturing method can reduce the occurrence of line-broken in the active array of TFT-LCD, increase the aperture ratio of the product and enhance yield rate of the products.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: December 30, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Xiaolong Ma, Hungjui Chen, Tsunglung Chang
  • Patent number: 8921947
    Abstract: A method for manufacturing a semiconductor device and a device manufactured using the same are provided. A substrate with plural metal gates formed thereon is provided, wherein the adjacent metal gates are separated by insulation. A sacrificial layer is formed for capping the metal gates and the insulation, and the sacrificial layer and the insulation are patterned to form at least an opening for exposing the substrate. A silicide is formed corresponding to the opening at the substrate, and a conductive contact is formed in the opening. The conductive contact has a top area with a second diameter CD2 for opening the insulation. A patterned dielectric layer, further formed on the metal gates, the insulation and the conductive contact, at least has a first M0 opening with a third diameter CD3 for exposing the conductive contact, wherein CD2>CD3.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Wen Hung, Chih-Sen Huang, Yi-Ching Wu
  • Patent number: 8901562
    Abstract: There are provided a transistor and a radiation imaging device in which a shift in a threshold voltage due to radiation exposure may be suppressed. The transistor includes a first gate electrode, a first gate insulator, a semiconductor layer, a second gate insulator, and a second gate electrode in this order on a substrate. Each of the first and second gate insulators includes one or a plurality of silicon compound films having oxygen, and a total sum of thicknesses of the silicon compound films is 65 nm or less.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Sony Corporation
    Inventors: Yasuhiro Yamada, Tsutomu Tanaka, Makoto Takatoku
  • Patent number: 8896065
    Abstract: A bottom-contacted top gate (TG) thin film transistor (TFT) with independent field control for off-current suppression is provided, along with an associated fabrication method. The method provides a substrate, and forms source and drain regions overlying the substrate, each having a channel interface top surface. A channel is interposed between the source and drain, with source and drain contact regions immediately overlying the source/drain (S/D) interface top surfaces, respectively. A first dielectric layer is formed overlying the source, drain, and channel. A first gate is formed overlying the first dielectric, having a drain sidewall located between the contact regions. A second dielectric layer is formed overlying the first gate and first dielectric. A second gate overlies the second dielectric, located over the drain contact region.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: November 25, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Hidayat Kisdarjono, Apostolos T. Voutsas
  • Patent number: 8878303
    Abstract: A method of optimizing a layout of an integrated circuit formed using fin-based cells of a standard cell library is provided. The method includes arranging cell rows of different track heights having standard cells. For each cell row, each of the standard cells includes sub-cell rows with sub-cells of one or more types. The sub-cells are interchangeable with one another to modify a device characteristic of the standard cell. The method also includes evaluating the integrated circuit to determine whether a performance metric of the integrated circuit has been satisfied. The method also includes identifying one or more standard cells to modify a device characteristic of the standard cell for satisfying the performance metric of the integrated circuit. The method further includes modifying the one or more standard cells until the performance metric of the integrated circuit is satisfied.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: November 4, 2014
    Assignee: Broadcom Corporation
    Inventors: Mehdi Hatamian, Paul Penzes
  • Patent number: 8866225
    Abstract: A field effect transistor including: a support layer, a plurality of active zones based on a semiconductor, each active zone configured to form a channel and arranged between two gates adjacent to each other and consecutive, the active zones and the gates being arranged on the support layer, each gate including a first face on the side of the support layer and a second face opposite the first face. The second face of a first of the two gates is electrically connected to a first electrical contact made on the second face of the first of the two gates, and the first face of a second of the two gates is electrically connected to a second electrical contact passing through the support layer. The gates of the transistor are not electrically connected to each other.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 21, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Frederic Mayer, Laurent Clavelier, Thierry Poiroux, Gerard Billiot
  • Patent number: 8866214
    Abstract: A transistor structure is formed to include a substrate and, overlying the substrate, a source; a drain; and a channel disposed vertically between the source and the drain. The channel is coupled to a gate conductor that surrounds the channel via a layer of gate dielectric material that surrounds the channel. The gate conductor is composed of a first electrically conductive material having a first work function that surrounds a first portion of a length of the channel and a second electrically conductive material having a second work function that surrounds a second portion of the length of the channel. A method to fabricate the transistor structure is also disclosed. The transistor structure can be characterized as being a vertical field effect transistor having an asymmetric gate.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Keith Kwong Hon Wong, Jun Yuan
  • Patent number: 8853691
    Abstract: A transistor and a manufacturing method thereof are provided. The transistor includes a first gate, a second gate disposed on one side of the first gate, a first semiconductor layer, a second semiconductor layer, an oxide layer, a first insulation layer, a second insulation layer, a source, and a drain. The first semiconductor layer is disposed between the first and second gates; the second semiconductor layer is disposed between the first semiconductor layer and the second gate. The oxide layer is disposed between the first semiconductor layer and the second semiconductor layer. The first insulation layer is disposed between the first gate and the first semiconductor layer; the second insulation layer is disposed between the second gate and the second semiconductor layer. The source and the drain are disposed between the first insulation layer and the second insulation layer and respectively disposed on opposite sides of the oxide layer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 7, 2014
    Assignee: E Ink Holdings Inc.
    Inventors: Chih-Hsiang Yang, Ted-Hong Shinn, Wei-Tsung Chen, Hsing-Yi Wu
  • Patent number: 8847326
    Abstract: A semiconductor device with a novel structure in which stored data can be retained even when power is not supplied, and does not have a limitation on the number of write cycles. The semiconductor device includes a memory cell including a first transistor, a second transistor, and an insulating layer placed between a source region or a drain region of the first transistor and a channel formation region of the second transistor. The first transistor and the second transistor are provided to at least partly overlap with each other. The insulating layer and a gate insulating layer of the second transistor satisfy the following formula: (ta/tb)×(?ra/?rb)<0.1, where ta represents the thickness of the gate insulating layer, tb represents the thickness of the insulating layer, ?ra represents the dielectric constant of the gate insulating layer, and ?rb represents the dielectric constant of the insulating layer.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kiyoshi Kato, Shuhei Nagatsuka
  • Patent number: 8847321
    Abstract: A MOS device includes an active area having first and second contacts. First and second gates are disposed between the first and second contacts. The first gate is disposed adjacent to the first contact and has a third contact. The second gate is disposed adjacent to the second contact and has a fourth contact coupled to the third contact. A transistor defined by the active area and the first gate has a first threshold voltage, and a transistor defined by the active area and the second gate has a second threshold voltage.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Lung Hsueh, Chih-Ping Chao, Chewn-Pu Jou, Yung-Chow Peng, Harry-Hak-Lay Chuang, Kuo-Tung Sung
  • Patent number: 8835261
    Abstract: The disclosure relates generally to a metal-oxide-semiconductor field effect transistor (MOSFET) structures and methods of forming the same. The MOSFET structure includes at least one semiconductor body on a substrate; a dielectric cap on a top surface of the at least one semiconductor body, wherein a width of the at least one semiconductor body is less than a width of the dielectric cap; a gate dielectric layer conformally coating the at least one semiconductor body; and at least one electrically conductive gate on the gate dielectric layer.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Edward J. Nowak, Richard Q. Williams
  • Patent number: 8835233
    Abstract: A method for fabricating a multiple-workfunction FinFET structure includes depositing a first workfunction material in a layer in a plurality of trenches of the FinFET structure and etching the first workfunction material layer so as to completely remove the first workfunction material layer from all but a first trench of the plurality of trenches. Further, the method includes depositing a second workfunction material in a layer in the plurality of trenches and etching the second workfunction material layer so as to completely remove the second workfunction material layer from all but a second trench of the plurality of trenches. Still further, the method includes depositing a third workfunction material in a layer in the plurality of trenches.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 16, 2014
    Assignee: GlobalFoundries, Inc.
    Inventors: Andy C. Wei, Akshey Sehgal, Bamidele S. Allimi
  • Patent number: 8803155
    Abstract: According to an aspect of the present invention, there is provided a thin-film transistor (TFT) sensor, including a bottom gate electrode on a substrate, an insulation layer on the bottom gate electrode, an active layer in a donut shape on the insulation layer, the active layer including a channel through which a current generated by a charged body flows, an etch stop layer on the active layer, the etch stop layer including a first contact hole and a second contact hole, and a source electrode and a drain electrode burying the first and second contact holes, the source and drain electrodes being disposed on the etch stop layer so as to face each other.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: August 12, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Mu-Gyeom Kim, Chang-Mo Park
  • Patent number: 8796777
    Abstract: A method includes forming a gate of a transistor within a substrate having a surface and forming a buried oxide (BOX) layer within the substrate and adjacent to the gate at a first BOX layer face. The method also includes forming a raised source-drain channel (“fin”), where at least a portion of the fin extends from the surface of the substrate, and where the fin has a first fin face adjacent a second BOX layer face of the BOX layer.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: August 5, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Seung-Chul Song, Mohamed Abu-Rahma, Beom-Mo Han
  • Patent number: 8791028
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device includes a step of forming a dummy-fin semiconductor on a semiconductor substrate; a step of forming an insulating layer, into which a lower part of the dummy-fin semiconductor is buried, on the semiconductor substrate; a step of forming a fin semiconductor, which is bonded to a side face at an upper part of the dummy-fin semiconductor, on the insulating layer; and a step of removing the dummy-fin semiconductor on the insulating layer with the fin semiconductor being left on the insulating layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kimitoshi Okano
  • Patent number: 8779428
    Abstract: A transistor includes a first active layer having a first channel region and a second active layer having a second channel region. A first gate of the transistor is configured to control electrical characteristics of at least the first active layer and a second gate is configured to control electrical characteristics of at least the second active layer. A source electrode contacts the first and second active layers. A drain electrode also contacts the first and second active layers.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eok-su Kim, Sang-yoon Lee, Myung-kwan Ryu
  • Patent number: 8723268
    Abstract: A finFET block architecture uses end-to-end finFET blocks in which the fin lengths are at least twice the contact pitch, whereby there is enough space for interlayer connectors to be placed on the proximal end and the distal end of a given semiconductor fin, and on the gate element on the given semiconductor fin. A first set of semiconductor fins having a first conductivity type and a second set of semiconductor fins having a second conductivity type can be aligned end-to-end. Interlayer connectors can be aligned over corresponding semiconductor fins which connect to gate elements.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: May 13, 2014
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Deepak D. Sherlekar
  • Patent number: 8698220
    Abstract: To provide a semiconductor device having a memory element, and which is manufactured by a simplified manufacturing process. A method of manufacturing a semiconductor device includes, forming a first insulating film to cover a first semiconductor film and a second semiconductor film; forming a first conductive film and a second conductive film over the first semiconductor film and the second semiconductor film, respectively, with the first insulating film interposed therebetween; forming a second insulating film to cover the first conductive film; forming a third conductive film selectively over the first conductive film which is formed over the first semiconductor film, with the second insulating film interposed therebetween, and doping the first semiconductor film with an impurity element with the third conductive film serving as a mask and doping the second semiconductor film with the impurity element through the second conductive film.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshinobu Asami
  • Patent number: 8686404
    Abstract: Electrodes in an organic thin film transistor based on single component organic semiconductors may be chemically modified to realize ambipolar transport. Electronic circuits may be assembled which include at least two such organic thin film transistors wherein at least one transistor is configured as a pmos transistor and at least on other transistor is configured as a nmos transistor.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 1, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Cherie Kagan, Sangameshwar Rao Saudari
  • Patent number: 8614487
    Abstract: A semiconductor device with at least two gate regions. The device includes a substrate region including a surface, a source region in the substrate region, and a drain region in the substrate region. The drain region and the source region are separate from each other. Additionally, the device includes a first gate region on the surface, a second gate region on the surface, and an insulation region on the surface and between the first gate region and the second gate region. The first gate region and the second gate region are separated by the insulation region. The first gate region is capable of forming a first channel in the substrate region. The first channel is from the source region to the drain region. The second gate region is capable of forming a second channel in the substrate region. The second channel is from the source region to the drain region.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: December 24, 2013
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Deyuan Xiao, Gary Chen, Tan Leong Seng, Roger Lee
  • Patent number: 8610197
    Abstract: Provided is a nonvolatile memory 10 having a selective gate SG formed below a silicon layer 14, which is to be a channel region formed between a source region S and a drain region D of a transistor, through a gate insulating film 15 between the silicon layer and the selective gate, a floating gate FG formed on a part over the silicon layer 14 through a gate insulating film 16, and a control gate CG connected to the floating gate FG. The selective gate SG has one end overlapping the source region S through the gate insulating film 15, and the floating gate FG has one end overlapping the drain region D through the gate insulating film 16, and the other end separated from the source region S and overlapping the silicon layer 14 through the gate insulating film 16. Thus, a nonvolatile memory whose performance is not deteriorated even when it is formed on an insulating substrate having a low heat dissipating characteristic can be achieved.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoki Ueda, Yoshimitsu Yamauchi
  • Patent number: 8598641
    Abstract: A semiconductor device and a method of fabricating a semiconductor device, wherein the method includes forming, on a substrate, a plurality of planarized fin bodies to be used for customized fin field effect transistor (FinFET) device formation; forming a nitride spacer around each of the plurality of fin bodies; forming an isolation region in between each of the fin bodies; and coating the plurality of fin bodies, the nitride spacers, and the isolation regions with a protective film. The fabricated semiconductor device is adapted to be used in customized applications as a customized semiconductor device.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Howard H. Chen, Louis C. Hsu, Jack A. Mandelman, Chun-Yung Sung
  • Patent number: 8541846
    Abstract: At least one of a plurality of transistors which are highly integrated in an element is provided with a back gate without increasing the number of manufacturing steps. In an element including a plurality of transistors which are longitudinally stacked, at least a transistor in an upper portion includes a metal oxide having semiconductor characteristics, a same layer as a gate electrode of a transistor in a lower portion is provided to overlap with a channel formation region of the transistor in an upper portion, and part of the same layer as the gate electrode functions as a back gate of the transistor in an upper portion. The transistor in a lower portion which is covered with an insulating layer is subjected to planarization treatment, whereby the gate electrode is exposed and connected to a layer functioning as source and drain electrodes of the transistor in an upper portion.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Toshihiko Saito
  • Patent number: 8536579
    Abstract: The invention relates to an electronic device including a sequence of a first thin film transistor (TFT) and a second TFT, the first TFT including a first set of electrodes separated by a first insulator, the second TFT comprising a second set of electrodes separated by a second insulator, wherein the first set of electrodes and the second set of electrodes are formed from a first shared conductive layer and a second shared conductive layer, the first insulator and the second insulator being formed by a shared dielectric layer. The invention further relates to a method of manufacturing an electronic device.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: September 17, 2013
    Assignee: Creator Technology B.V.
    Inventors: Christoph Wilhelm Sele, Monica Johanna Beenhakkers, Gerwin Hermanus Gelinck, Nicolaas Aldegonda Jan Maria Van Aerle, Hjalmar Edzer Ayco Huitema
  • Patent number: 8519453
    Abstract: A transistor device having a metallic source electrode, a metallic drain electrode, a metallic gate electrode and a channel in a deposited semiconductor material, the transistor device comprising: a first layer comprising the metallic gate electrode, a first metal portion of the metallic source electrode and a first metal portion of the metallic drain electrode; a second layer comprising a second metal portion of the metallic source electrode, a second metal portion of the metallic drain electrode, the deposited semiconductor material and dielectric material between the semiconductor material and the metallic gate electrode; and a third layer comprising a substrate, wherein the first, second and third layers are arranged in order such that the second layer is positioned between the first layer and the third layer.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 27, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: John Christopher Rudin
  • Patent number: 8513066
    Abstract: A method for creating an inverse T field effect transistor is provided. The method includes creating a horizontal active region and a vertical active region on a substrate. The method further comprises forming a sidewall spacer on a first side of the vertical active region and a second side of the vertical active region. The method further includes removing a portion of the horizontal active region, which is not covered by the sidewall spacer. The method further includes removing the sidewall spacer. The method further includes forming a gate dielectric over at least a first part of the horizontal active region and at least a first part of the vertical active region. The method further includes forming a gate electrode over the gate dielectric. The method further includes forming a source region and a drain region over at least a second part of the horizontal active region and at least a second part of the vertical active region.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: August 20, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rode R. Mora
  • Patent number: 8507989
    Abstract: An extremely thin SOI MOSFET device on an SOI substrate is provided with a back gate layer on a Si substrate superimposed by a thin BOX layer; an extremely thin SOI layer (ETSOI) on top of the thin BOX layer; and an FET device on the ETSOI layer having a gate stack insulated by spacers. The thin BOX is formed under the ETSOI channel, and is provided with a thicker dielectric under source and drain to reduce the source/drain to back gate parasitic capacitance. The thicker dielectric portion is self-aligned with the gate. A void within the thicker dielectric portion is formed under the source/drain region. The back gate is determined by a region of semiconductor damaged by implantation, and the formation of an insulating layer by lateral etch and back filling with dielectric.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machine Corporation
    Inventors: Ali Khakifirooz, Kangguo Cheng, Bruce B. Doris
  • Patent number: 8450799
    Abstract: A field effect transistor has an insulating substrate, a semiconductor thin film formed on the insulating substrate, and a gate insulating film on the semiconductor thin film. A first gate electrode is formed on the gate insulating film. A first region and a second region having a first conductivity type are formed on or in a surface of the semiconductor film on opposite sides of the first gate electrode in a length direction thereof. A third region having a second conductivity type opposite the first conductivity type is arranged on or in the semiconductor film side by side with the second region in a width direction of the first gate electrode. The third region and the second region are in contact with each other and make a low resistance junction. A second gate electrode is formed on the gate insulating film along the second region. A fourth region having the first conductivity type is formed on or in the semiconductor film on an opposite side of the second region with respect to the second gate electrode.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: May 28, 2013
    Assignees: Seiko Instruments Inc.
    Inventors: Yutaka Hayashi, Hisashi Hasegawa, Hiroaki Takasu, Jun Osanai
  • Patent number: 8436353
    Abstract: A semiconductor device 10 according to the present invention includes an active layer 14 supported on a substrate 11 and having two channel regions 14c1, 14c2, a source region 14s, a drain region 14d, and an intermediate region 14m formed between the two channel regions 14c1, 14c2; a contact layer 16 having a source contact region 16s, a drain contact region 16d, and an intermediate contact region 16m; a source electrode 18s; a drain electrode 18d; an intermediate electrode 18m; and a gate electrode 12 facing the two channel regions and the intermediate region through a gate insulating film 13 interposed therebetween. An entire portion of the intermediate electrode 18m that is located between the first channel region 14c1 and the second channel region 14c2 overlaps the gate electrode 12 through the intermediate region 14m and the gate insulating film 13.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 7, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masao Moriguchi, Tokuo Yoshida, Yuhichi Saitoh, Yasuaki Iwase, Yosuke Kanzaki, Mayuko Sakamoto
  • Patent number: 8426920
    Abstract: The present application provides a MOSFET and a method for manufacturing the same. The MOSFET comprises: a semiconductor substrate; a first buried insulating layer on the semiconductor substrate; a back gate formed in a first semiconductor layer which is on the first buried insulating layer; a second buried insulating layer on the first semiconductor layer; source/drain regions formed in a second semiconductor layer which is on the second buried insulating layer; a gate on the second semiconductor layer; and electrical contacts on the source/drain regions, the gate and the back gate, wherein the back gate is only under a channel region and one of the source/drain regions and not under the other of the source/drain regions, and a common electrical contact is formed between the back gate and the one of the source/drain regions. The MOSFET improves an effect of suppressing short channel effects by an asymmetric back gate, and reduces a footprint on a wafer by using the common conductive via.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8415741
    Abstract: A semiconductor device includes low voltage and high voltage transistors over a substrate. The low voltage transistor is configured by at least one unit transistor. The high voltage transistor is configured by a greater number of the unit transistors than the at least one unit transistor that configures the low voltage transistor. Each of the unit transistors may include a vertically extending portion of semiconductor providing a channel region and having a uniform height, a gate insulating film extending along a side surface of the vertically extending portion of semiconductor, a gate electrode separated by the gate insulating film from the vertically extending portion of semiconductor, and upper and lower diffusion regions being respectively disposed near the top and bottom of the vertically extending portion of semiconductor. The greater number of the unit transistors are connected in series to each other and have gate electrodes eclectically connected to each other.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: April 9, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Yoshihiro Takaishi
  • Patent number: 8394684
    Abstract: Techniques are discloses to apply an external stress onto the source/drain semiconductor fin sidewall areas and latch the same onto the semiconductor fin before releasing the sidewalls for subsequent salicidation and contact formation. In particular, the present disclosure provides methods in which selected portions of a semiconductor are subjected to an amorphizing ion implantation which disorients the crystal structure of the selected portions of the semiconductor fins, relative to portions of the semiconductor fin that is beneath a gate stack and encapsulated with various liners. At least one stress liner is formed and then stress memorization occurs by performing a stress latching annealing. During this anneal, recrystallization of the disoriented crystal structure occurs. The at least one stress liner is removed and thereafter merging of the semiconductor fins in the source/drain regions is performed.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sivananda K. Kanakasabapathy, Hemanth Jagannathan, Sanjay Mehta
  • Publication number: 20130049092
    Abstract: The present application discloses a semiconductor device comprising a source region and a drain region in an ultra-thin semiconductor layer; a channel region between the source region and the drain region in the ultra-thin semiconductor layer; a front gate stack above the channel region, the front gate comprising a front gate and a front gate dielectric between the front gate and the channel region; and a back gate stack below the channel region, the back gate stack comprising a back gate and a back gate dielectric between the back gate and the channel region, wherein the front gate is made of a high-Vt material, and the back gate is made of a low-Vt material. According to another embodiment, the front gate and the back gate are made of the same material, and the back gate is applied with a forward bias voltage during operation. The semiconductor device alleviates threshold voltage fluctuation due to varied thickness of the channel region by means of the back gate.
    Type: Application
    Filed: November 18, 2011
    Publication date: February 28, 2013
    Inventors: Qingqing Liang, Miao Xu, Huilong Zhu, Huicai Zhong
  • Patent number: 8373228
    Abstract: A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: February 12, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Bin Yang, Rohit Pal, Michael Hargrove
  • Patent number: 8362561
    Abstract: A transistor device (10), the transistor device (10) comprising a substrate (11, 14), a fin (3, 3A) aligned along a horizontal direction on the substrate (11, 14), a first source/drain region (4) of a first type of conductivity in the fin (3, 3A), a second source/drain region (5) of a second type of conductivity in the fin (3, 3A), wherein the first type of conductivity differs from the second type of conductivity, a channel region (33) in the fin (3, 3A) between the first source/drain region (4) and the second source/drain region (5), a gate insulator (6) on the channel region (33), and a gate structure (7, 8) on the gate insulator (6), wherein the sequence of the first source/drain region (4), the channel region (33) and the second source/drain region (5) is aligned along the horizontal direction.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 29, 2013
    Assignee: NXP B.V.
    Inventors: Sebastien Nuttinck, Gilberto Curatola
  • Patent number: 8338889
    Abstract: The disclosure concerns a method of manufacturing a semiconductor device including forming a plurality of fins made of a semiconductor material on an insulating layer; forming a gate insulating film on side surfaces of the plurality of fins; and forming a gate electrode on the gate insulating film in such a manner that a compressive stress is applied to a side surface of a first fin which is used in an NMOSFET among the plurality of fins in a direction perpendicular to the side surface and a tensile stress is applied to a side surface of a second fin which is used in a PMOSFET among the plurality of fins in a direction perpendicular to the side surface.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Kaneko, Atsushi Yagishita, Satoshi Inaba
  • Patent number: 8299516
    Abstract: A vertical thin film transistor and a method for manufacturing the same and a display device including the vertical thin film transistor and a method for manufacturing the same are disclosed. The vertical thin film transistor is applied to a substrate. In the present invention, a gate layer of the vertical thin film transistor is formed to have a plurality of concentric annular structures and the adjacent concentric annular structures are linked. By the concentric annular structures of the gate electrode layer, resistance to stress and an on-state current of the vertical thin film transistor can be increased.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: October 30, 2012
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Shou-cheng Weng, Huai-an Li, Chi-neng Mo
  • Patent number: 8294211
    Abstract: A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: October 23, 2012
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Bin Yang, Rohit Pal, Michael Hargrove
  • Patent number: 8278722
    Abstract: A flat panel display device is disclosed that may include a light-emitting layer portion including a first electrode, a second electrode, and an organic light-emitting layer between the first and second electrodes; at least two thin film transistors for controlling the light-emitting layer portion; a scanning signal line for supplying a scanning signal to the thin film transistor; a data signal line for supplying a data signal to the thin film transistor; a light emitting region having a common power supply line for supplying current to the light-emitting layer portion; and a peripheral common power supply line having at least one curved portion and connected to the common power supply line on a panel of a non-light emitting region except the light emitting region, wherein the common power supply line has a reduced wiring width while maintaining a constant wiring resistance to thereby reduce the total size of the display panel.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: October 2, 2012
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Wook Kang, Choong-Youl Im
  • Publication number: 20120242624
    Abstract: An object of the present invention is to provide a thin film transistor fabricating method including a simplified step of forming contact holes. This method involves previously removing a gate insulating film (115) on a gate electrode (110) which is not covered with a channel layer (120) in a TFT (100). Hence, an insulating film formed on the gate electrode (110) which is not covered with the channel layer (120) becomes equal in thickness to an insulating film formed on a source region (120a) and a drain region (120b). Therefore, a contact hole (155) reaching a surface of the gate electrode (110) can be formed simultaneously with a contact hole (135a) reaching a surface of the source region (120a) and a contact hole (135b) reaching a surface of the drain region (120b).
    Type: Application
    Filed: July 21, 2010
    Publication date: September 27, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhide Tomiyasu, Hidehito Kitakado, Tadayoshi Miyamoto
  • Patent number: 8242502
    Abstract: A TFT array substrate includes a substrate, at least one gate line and gate electrode, a gate insulating layer, and at least one channel component, source electrode, drain electrode and data line. The gate line and gate electrode are disposed on the substrate, wherein both of the gate line and gate electrode have first and second conductive layers, the first conductive layer is formed on the substrate, the first conductive layer contains molybdenum nitride, the second conductive layer is formed on the first conductive layer, and the second conductive layer contains copper. The gate insulating layer is disposed on the gate line, gate electrode and the substrate. The channel component is disposed on the gate insulating layer. The source electrode and drain electrode are disposed on the channel component, and data line is disposed on the gate insulating layer.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: August 14, 2012
    Assignee: Hannstar Display Corp.
    Inventors: Hsien Tang Hu, Chien Chih Hsiao, Chih Hung Tsai
  • Patent number: 8227865
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen She, Jeng-Bang Yau
  • Patent number: 8222099
    Abstract: A semiconductor device and a method of manufacturing the same are provided. A multi-component high-k interface layer containing elements of the substrate is formed from a ultra-thin high-k dielectric material in a single-layer structure of atoms by rapid annealing in the manufacturing of a CMOS transistor by the replacement gate process, and a high-k gate dielectric layer with a higher dielectric constant and a metal gate layer are formed thereon. The EOT of the device is effectively decreased, and the diffusion of atoms in the high-k gate dielectric layer from an upper level thereof is effectively prevented by the optimized high-k interface layer at high-temperature treatment. Thus, the present invention may also avoid the growth of the interface layers and the degradation of carrier mobility.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 17, 2012
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Wenwu Wang, Kai Han, Shijie Chen, Xiaolei Wang, Dapeng Chen