With Multiple Gate (epo) Patents (Class 257/E29.319)
  • Patent number: 8921947
    Abstract: A method for manufacturing a semiconductor device and a device manufactured using the same are provided. A substrate with plural metal gates formed thereon is provided, wherein the adjacent metal gates are separated by insulation. A sacrificial layer is formed for capping the metal gates and the insulation, and the sacrificial layer and the insulation are patterned to form at least an opening for exposing the substrate. A silicide is formed corresponding to the opening at the substrate, and a conductive contact is formed in the opening. The conductive contact has a top area with a second diameter CD2 for opening the insulation. A patterned dielectric layer, further formed on the metal gates, the insulation and the conductive contact, at least has a first M0 opening with a third diameter CD3 for exposing the conductive contact, wherein CD2>CD3.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Wen Hung, Chih-Sen Huang, Yi-Ching Wu
  • Patent number: 8829597
    Abstract: A nonvolatile memory device includes a plurality of channel connection layers formed over a substrate; a first gate electrode layer filling a space between the plurality channel connection layers; a gate dielectric layer interposed between each of the channel connection layers and the first gate electrode layer; a stacked structure formed over the plurality channel connection layers and the first gate electrode layer, the stacked structure including a plurality of interlayer dielectric layers and a plurality second gate electrode layers, which are alternately stacked; a pair of channel layers, formed through the stacked structure and connected to each channel connection layer of the plurality of channel connection layers; and a memory layer interposed between each of the channel layers and each of the second gate electrode layers.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Su-Chang Kwak
  • Patent number: 8791028
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device includes a step of forming a dummy-fin semiconductor on a semiconductor substrate; a step of forming an insulating layer, into which a lower part of the dummy-fin semiconductor is buried, on the semiconductor substrate; a step of forming a fin semiconductor, which is bonded to a side face at an upper part of the dummy-fin semiconductor, on the insulating layer; and a step of removing the dummy-fin semiconductor on the insulating layer with the fin semiconductor being left on the insulating layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kimitoshi Okano
  • Patent number: 8610178
    Abstract: A portion-to-be-melted of a fuse is surrounded by plates, so that heat to be generated in a meltdown portion of the fuse under current supply can be confined or accumulated in the vicinity of the meltdown portion of the fuse. This makes it possible to facilitate meltdown of the fuse. The meltdown portion of the fuse in a folded form, rather than in a single here a fuse composed of a straight-line form, is more successful in readily concentrating the heat generated in the fuse under current supply into the meltdown portion, and in further facilitating the meltdown of the fuse.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 8441048
    Abstract: The present invention provides a horizontally depleted Metal Semiconductor Field Effect Transistor (MESFET). A drain region, a source region, and a channel region are formed in the device layer such that the drain region and the source region are spaced apart from one another and the channel region extends between the drain region and the source region. First and second gate contacts are formed in the device layer on either side of the channel region, and as such, the first and second gate contacts will also reside between opposing portions of the source and drain regions. With this configuration, voltages applied to the first and second gate contacts effectively control vertical depletion regions, which form on either side of the channel region.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 14, 2013
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Joseph E. Ervin, Trevor John Thornton
  • Patent number: 8362524
    Abstract: A portion-to-be-melted of a fuse is surrounded by plates, so that heat to be generated in a meltdown portion of the fuse under current supply can be confined or accumulated in the vicinity of the meltdown portion of the fuse. This makes it possible to facilitate meltdown of the fuse. The meltdown portion of the fuse in a folded form, rather than in a single here a fuse composed of a straight-line form, is more successful in readily concentrating the heat generated in the fuse under current supply into the meltdown portion, and in further facilitating the meltdown of the fuse.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 8334178
    Abstract: A double-gate semiconductor device includes a MOS gate and a junction gate, in which the bias of the junction gate is a function of the gate voltage of the MOS gate. The breakdown voltage of the double-gate semiconductor device is the sum of the breakdown voltages of the MOS gate and the junction gate. The double-gate semiconductor device provides improved RF capability in addition to operability at higher power levels as compared to conventional transistor devices. The double-gate semiconductor device may also be fabricated in a higher spatial density configuration such that a common implantation between the MOS gate and the junction gate is eliminated.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 18, 2012
    Assignee: ACCO Semiconductor, Inc.
    Inventors: Denis A. Masliah, Alexandre G. Bracale, Francis C. Huin, Patrice J. Barroul
  • Patent number: 8241928
    Abstract: A semiconductor process test structure comprises an electrode, a charge-trapping layer, and a diffusion region. The test structure is a capacitor-like structure in which the charge-trapping layer will trap charges during various processing steps. Gate-induced drain leakage (GIDL) measurement techniques can then be used to characterize the charging status of the test structure.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: August 14, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Ming-Hsiu Lee, Chao-I Wu, Ming-Chang Kuo
  • Publication number: 20120190313
    Abstract: A switch element includes a switch device having a drain, a source and a plurality of gates, and at least one additional interconnect located between the plurality of gates, the additional interconnect operative to establish a constant potential between the at least two gates.
    Type: Application
    Filed: April 2, 2012
    Publication date: July 26, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Dima Prikhodko, Jerod F. Mason, Steven P. Matte, John Pessia, Jason Chiesa, Sergey Nabokin, Gene A. Tkachenko, Richard A. Carter, Steven C. Sprinkle, Mikhail Shirokov
  • Patent number: 8217456
    Abstract: Disclosed herein is a field effect transistor (FET), device including a FET, and a method of making the same. In embodiments of the disclosure, a semiconductor-on-insulator (SOI) substrate is provided. The SOI substrate includes a body having a first conductivity type formed in the semiconductor layer of the SOI substrate, the body including a first body region connecting a second body region to a third body region; and a source and a drain, each having a second conductivity type, disposed on opposite sides of the first body region. A first gate electrode having a second work function is disposed above the first body region; and a second gate electrode having a first work function disposed above the second and third body regions. A first gate dielectric layer may be disposed vertically between the first body region and the first gate electrode, and a second gate dielectric layer may be disposed vertically between the second and third body regions and the second gate electrode.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 8211771
    Abstract: A microelectronic device includes a P-I-N (p+ region, intrinsic semiconductor, and n+ region) semiconductive body with a first gate and a second gate. The first gate is a gate stack disposed on an upper surface plane, and the second gate accesses the semiconductive body from a second plane that is out of the first plane.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: July 3, 2012
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung
  • Publication number: 20110284930
    Abstract: An asymmetric silicon-on-insulator (SOI) junction field effect transistor (JFET) and a method. The JFET includes a bottom gate on an insulator layer, a channel region on the bottom gate and, on the channel region, source/drain regions and a top gate between the source/drain regions. STIs isolate the source/drain regions from the top gate and a DTI laterally surrounds the JFET to isolate it from other devices. Non-annular well(s) are positioned adjacent to the channel region and bottom gate (e.g., a well having the same conductivity type as the top and bottom gates can be connected to the top gate and can extend down to the insulator layer, forming a gate contact on only a portion of the channel region, and/or another well having the same conductivity type as the channel and source/drain regions can extend from the source region to the insulator layer, forming a source-to-channel strap).
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Applicant: International Business Machines Corporation
    Inventors: Douglas B. Hershberger, Richard A. Phelps, Robert M. Rassel, Stephen A. St. Onge, Michael J. Zierak
  • Patent number: 8063447
    Abstract: A microelectronic device includes a P-I-N (p+ region, intrinsic semiconductor, and n+ region) semiconductive body with a first gate and a second gate. The first gate is a gate stack disposed on an upper surface plane, and the second gate accesses the semiconductive body from a second plane that is out of the first plane.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: November 22, 2011
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung
  • Patent number: 7994544
    Abstract: A portion-to-be-melted of a fuse is surrounded by plates, so that heat to be generated in a meltdown portion of the fuse under current supply can be confined or accumulated in the vicinity of the meltdown portion of the fuse. This makes it possible to facilitate meltdown of the fuse. The meltdown portion of the fuse in a folded form, rather than in a single here a fuse composed of a straight-line form, is more successful in readily concentrating the heat generated in the fuse under current supply into the meltdown portion, and in further facilitating the meltdown of the fuse.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 9, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 7973344
    Abstract: Double gate JFET with reduced area consumption and fabrication method therefore. Double-gate semiconductor device including a substrate having a shallow trench isolator region comprising a first STI and a second STI, a channel region having a first and second channel edges, the channel region formed in the substrate and disposed between and in contact with the first STI and the second STI at the first and second channel edge. The first STI has a first cavity at the first channel edge, and the second STI has a second cavity at the second channel edge. The device further includes a gate electrode region comprising conductive material filling at least one of the first and second cavities. At least one of the first and second cavities is physically configured to provide electrical coupling of the gate electrode region to a back-gate P-N junction.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 5, 2011
    Assignee: SuVolta, Inc.
    Inventor: Srinivasan R. Banna
  • Patent number: 7824977
    Abstract: A semiconductor wafer includes at least a partially manufactured high voltage transistor covered by a high-voltage low voltage decoupling layer and at least a partially manufactured low voltage transistor with the high-voltage low-voltage decoupling layer etched off for further performance of a low-voltage manufacturing process thereon. The high-voltage low-voltage decoupling layer comprising a high temperature oxide (HTO) oxide layer of about 30-150 Angstroms and a low-pressure chemical vapor deposition (LPCVD) nitride layer.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: November 2, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: YongZhong Hu, Sung-Shan Tai
  • Patent number: 7772620
    Abstract: A junction field effect transistor comprises a silicon-on-insulator architecture. A front gate region and a back gate region are formed in a silicon region of the SOI architecture. The silicon region has a thin depth such that the back gate region has a thin depth, and whereby a depletion region associated with the back gate region recedes substantially up to an insulating layer of the SOI architecture.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 10, 2010
    Assignee: SuVolta, Inc.
    Inventor: Ashok K. Kapoor
  • Patent number: 7763531
    Abstract: The disclosure describes an integrated circuit with multiple semiconductor fins having different widths and variable spacing on the same substrate. The method of forming the circuit incorporates a sidewall image transfer process using different types of mandrels. Fin thickness and fin-to-fin spacing are controlled by an oxidation process used to form oxide sidewalls on the mandrels, and more particularly, by the processing time and the use of intrinsic, oxidation-enhancing and/or oxidation-inhibiting mandrels. Fin thickness is also controlled by using sidewalls spacers combined with or instead of the oxide sidewalls. Specifically, images of the oxide sidewalls alone, images of sidewall spacers alone, and/or combined images of sidewall spacers and oxide sidewalls are transferred into a semiconductor layer to form the fins. The fins with different thicknesses and variable spacing can be used to form a single multiple-fin FETs.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: July 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, Kiran V. Chatty, Robert J. Gauthler, Jr., Jed H. Rankin, William R. Tonti
  • Patent number: 7763914
    Abstract: A semiconductor device for high frequency includes a channel region fabricated on a compound semiconductor substrate, a gate electrode fabricated on the channel region, a source electrode and a drain electrode alternately fabricated on the channel region by sandwiching the gate electrode, a bonding pad to be connected to an external circuit, and an air-bridge having one end connected to the source electrode or the drain electrode above and outside the channel region, and the other end connected to the bonding pad.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: July 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masaki Kobayashi
  • Patent number: 7759194
    Abstract: An electrically programmable device with embedded EEPROM and method for making thereof. The method includes providing a substrate including a first device region and a second device region, growing a first gate oxide layer in the first device region and the second device region, and forming a first diffusion region in the first device region and a second diffusion region and a third diffusion region in the second device region. Additionally, the method includes implanting a first plurality of ions to form a fourth diffusion region in the first device region and a fifth diffusion region in the second device region. The fourth diffusion region overlaps with the first diffusion region.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: July 20, 2010
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Yi-Peng Chan, Sheng-He Huang, Zhen Yang
  • Patent number: 7759760
    Abstract: A semiconductor switching element, wherein on a semiconductor layer formed on a substrate, or on a semiconductor substrate, a source electrode and a drain electrode are disposed at a predetermined interval in a direction along a surface of the substrate; and a second gate electrode is provided between the source electrode and the drain electrode, the second gate electrode is electrically connected with the source electrode and structured with two types of electrode material layers having Schottky barriers of different heights from each other.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 20, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Norimasa Yafune, John Kevin Twynam
  • Patent number: 7569882
    Abstract: One embodiment of the invention comprises a first semiconductor structure in electrical contact with a first contact region, a second semiconductor structure in electrical contact with a second contact region, the first semiconductor structure and the second semiconductor structure being in electrical contact with each-other along an interface, a modulating section configured to modulate the conductivity in at least one of the semiconductor structures, so that the conductivity varies along the interface, in such a way that if current flows across the interface, the current can flow only at a predetermined position along the interface, and substantially no current can flow at either side of the predetermined position.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: August 4, 2009
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventor: Maarten Rosmeulen
  • Publication number: 20090095989
    Abstract: A multi-finger transistor includes gate fingers disposed on a substrate, at least one gate wiring connected to end portions of the gate fingers, source regions and drain regions disposed between the gate fingers, a conductive line partially enclosing the gate fingers and the gate wiring, and substrate plugs electrically connecting the conductive line to the substrate. The conductive line is separated from the gate fingers and the gate wiring. Since the conductive line and the substrate plugs may partially, but not fully, enclose a portion of the substrate where the gate fingers and the gate wiring are positioned, parasitic capacitances caused by the conductive line and the substrate plugs may be considerably reduced to thereby allow high RF frequency characteristics of the multi-finger transistor.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 16, 2009
    Inventor: Han-Su Kim
  • Publication number: 20080277698
    Abstract: A field effect transistor includes a channel region fabricated on a compound semiconductor substrate, a gate electrode fabricated on the channel region, a source electrode and a drain electrode alternately arranged on the channel region with a gate electrode interposed between the source electrode and the drain electrode, a bonding pad to be connected with an external circuit; and an air-bridge connected with the bonding pad, the air-bridge having an electrode contact terminal to be connected with the source electrode or the drain electrode and an aerial circuit line for connecting the electrode contact terminal with a contact terminal of the bonding pad, the widthwise cross sectional area of the electrode contact terminal being equal to or less than that of the aerial circuit line.
    Type: Application
    Filed: July 17, 2008
    Publication date: November 13, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masaki KOBAYASHI
  • Publication number: 20080111163
    Abstract: A field effect transistor with a fin structure having a first and a second source/drain region; a body region formed within the fin structure and between the first and the second source/drain region; a metallically conductive region formed within a part of the first source/drain region, the metallically conductive region being adjacent to the body region or to a lightly doped region disposed between the body region and the first source/drain region; and a current ballasting region formed within a part of the second source/drain region.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Christian Russ, Harald Gossner, Thomas Schulz
  • Patent number: 7348630
    Abstract: The semiconductor device has a semiconductor substrate, gate electrodes formed above the semiconductor substrate, and a pair of impurity diffusion layers formed in a surface layer of the semiconductor substrate at both sides of each of the gate electrodes. The semiconductor device also has drift layers formed in the surface layer of the semiconductor substrate between the gate electrodes and one of the impurity diffusion layers as a same conduction type as the impurity diffusion layers. The gate electrodes are made of metal including aluminum, and each is formed in an overhang shape. The semiconductor device can provide an LDMOS transistor enhanced in maximum transmission frequency and power gain and capable of a high-frequency operation with high efficiency as a basic element of a high-frequency power amplifier.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: March 25, 2008
    Assignee: Fujitsu Limited
    Inventors: Tsunenori Yamauchi, Shunji Nakamura
  • Patent number: 7161197
    Abstract: An RF switching circuit according to the present invention includes: a plurality of input/output terminals for inputting and outputting an RF signal; and a switch for opening and closing an electrical connection between the input/output terminals. The switch is constituted by a multi-gate field effect transistor including a plurality of gates located between source and drain spaced from each other on a semiconductor layer. A bias voltage is applied to an inter-gate region of the semiconductor layer between the gates. The bias voltage is equal to or lower than 90% of a high-level voltage, which is a voltage for turning the multi-gate field effect transistor ON, in a state where the multi-gate field effect transistor is ON, and is equal to or higher than 80% of the high-level voltage and equal to or lower than the high-level voltage in a state where the multi-gate field effect transistor is OFF.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: January 9, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tadayoshi Nakatsuka, Shinji Fukumoto
  • Publication number: 20060289927
    Abstract: A non-volatile memory is described having memory cells with a gate dielectric. The gate dielectric is a multilayer charge trapping dielectric between a control gate and a channel region of a transistor to trap positively charged holes. The multilayer charge trapping dielectric comprises two layers of dielectric having different band gaps such that holes are trapped at a barrier between the two layers.
    Type: Application
    Filed: June 27, 2005
    Publication date: December 28, 2006
    Inventors: Leonard Forbes, Kie Ahn
  • Patent number: 7091566
    Abstract: A field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETS. Each FET includes a device gate along one side of a semiconductor (e.g., silicon) fin and a back bias gate along an opposite of the fin. Back bias gate dielectric differs from the device gate dielectric either in its material and/or thickness. Device thresholds can be adjusted by adjusting back bias gate voltage.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: August 15, 2006
    Assignee: International Business Machines Corp.
    Inventors: Huilong Zhu, Jochen Beintner, Bruce B. Doris, Ying Zhang