Characterized By Doping Material (epo) Patents (Class 257/E31.017)
  • Patent number: 11967659
    Abstract: Provided is a stable CdZnTe monocrystalline substrate having a small leakage current even when a high voltage is applied and having a lower variation in resistivity with respect to variations in applied voltage values. A semiconductor wafer comprising a cadmium zinc telluride monocrystal having a zinc concentration of 4.0 at % or more and 6.5 at % or less and a chlorine concentration of 0.1 ppm by mass or more and 5.0 ppm by mass or less, wherein the semiconductor wafer has a resistivity of 1.0×107 ?cm or more and 1.0×108 ?cm or less when a voltage of 900 V is applied, and wherein a ratio (variation ratio) of the resistivity at application of 0 V to the resistivity at application of a voltage of 900 V is 20% or less.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: April 23, 2024
    Assignee: JX METALS CORPORATION
    Inventors: Koji Murakami, Akira Noda, Ryuichi Hirano
  • Publication number: 20140109958
    Abstract: A method of fabricating a photovoltaic device includes forming an absorber layer for photon absorption over a substrate, forming a buffer layer above the absorber layer, wherein both the absorber layer and the buffer layer are semiconductors, and forming a layer of intrinsic zinc oxide above the buffer layer through a hydrothermal reaction in a solution of a zinc-containing salt and an alkaline chemical.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: TSMC SOLAR LTD.
    Inventors: Shih-Wei CHEN, Wei-Lun XU, Wen-Tsai YEN, Chung-Hsien WU, Wen-Chin LEE
  • Patent number: 8659107
    Abstract: A radiation receiver has a semiconductor body including a first active region and a second active region, which are provided in each case for detecting radiation. The first active region and the second active region are spaced vertically from one another. A tunnel region is arranged between the first active region and the second active region. The tunnel region is connected electrically conductively with a land, which is provided between the first active region and the second active region for external electrical contacting of the semiconductor body. A method of producing a radiation receiver is additionally indicated.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: February 25, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Rainer Butendeich, Reiner Windisch
  • Publication number: 20130112969
    Abstract: A method of manufacturing silver (Ag)-doped zinc oxide (ZnO) nanowires and a method of manufacturing an energy conversion device are provided. In the method of manufacturing Ag-doped ZnO nanowires, the Ag-doped nanowires are grown by a low temperature hydrothermal synthesis method using a Ag-containing aqueous solution.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicants: Industry-University Cooperation Foundation Hanyang University, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Samsung Electronics Co., Ltd., Industry-University Cooperation Foundation Hany
  • Publication number: 20110143492
    Abstract: A method of p-type doping cadmium telluride (CdTe) is disclosed. The method comprising the steps of, (a) providing a first component comprising cadmium telluride (CdTe) comprising an interfacial region, and (b) subjecting the CdTe to a functionalizing treatment to obtain p-type doped CdTe, said functionalizing treatment comprising a thermal treatment of at least a portion of the interfacial region in the presence of a first material comprising a p-type dopant, and of a second material comprising a halogen. A method of making a photovoltaic cell is also disclosed.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Anthony DeLuca, Scott Feldman-Peabody
  • Patent number: 7727865
    Abstract: To provide a method of controlling a conductivity of a Ga2O3 system single crystal with which a conductive property of a ?-Ga2O3 system single crystal can be efficiently controlled. The light emitting element includes an n-type ?-Ga2O3 substrate, and an n-type ?-AlGaO3 cladding layer, an active layer, a p-type ?-AlGaO3 cladding layer and a p-type ?-Ga2O3 contact layer which are formed in order on the n-type ?-Ga2O3 substrate. A resistivity is controlled to fall within the range of 2.0×10?3 to 8×102 ?cm and a carrier concentration is controlled to fall within the range of 5.5×1015 to 2.0×1019/cm3 by changing a Si concentration within the range of 1×10?5 to 1 mol %.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: June 1, 2010
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20070114627
    Abstract: A photodetector made in monolithic form in a lightly-doped substrate of a first conductivity type. This photodetector comprises at least two photodiodes and comprises a first region of the first conductivity type more heavily doped than the substrate extending at least between the two photodiodes; and a second region of the first conductivity type more heavily doped than the substrate and extending under the first region and under one of the two photodiodes, the first region or the second region, with the first region, delimiting a substrate portion at the level of said one of the two photodiodes, and the second region, with the first region, delimiting an additional substrate portion at the level of the other one of the two photodiodes.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 24, 2007
    Applicant: STMicroelectronics S.A.
    Inventors: Francois Roy, Thomas Girault, Yann Marcellier, Caroline Bringolf-Penner