Polyphase Armature Winding Patents (Class 310/132)
  • Patent number: 10608571
    Abstract: The present invention discloses an open-winding motor drive topology and a modulation method thereof.
    Type: Grant
    Filed: February 11, 2018
    Date of Patent: March 31, 2020
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Dong Jiang, An Li, Ronghai Qu, Wubin Kong, Zixiang Yu
  • Patent number: 8575885
    Abstract: To make it possible to avoid an unstable state with a simple configuration even one of the phases of the motor fails. A motor drive system in accordance with the present invention includes a motor to which a plurality of phase coils of five phases or more are connected in a star connection, an inverter connected to one end of each of the phase coils, the inverter being configured to convert a DC power into an AC power and supply the AC power to each phase of the motor, a power relay disposed at another end of each of the phase coils, the power relay being configured so as to be able to cut off a supply power to at least one phase coil among the plurality of phase coils of the motor by using a plurality of contact points interposed between the star-connected coils, and a control unit that generates a control signal for the inverter and thereby controls driving of the motor.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihiro Okumatsu
  • Patent number: 7888839
    Abstract: A motor-generator includes a rotor that rotates about an axis of rotation, and a stator that is stationary and magnetically interacts with the rotor. The rotor is constructed of two spaced apart rotor portions having magnetic poles that drive magnetic flux across an armature airgap formed therebetween. An armature, located in the armature airgap, has a substantially nonmagnetic and low electrical conductivity form onto which wire windings are wound. The form has a free end that extends inside the rotor, and a support end that attaches to the stationary portion of the motor-generator. The form is constructed with a thin backing portion and thicker raised portions extending from the backing portion in the direction of the magnetic flux. The wire windings have multiple individually insulated conductor wire. The conductors of a single wire are electrically connected together in parallel and electrically insulated between each other along their length inside the armature airgap.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: February 15, 2011
    Assignee: Revolution Electric Motor Company, Inc.
    Inventors: Christopher W. Gabrys, Timothy S. Rodgers
  • Patent number: 7847464
    Abstract: The object of the invention is to provide an armature which is in good rotational balance, where the total number of the coils to be disposed in the slots of the rotary electric machine can be freely set when winding coils on the armature core. Coils are wound on an outer periphery of an armature core 3 by use of a winding device 7 which is provided with sixteen nozzles 11b movable in the axial direction to draw out the coils to thirty two slots formed on the outer periphery of the armature core 3, wherein sixteen coils 5 are simultaneously wound through a single winding operation and the winding operation with respect to the slot 3c is performed three times in such a manner that the total number of the coils 5 in the slots 3c becomes 96 (C) so that the number obtained by dividing the total number of the coils 5 C by twice the number of the slots does not become a natural number.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: December 7, 2010
    Assignee: Mitsuba Corporation
    Inventors: Yoshinori Kojima, Shuji Uehara, Yasuhiro Takebe, Takayuki Ishizeki, Kazuo Iwashita
  • Patent number: 5268609
    Abstract: An armature core wire winding method in which the armature core has salient poles set to be an integral multiple number of three, the salient poles protruded radially from an axial core portion of the armature core, the method comprises the steps of; winding three wires in two stages around three salient poles, respectively, the three salient poles being included in a first block; drawing out three transition wires from the three salient poles of the first block, respectively, in such a manner that each transition wire is drawn out at one surface side of the salient poles; extending the transition wires in such a manner that the transition wires pass over two adjoining the salient poles; winding the transition wires around salient poles of a second block, respectively, each salient pole of the second block corresponding to each salient pole of the first block; and repeating the winding, drawing out, extending and the winding steps until the transition wires completely wind around the salient poles.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: December 7, 1993
    Assignee: Sankyo Seiki Mfg. Co., Ltd.
    Inventors: Hiroshi Sakashita, Eiji Arasaki