By Etching Patents (Class 29/603.18)
  • Patent number: 7506430
    Abstract: The problem of increased edge sensitivity associated with the reduction of the spacing between bias magnets in a CPP head has been solved by limiting the width of the bias cancellation layer and by adding an extra layer of insulation to ensure that current through the device flows only through its central area, thereby minimizing its edge reading sensitivity.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Jei-Wei Chang, Koichi Terunuma, Youfeng Zheng, Kochan Ju
  • Patent number: 7506429
    Abstract: A magnetoresistive sensor having a well defined track width and method of manufacture thereof.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: March 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Howard Gordon Zolla, Edward Hin Pong Lee, Kim Y. Lee, Tsann Lin, Chun-Ming Wang
  • Patent number: 7506431
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method allows the write head to be formed with a write pole having a concave trailing edge. The method further allows the amount of concavity of the trailing edge to be accurately and carefully controlled both within a wafer and between wafers. A write pole is formed using a mask that includes a hard mask, a RIEable layer and an endpoint detection layer. A layer of non-magnetic material (ALD layer) is deposited, and then, an ion milling process is used to remove a portion of the ALD layer disposed over the write pole and mask. A reactive ion etch process is performed to remove the RIEable layer leaving the ALD layer to form non-magnetic side walls with upper portions that extend above the write pole.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: March 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Yimin Hsu, Vladimir Nikitin, Aron Pentek, Yi Zheng
  • Patent number: 7506432
    Abstract: A lower shield layer is formed by being embedded in a first recess formed in an under layer. Accordingly, the distance between the lower shield layer and a slider can be reduced. Also, a second metal layer is formed from above a gap layer covering an electrode extracting layer over above the under layer hindwards therefrom. Accordingly, the second metal layer can be brought closer to the slider side than an upper shield layer. Consequently, the thermal dissipation effects of the thin-film magnetic head can be improved.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 24, 2009
    Assignee: TDK Corporation
    Inventors: Kiyoshi Sato, Hideki Gochou, Hisayuki Yazawa
  • Patent number: 7503107
    Abstract: A method for manufacturing a magnetic head for perpendicular magnetic recording is disclosed. The method comprising: a first step of depositing a non-magnetic film over and around the main magnetic pole, and subsequently polishing and planarizing the non-magnetic film, wherein the non-magnetic film is made of a non-magnetic material which exhibits a lower ion milling rate than that of a magnetic metal material which constitutes the main magnetic pole; a second step of etching the surface by use of ion milling at a first angle relative to a stacked direction of the magnetic head, to form a stepped portion in which the main magnetic pole is lower from the non-magnetic film around the main magnetic pole; and a third step of etching the stepped portion, by use of ion milling, at a second angle relative to the stacked direction, wherein the second angle is larger than the first angle.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: March 17, 2009
    Assignees: TDK Corporation, SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshihiko Koyama, Naoto Matono, Yasuyuki Notsuke
  • Patent number: 7500302
    Abstract: Embodiments of the present invention recite a process for fabricating a write gap structure for a magnetic recording head. In one embodiment, at least one layer of inert material is deposited which is disposed proximate to the P2 pole of a magnetic recording head. A layer of magnetic material is deposited which is disposed between the layer of inert material and the P1 pedestal (P1P) of the magnetic recording head. In embodiments of the present invention, a second layer of inert material is deposited which is disposed between the layer of magnetic material and the P1P of the magnetic recording head. In embodiments of the present invention, the throat height of the write gap structure is defined wherein the layer of magnetic material and the inert layer only overlie a portion of the P1 pedestal of the magnetic recording head.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: March 10, 2009
    Assignee: Hitachi Global Storage Technologies, Netherlands B.V.
    Inventors: Wen-Chien Hsiao, Terence Lam, Yinshi Liu, Michael Yang, Samuel Yuan
  • Patent number: 7500303
    Abstract: A read head for a disk drive and a method of fabricating the read head with overlaid lead pads that contact the top surface of the sensor between the hardbias structures to define the electrically active region of the sensor are described. The invention deposits the GMR and lead layers before milling away the unwanted material. A photoresist mask with a hole defining the active area of the sensor is preferably patterned over a layer of DLC that is formed into a mask. A selected portion of the exposed lead material is then removed using the DLC as a mask defining the active region of the sensor. A photoresist mask pad is patterned to define the full sensor width. The excess sensor and lead material exposed around the mask is milled away. The layers for the hardbias structure are deposited.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: March 10, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tsung Yuan Chen, Kuok San Ho, Mustafa Michael Pinarbasi
  • Patent number: 7497008
    Abstract: An embodiment of the invention is a magnetic head with overlaid lead pads that contact the top surface of the sensor between the hardbias structures and do not contact the hardbias structures which are electrically insulated from direct contact with the sensor. The lead pad contact area on the top of the sensor is defined by sidewall deposition of a conductive material to form leads pads on a photoresist prior to formation of the remainder of the leads. The conductive material for the lead pads is deposited at a shallow angle to maximize the sidewall deposition on the photoresist, then ion-milled at a high angle to remove the conductive material from the field while leaving the sidewall material. An insulation layer is deposited on the lead material at a high angle, then milled at a shallow angle to remove insulation from the sidewall.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: March 3, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tsung Yuan Chen, Frederick Hayes Dill, James Mac Freitag, Kuok San Ho, Wipul Pemsiri Jayasekara, Kim Y. Lee, Mustafa Michael Pinarbasi, Ching Hwa Tsang, Patrick Rush Webb
  • Patent number: 7497009
    Abstract: A main pole forming method is provided. The main pole forming method includes etching an exposed side face of a main pole layer, and the plated foundation film, thereby defining a recording track width. The method also includes etching the nonmagnetic insulating layer, and reattaching a material repelled from the nonmagnetic insulating layer to the side face of the main pole layer and a side face of the plated foundation film.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 3, 2009
    Assignee: TDK Corporation
    Inventor: Kiyoshi Kobayashi
  • Patent number: 7493688
    Abstract: A method for providing a magnetic recording transducer is disclosed. The method includes providing a first pole having front and rear portions and a back gap on the rear portion. The method also includes providing an insulator on the first pole. The method includes providing a write gap and providing a portion of a second pole on at least the write gap. A portion of the write gap resides on the front portion of the first pole. A portion of the insulator covers a portion of the first pole between the portion of the second pole and the back gap. The method also includes providing a mask that covers the back gap and exposes the portion of the second pole and the insulator. The method also includes performing a pole trim that can substantially remove the portion of the insulator covering the remaining portion of the first pole.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: February 24, 2009
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Liping Ren, Yingjian Chen, Christopher T. Ngo, Ming Zhao
  • Patent number: 7480983
    Abstract: Two trim/notch milling steps are used to refine the track width that is defined by the second pole piece tip of a write head. The second milling step uses feedback gained after the first milling step to refine the P2B (pole P2 bottom width) dimension. A final milling step may be conducted after receiving feedback from the result of the second trim/notch milling step.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: January 27, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jyh-Shuey Jerry Lo
  • Patent number: 7475470
    Abstract: On the trailing side of a main pole air bearing surface of a magnetic head for perpendicular recording, the central portion is formed closer to the leading side than the corners on the trailing side, such that the main pole air bearing surface is formed in the shape of a recess with respect to the tailing side. As a result, it is possible to linearize the magnetic field distribution on the trailing side whereby the magnetic reversal is determined, and to record a bit without curving the shape of magnetic reversal.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: January 13, 2009
    Assignee: Hitachi Global Storage Technologies, LTD.
    Inventors: Masafumi Mochizuki, Tomohiro Okada, Atsushi Nakamura
  • Patent number: 7475471
    Abstract: A GMR read head for a magnetic head, in which the hard bias layers are fabricated immediately next to the side edges of the free magnetic layer, and such that the midplane of the hard bias layer and the midplane of the free magnetic layer are approximately coplanar. The positioning of the hard bias layer is achieved by depositing a thick hard bias seedlayer, followed by an ion milling step is to remove seed layer sidewall deposits. Thereafter, the hard bias layer is deposited on top of the thick seed layer. Alternatively, a first portion of the hard bias seed layer is deposited, followed by an ion milling step to remove sidewall deposits. A thin second portion of the seed layer is next deposited, and the hard bias layer is then deposited.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: January 13, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Mustafa Michael Pinarbasi
  • Patent number: 7472470
    Abstract: A main magnetic pore layer is formed on an insulating layer flattened into a high-flatness surface, and a yoke layer having a large film thickness is formed under the main magnetic pole layer independently of the main magnetic pole. The main magnetic pole layer has a front end surface formed in a shape with a width size gradually increasing in a direction of track width as the front end surface departs farther away from an auxiliary magnetic pole layer. A perpendicular magnetic recording head can be provided which can suppress the occurrence of fringing in a recording pattern, and can form the main magnetic pole layer with high pattern accuracy, and can satisfactorily introduce a recording magnetic field to a fore end of the main magnetic pole layer.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: January 6, 2009
    Assignee: TDK Corporation
    Inventors: Toru Takahashi, Hisayuki Yazawa, Hideki Gochou, Kiyoshi Kobayashi, Minoru Yamada, Kiyoshi Sato, Toshinori Watanabe
  • Patent number: 7472469
    Abstract: A method is disclosed for fabricating a read sensor for a magnetic head for a hard disk drive having a read sensor stack and two lateral stacks. The method of fabrication includes forming lateral stacks on a gap layer, surrounding a groove to form a template. The read sensor stack is then formed in the groove, which defines the lateral dimensions of the read sensor stack, and lead layers are then formed on the lateral stacks. Also disclosed is a read head for a disk drive having a sensor stack defined by pre-established lateral stacks, and a disk drive having the read head.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 6, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Eugene Heim, Kim Y. Lee, Tsann Lin, Jih-Shiuan Luo, Chun-Ming Wang
  • Patent number: 7472471
    Abstract: A method of manufacturing a magnetic head for perpendicular magnetic recording that includes a pole layer and a pole-layer-encasing layer. The method includes the steps of: forming a nonmagnetic layer that will be formed into the pole-layer-encasing layer; forming a polishing stopper layer on the top surface of the nonmagnetic layer, the polishing stopping layer being made of a nonmagnetic conductive material and having a penetrating opening with a shape corresponding to the plane geometry of the pole layer; forming a groove in the nonmagnetic layer by selectively etching a portion of the nonmagnetic layer exposed from the opening; forming a magnetic layer to be the pole layer such that the groove is filled; and polishing the magnetic layer until the polishing stopper layer is exposed, so that the magnetic layer is formed into the pole layer.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 6, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hironori Araki, Shigeki Tanemura, Takehiro Horinaka
  • Patent number: 7469467
    Abstract: A perpendicular write head includes a main pole comprising a Durimide/Alumina hard mask formed over a laminate layer process to form the main pole without using a liftoff or chemical mechanical polishing process, thereby avoiding rounding corners of the pole, the main pole being controlled in shape for improved control of critical dimension of track width and angle of the bevel to avoid undesirable adjacent track writing.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: December 30, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yunxiao Gao, Hung-Chin Guthrie, Ming Jiang, Sue Siyang Zhang
  • Patent number: 7469468
    Abstract: A read/write head for a disk drive having a shorting conductor from a shield of the read element to a conductor that runs from the write element to an external electrical contact pad. This allows for the measurement of the electrical isolation between the read sensor and the read shield via the external contact pads. Such a capability allows the electrical isolation to be measured both during the lapping process and subsequent to the heads being diced into separate sliders. This shorting conductor may be in the form of an internal shorting stud or in the form of an interim conductor that passes through the parting zone between adjacent heads. In the latter case, the shorting conductor is broken when the heads are diced so that a head of this embodiment can only be measured for electrical isolation prior to dicing.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: December 30, 2008
    Assignee: Maxtor Corporation
    Inventors: Ralph W. Cross, Chris Broussalian
  • Patent number: 7469465
    Abstract: One illustrative method of fabricating a read sensor of a magnetic head includes the steps of forming a plurality of read sensor layers on a wafer; etching the read sensor layers to form a read sensor structure with a trench in front of the read sensor structure; forming a highly porous material within the trench; and slicing the wafer and lapping the sliced wafer through the highly porous material until an air bearing surface (ABS) of the magnetic head is reached. Advantageously, the highly porous material in front of the read sensor structure reduces mechanical stress on the read sensor during the lapping process. This reduces the likelihood that the amplitude of the read sensor will be degraded or set in a “flipped” or reversed orientation, as well as reduces the likelihood that electrostatic discharge (ESD) damage to the read sensor will occur.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: December 30, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Meng Ding, Kuok San Ho, Tsann Lin, Huey-Ming Tzeng
  • Patent number: 7467460
    Abstract: A slider manufacturing method includes: providing a row bar constructed from multiple slider bodies having a surface for forming an air bearing surface (ABS); forming multiple cutting lines on the surface for forming an ABS of the row bar; forming a stress absorption region adjacent to the cut line in a cutting region defined by two adjacent cutting lines; grinding the surface for forming an ABS of the row bar; and cutting the row bar along the cutting lines to form multiple individual sliders. When the row bar is cut by a cutter into multiple individual sliders along the cutting lines, stress generated in the cutting region adjacent to cutting lines during cutting is partly or fully absorbed by the stress absorption region, reducing the chances of clear edge jumps forming at the edges of the ABS of the slider after the cutting, and disk surface scratching by the slider.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 23, 2008
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: ZhiHua Tan, QuanBao Wang, YanZeng Ma
  • Patent number: 7467461
    Abstract: A method of manufacturing a magnetic write head for perpendicular magnetic recording. The method includes the formation of a write pole over a substrate. A non-magnetic side gap layer is deposited and an ion milling is used to remove a portion of the substrate to lower the floor of the substrate. A sacrificial fill layer can then be deposited. A chemical mechanical polishing process can be used to remove the mask structure remaining as a remnant of the formation of the write pole, and then the sacrificial fill layer can be removed. A non-magnetic, electrically conductive material can be deposited to form a tailing gap, an a magnetic material can then be deposited to form a wrap around trailing shield.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: December 23, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Quang Le, Neil Leslie Robertson, Petrus Antonius Van Der Heijden
  • Patent number: 7464456
    Abstract: A slider separating method includes bonding a row bar containing a plurality of slider-forming portions to a bonding surface of a cutting fixture along a side surface that extends in its length direction; cutting the row bar bonded on the cutting fixture into individual sliders along cutting gaps provided between the slider-forming portions; decreasing bonding force between each diced slider and the bonding surface; and separating the sliders with decreased bonding force from the cutting fixture by pushing each slider along a side direction being parallel to the bonding surface and perpendicular to the length direction and holding and receiving the slider to a slider tray having recesses formed therein which is partitioned according to the sliders. The method can reliably and efficiently separate a row bar containing a plurality of slider-forming portions into individual sliders without depending upon size or arrangement pitch of the sliders and hold these sliders.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: December 16, 2008
    Assignee: Sae Magnetics (H.K.) Ltd.
    Inventors: Ryuji Fujii, ChunFei Cheung
  • Patent number: 7464457
    Abstract: Methods for forming write heads. One method includes forming a mask layer above a pole tip layer; forming a layer of resist above the mask layer; patterning the resist; removing portions of the mask layer not covered by the patterned resist; shaping a pole tip from the pole tip layer; depositing a layer of dielectric material above the pole tip and flux shaping layer, wherein the layer of dielectric material extends about adjacent to the mask layer; depositing a stop layer over the dielectric material, the stop layer abutting the mask layer; and polishing for forming a substantially planar upper surface comprising the mask layer and stop layer. Another method includes depositing a layer of dielectric material at least adjacent the pole tip, wherein the layer of dielectric material extends about adjacent to the mask layer. A further method includes forming dishing in the pole tip.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 16, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, Edward Hin Pong Lee, Jui-Lung Li, Aron Peniek, Nian-Xiang Sun
  • Patent number: 7464458
    Abstract: A perpendicular magnetic write head having a notched, self aligned trailing shield for canting a magnetic field emitted therefrom.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 16, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, Aron Pentek
  • Patent number: 7461447
    Abstract: A method of fabrication of a magnetic head including a read head sensor includes providing a read sensor stack having a front edge, a rear edge, a right side edge and a left side edge, and at least one pinning layer. The left side edge, right side edge, front edge and rear edge of the sensor stack are milled. The read sensor stack is annealed in a magnetic field to set the final orientation of the pinning layer, and the read sensor stack is encapsulated in overcoat material having a front surface. A projected final ABS boundary is established which lies within the overcoat material. A trim range is established relative to the projected final ABS boundary. The front surface of the overcoat material is lapped until the overcoat front surface is within the trim range. Residual overcoat material is then removed by ion beam etching.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: December 9, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Huey-Ming Tzeng, Xiao Z. Wu
  • Publication number: 20080297945
    Abstract: A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a separated pair of bottom side shields and shielded from above by an upper shield. The bottom side shields surround a lower portion of the pole tip while the upper portion of the pole tip is surrounded by non-magnetic layers. The bottom shields and the non-magnetic layer form wedge-shaped trench in which the pole tip is formed by a self-aligned plating process. The wedge shape is formed by a RIE process using specific gases applied through a masking layer formed of material that has a slower etch rate than the non-magnetic material or the shield material. A masking layer of Ta, Ru/Ta, TaN or Ti, formed on a non-magnetic layer of alumina that is formed on a shield layer of NiFe and using RIE gases of CH3OH, CO or NH3 or their combinations, produces the desired result. A write gap layer and an upper shield is then formed above the side shields and pole.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Cherng-Chyi Han, Min Li, Fenglin Liu, Lijie Guan
  • Patent number: 7455332
    Abstract: The overcoat of a slider (alumina) is recessed relative to the slider ABS by a non-abrasive CMP process sufficiently to prevent thermal protrusion of the overcoat during subsequent slider use in a hard disk drive. The CMP process involves the oscillatory and rotational compressional contact between the ABS surface of the slider and a polymerically pre-treated compliant pad that is sprayed by an aqueous alkali lubricating solution having a pH between about 9 and 10. The overcoat is thereby also softened by the lubricating solution and removed by the compressional contact and no use of abrasives is required.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: November 25, 2008
    Assignee: SAE Magnetics (HK) Ltd.
    Inventors: Winston Jose, Rudy Ayala, Niraj Mahadev
  • Patent number: 7454828
    Abstract: A method for measuring recession in a wafer undergoing an asymmetrical ion mill process. The method includes the formation of first and second reference features and possibly a dummy feature. The reference features are constructed such that the location of the midpoint between them is unaffected by the asymmetrical ion mill. By measuring the distance between a portion of the dummy feature and the midpoint between the reference features, the amount of recession of the dummy feature can be measured. The measurement can be used to calculate the relative location of the flare to the read sensor rear edge through overlay information. By keeping the angles of the sides of the features steep (ie. nearly parallel with the direction in which the ion mill is asymmetrical) the amount of material consumed on each of the reference features is substantially equal and the midpoint between the reference features is substantially stationary.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: November 25, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Sukhbir Singh Dulay, Justin Jia-Jen Hwu, Thao John Pham
  • Publication number: 20080276448
    Abstract: A method of forming a perpendicular magnetic recording write head having a trailing shield (TS) with a precisely defined throat height (TH) on an air-bearing slider includes depositing an electrical lapping guide (ELG) layer on the substrate adjacent to and spaced from the write pole (WP) layer. A nonmagnetic TS pad layer is deposited on both the gap layer and the ELG layer, with the TS pad layer patterned to have a front edge extending across the both the ELG layer and the gap layer and recessed from the line where the substrate will be later cut to form the slider. An ELG protection layer is patterned on the ELG layer, the TS pad layer material is removed from the ELG layer in the region recessed from the TS pad layer front edge, and the ELG layer is removed in regions not covered by the ELG protection layer.
    Type: Application
    Filed: May 10, 2007
    Publication date: November 13, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventor: Aron Pentek
  • Patent number: 7444741
    Abstract: Biasing schemes used for CIP GMR devices were previously thought to be impractical for CPP devices due to current shunting by the abutted hard magnets. In the present invention the CPP stripe is a narrow conductor directly above the free layer. The resistivity of the latter is made to be relatively high so the sensing current diverges very little as it passes through it. This makes it possible to use abutted hard magnets for longitudinal bias with virtually no loss of sensing current due to shunting by the magnets.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: November 4, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Yimin Guo, Li-Yan Zhu
  • Patent number: 7444739
    Abstract: A magnetic head fabrication process in which a stencil layer is deposited upon a plurality of sensor layers. A photoresist mask in the desired read track width is fabricated upon the stencil layer. A reactive ion milling step is then conducted to remove the unmasked portions of the stencil layer. Where the stencil layer is composed of an organic compound, such as Duramide and/or diamond-like-carbon, a reactive ion milling step utilizing oxygen species produces a stencil of the present invention having exceptionally straight side walls with practically no undercuts. Thereafter, an ion milling step is undertaken in which the sensor layers that are not covered by the stencil are removed. The accurately formed stencil results in correspondingly accurately formed side walls of the remaining central sensor layers. A magnetic head sensor structure having a desired read track width and accurately formed side walls is thus fabricated.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 4, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Michael Feldbaum, Wipul Pemsiri Jayasekara, Mustafa Michael Pinarbasi
  • Patent number: 7444740
    Abstract: A method and system for manufacturing a pole for a magnetic recording head. The method and system include providing an insulator and fabricating at least one hard mask on the insulator. The at least one hard mask has an aperture therein. The method and system also include removing a portion of the insulator to form a trench within the insulator. The trench is formed under the aperture. The method and system further include depositing at least one ferromagnetic material. The pole includes a portion of the ferromagnetic material within the trench.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: November 4, 2008
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ki Sup Chung, Kyusik Sin, Danning Yang, Yingjian Chen, Brant Nease
  • Publication number: 20080266709
    Abstract: A recording and/or read device of a magnetic medium with magnetic tracks, including plural magnetic heads each including a pair of polar parts separated by an amagnetic head gap. These pairs of polar parts are grouped on at least one support with a non zero tilt angle between ±90° from the tracks, all head gaps of the pairs of polar parts in the support having the same azimuth angle, between ±90° excluding limits from a direction normal to the support.
    Type: Application
    Filed: November 2, 2005
    Publication date: October 30, 2008
    Inventors: Jean-Baptiste Albertini, Pierre Gaud
  • Patent number: 7441325
    Abstract: A perpendicular write head including a main pole and a trailing shield, the main pole being made of a diamond-like carbon (DLC) layer as hard mask and a rhodium (Rh) layer as shield gap, both DLC and Rh layers being CMP stop layers so as to avoid corner rounding and damage from chemical mechanical planarization (CMP) process, the DLC layer being removed by reactive ion etching (RIE) to create a trench, the trailing shield being deposited into the trench for self alignment.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: October 28, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yunxiao Gao, Hung-Chin Guthrie, Ming Jiang, Sue Siyang Zhang
  • Patent number: 7430095
    Abstract: A write pole for a read/write head of a disk drive system has a tapered surface on a leading edge thereof. Preferably, the tapered surface has a taper angle of between 0 and 20 degrees from a plane normal to the ABS. By having a write pole with a taper in this manner, sufficient write fields can be achieved even with thinner write pole tips on the ABS surface. By decreasing the thickness of the write pole tip in this manner while maintaining sufficiently high write fields, the skew profile of a write head can be decreased and areal density increased.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: September 30, 2008
    Assignee: Maxtor Corporation
    Inventors: Mourad Benakli, Michael Mallary, Adam F. Torabi
  • Patent number: 7418778
    Abstract: A CPP thin-film magnetic head includes a bottom shield layer; a top shield layer, the bottom shield layer and the top shield layer being disposed at a predetermined interval; a thin-film magnetic head element between the bottom shield layer and the top shield layer; an insulating layer behind the thin-film magnetic head element in the height direction and disposed between the bottom shield layer and the top shield layer; and a metal layer in the insulating layer, the top shield layer including a first top shield sublayer on the thin-film magnetic head element; and a second top shield sublayer behind the first top shield sublayer in the height direction, the second top shield sublayer and the bottom shield layer being conductively connected through the metal layer, wherein a current flows in the direction orthogonal to a surface of a layer constituting the thin-film magnetic head element.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: September 2, 2008
    Assignee: TDK Corporation
    Inventor: Yoshihiro Nishiyama
  • Patent number: 7398592
    Abstract: This invention describes a manufacturable method, including a CMP liftoff process, for removing masking materials after ion milling for fabricating the write pole of a magnetic head. Significant parameters for the CMP assisted liftoff process include the thickness of the remaining mask materials after the write pole ion milling for effective CMP assisted liftoff, the thickness of the dielectric fill material deposited to protect the write pole during the CMP liftoff step, and the type of CMP slurry, polishing pad and the polishing conditions that are required to yield satisfactory results.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: July 15, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Quang Le, Jui-Lung Li
  • Patent number: 7398591
    Abstract: The present invention relates to a manufacturing method of a thin-film magnetic head whereby re-deposition and an overlapped part in a region of a magnetoresistive effect multi-layered structure opposite to an air bearing surface can be removed and also a width of a free layer can be narrowed.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: July 15, 2008
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Takayasu Kanaya, Noriaki Kasahara, Kazuki Sato
  • Patent number: 7395595
    Abstract: A method for forming a P3 layer with NiFe and alumina mask using resist shrink process for use in perpendicular magnetic write heads. The method includes forming a laminated layer, forming an alumina layer on top of the laminated layer, depositing a conductive layer onto the laminated layer, forming a plating frame on a gap layer. The plating frame has a trench defined by plating track, the alumina, laminated and conductive layers each including an area below the trench. The method further includes shrinking the trench, plating NiFe into a portion of the shrunk trench, stripping the plating frame, removing the conductive layer except the conductive layer formed below the trench, removing the alumina layer except the alumina layer formed below the trench, removing the laminated layer except the laminated layer formed below the trench and patterning the laminated layer formed below the trench.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: July 8, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kim Yang Lee, Jyh-Shuey Lo, Yi Zheng
  • Publication number: 20080155810
    Abstract: Methods for fabricating magnetic sensor heads using a CMP defined hard bias to fabricate a magnetic sensor head reader with a flat reader gap. The method comprises defining a read sensor of the magnetic sensor head. The method further comprises depositing an insulator layer on the read sensor. The method further comprises performing a chemical mechanical polishing (CMP) process down to a protective layer on the read sensor deposited while defining the read sensor to remove an overfill portion of the hard bias layer above the protective layer and to remove a sensor pattern masking layer above the protective layer.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Ying Hong, Ming Jiang, Mustafa M. Pinarbasi, John Westwood
  • Patent number: 7392580
    Abstract: A method for manufacturing sliders from a bar has: a radiating step which includes radiating an electromagnetic wave on at least a part of each space on a second surface of said bar, wherein said second surface is a back surface of a first surface of said bar, said first surface being formed into an air bearing surface of said slider, wherein said space is sandwiched between said elements, and wherein said electromagnetic wave is radiated such that an entire portion of said bar forms a curved shape such that said first surface forms a convex surface; a lapping step of lapping said first surface while pressing said bar against a lapping surface such that said first surface of each element forms a concave shape; and a dicing step of dicing said bar along said spaces to separate said bar into said sliders.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: July 1, 2008
    Assignee: Sae Magnetics (H.K.) Ltd.
    Inventors: Osamu Fukuroi, Ryuta Murakoshi
  • Patent number: 7392579
    Abstract: A slider mounted CPP GMR or TMR read head sensor is protected from electrostatic discharge (ESD) damage and from noise and cross-talk from an adjacent write head by means of a balanced resistive/capacitative shunt. The shunt includes highly resistive interconnections between upper and lower shields of the read head and a grounded slider substrate and a low resistance interconnection between the lower pole piece of the write head and the substrate. The capacitances between the pole piece and the upper shield, the upper shield and the lower shield and the lower shield and the substrate are made equal by either forming the shields and pole piece with equal surface areas and separating them with dielectrics of equal thicknesses, or by keeping the ratio of area to insulator thicknesses equal.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: July 1, 2008
    Assignees: Headway Technologies, Inc., SAE Magnetics (HK) Ltd.
    Inventors: Eric Cheuk Wing Leung, Anthony Wai Yuen Lai, Pak Kin Wong, David Hu, Moris Dovek, Rod Lee
  • Patent number: 7392577
    Abstract: A method of manufacturing a perpendicular magnetic head is disclosed, including perpendicular magnetic recording head includes forming a primary magnetic pole having a flat top surface, where a shield layer over the primary magnetic pole and at the sides of the primary magnetic pole is formed in a single piece. The distance in the direction perpendicular to the thickness direction between the side surfaces of the primary magnetic pole and the side shield layer is longer than the distance in the thickness direction between the top surface of the primary magnetic pole and the shield layer.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: July 1, 2008
    Assignee: TDK Corporation
    Inventors: Hisayuki Yazawa, Kiyoshi Kobayashi
  • Patent number: 7389578
    Abstract: Embodiments in accordance with the present invention relate to methods wherein when a main pole is processed by using an ion milling technique, a re-adhesion layer created on the side face of the resist mask is removed with certainty. In one embodiment, an inorganic insulator from 5 nm to 100 nm which is soluble in an alkaline is arranged between the main pole material and a mask for processing the main pole material, and the main pole is processed by ion milling. After this process, the mask is peeled off, a surface treatment is performed by using an alkaline solution, resulting in the re-deposition film being removed.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 24, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kimitoshi Etoh, Kikuo Kusukawa, Hisashi Kimura, Tomohiro Okada
  • Patent number: 7386933
    Abstract: A method for fabricating a magnetic recording head writer. The writer includes a bottom magnetic pole and a write gap formed over the bottom pole and a coil trench formed in the bottom pole. A top magnetic pole is provided as two layers with the first layer including front and back tips with spaced apart walls positioned adjacent the trench bottom defining trench sides. A pole cover layer is included that is made up of a thin layer of insulating material deposited to cover sides and bottom of the coil trench. A bottom coil is formed on the pole cover layer in the bottom of the coil trench and coil insulation is provided between coil elements and adjacent trench walls and covemg the coil. A top coil with insulation is formed over the planarized bottom coil insulation and the top pole second layer is formed over the top coil.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: June 17, 2008
    Assignee: Western Digital (Fremont), LLC
    Inventors: Mohamad T. Krounbi, Ming Zhao, Yining Hu, Jim Watterston
  • Patent number: 7383626
    Abstract: In a method of fabricating a giant magnetoresistive (GMR) device a plurality of magnetoresistive device layers is deposited on a first silicon nitride layer formed on a silicon oxide layer. An etch stop is formed on the magnetoresistive device layers, and a second layer of silicon nitride is formed on the etch stop. The magnetoresistive device layers are patterned to define a plurality of magnetic bits having sidewalls. The second silicon nitride layer is patterned to define electrical contact portions on the etch stop in each magnetic bit. The sidewalls of the magnetic bits are covered with a photoresist layer. A reactive ion etch (RIE) process is used to etch into the first silicon nitride and silicon oxide layers to expose electrical contacts. The photoresist layer and silicon nitride layers protect the magnetoresistive layers from exposure to oxygen during the etching into the silicon oxide layer.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: June 10, 2008
    Assignee: Honeywell International Inc.
    Inventors: Daniel L. Baseman, Lonny L. Berg, Romney R. Katti, Daniel S. Reed, Gordon A. Shaw, Wei D. Z. Zou
  • Patent number: 7380330
    Abstract: After defining the P2 pole of a magnetic read head, alumina is deposited over it and planarized by CMP, with the portion of the alumina overlaying the ABS region of the P2 pole subsequently being masked by a photoresist layer and with the portions of the alumina overlaying the flare area, back gap region, and center tap regions of the P2 pole not being masked. A reactive ion mill is performed to expose the flare area, back gap region, and center tap regions of the P2 pole by removing the alumina over these portions, so that subsequent steps such as forming a layer of coiled conductors, forming a return pole, and forming stud connections along with removing the respective seed layers can be executed with the ABS region protected by the alumina and with the flare area, back gap region, and center tap region exposed.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: June 3, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Daniel Wayne Bedell, Aron Pentek, Katalin Pentek, Yi Zheng
  • Patent number: 7377025
    Abstract: A TMR read head with improved voltage breakdown is formed by laying down the AP1 layer as two or more layers. Each AP1 sub-layer is exposed to a low energy plasma for a short time before the next layer is deposited. This results in a smooth surface, onto which to deposit the tunneling barrier layer, with no disruption of the surface crystal structure of the completed AP1 layer.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 27, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Chyu-Jiuh Torng, Hui-Chuan Wang
  • Patent number: 7377026
    Abstract: A magnetoresistive film is formed on the surface of a lower electrode layer in a method of making a current-perpendicular-to-the-plane structure magnetoresistive element. The magnetoresistive film includes a lower portion and an upper portion overlaid on the lower portion. The lower portion includes at least a pinned magnetic layer. The upper portion includes at least a free magnetic layer. A pair of domain control magnetic layers is formed to sandwich the magnetoresistive film. An insulator film is formed to cover over the domain control magnetic layers. The upper portion is subjected to an etching process. The domain control magnetic layers are reliably prevented from being removed during the etching process. Accordingly, the domain control magnetic layers are allowed to reliably sandwich the upper portion of the magnetoresistive film in the aforementioned manner.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: May 27, 2008
    Assignee: Fujitsu Limited
    Inventors: Shin Eguchi, Chikayoshi Kamata, Junya Ikeda, Atsushi Tanaka
  • Patent number: 7370405
    Abstract: A thin film magnetic head for perpendicular recording of a single-pole type has a flux enhanced part and a flux enhanced end arranged on a leading side of the main pole in parallel with the cross track direction. The side surface of the main pole intersecting the cross track direction is arranged on the track center side perpendicular to the track width. The field gradient of a perpendicular magnetic field on the trailing side of the main pole and near both ends of the track is made steep to realize a higher areal recording density. The head is fabricated by forming a first resist pattern on an inorganic insulating layer. A slope is formed on the inorganic insulating layer with the resist pattern as a mask. A second resist pattern is then formed on the inorganic insulating layer to form a magnetic layer on the inorganic insulating layer.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: May 13, 2008
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Atsuko Kuroda, Masafumi Mochizuki