Embedded Patents (Class 310/156.56)
  • Patent number: 7876014
    Abstract: Disclosed is a rotor of a generator or motor having an auxiliary coil provided around a rotor body, thereby preventing the distortion of output voltage waveforms according to the variation of load, and thereby allowing the fine adjustment of the output voltages of the generator by the control of the current flowing to the auxiliary coil. The rotor of a generator or motor includes: a rotor body adapted to axially rotate together with a rotor shaft; at least one set of N-polar and S-polar permanent magnet groups arranged along the circumferential direction of the rotor body at predetermined intervals; and a plurality of magnetic flux-increasing elements formed on the lines of magnetic force formed by the N-polar and S-polar permanent magnet groups around one side of the rotor body.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: January 25, 2011
    Assignee: Sun Tech Generator Co., Ltd.
    Inventor: Sun-Hyu Lee
  • Patent number: 7868501
    Abstract: Annular rotor disc for, in an axially stacked disc assembly of a plurality of similar rotor discs, forming a rotor for an electric motor, in which the discs secure a plurality of axially running permanent bar magnets, of substantially rectangular cross-sectional shape, distributed around the circumference of the rotor. The rotor disc has pockets for accommodating and securing the permanent bar magnets in such a way that adjoining bars form an angle to one another. The pockets for adjacent, mutually diverging permanent bar magnets, viewed in the radial direction from the centre of the rotor, delimit between them a substantially triangular disc part, which is flexibly connected to a radially inner part of the annular rotor disc only by a radically inner web portion.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: January 11, 2011
    Assignee: BAE Systems Hägglunds Aktiebolag
    Inventors: Pontus Jonasson, Jens Wågberg
  • Patent number: 7868502
    Abstract: A BLDC motor is provided. The BLDC motor includes a stator having a plurality of teeth formed at an inside thereof, a plurality of coils, each of the plurality of coils being wound around a corresponding tooth of the stator, a rotor located at the inside of the stator, a plurality of magnets located at an edge portion of the rotor, a plurality of magnet placement portions located on the rotor, each magnet placement portion having a first and second barrier formed at opposite ends of the magnet placement portion, the first barrier and second barrier of adjacent magnet placement portions being separated by a gap portion, each of the plurality of magnets being inserted into a corresponding magnet placement portion, and at least one of the gap portions includes a third barrier located therein. A rotor and fan motor including a plurality of barriers formed on the rotor are also provided.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: January 11, 2011
    Assignee: LG Electronics Inc.
    Inventor: Kyung Hoon Lee
  • Patent number: 7868503
    Abstract: In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: January 11, 2011
    Assignee: Asmo Co., Ltd.
    Inventors: Takahiro Nakayama, Hirotaka Itoh, Yoshiyuki Takabe
  • Patent number: 7859141
    Abstract: The invention relates to an electrical machine of the transversal-flux type. The machine comprises a stator and a movable element. The stator has a plurality of stator elements with magnetic flux conductors and an electric winding extending in a closed winding path through each magnetic flux conductor. The movable element comprises a number of permanent-magnet members and is movable in relation to the stator along a movement path. The winding path comprises a first current-carrying section extending along the movement path. Each magnetic flux conductor forms, together with one of the permanent-magnet members, a closed magnetic flux circuit around said current-carrying section. Each permanent-magnet member comprises a primary magnet with a magnetic direction across the movement path.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: December 28, 2010
    Assignee: Volvo Technology AB
    Inventors: Chandur Sadarangani, Thomas Bäckström, Waqas M. Arshad
  • Patent number: 7851959
    Abstract: A magnetic gap is provided between a permanent magnet of a rotor and an auxiliary magnet pole portion which is arranged adjacent to the permanent magnet in a peripheral direction. A gradual change in a magnetic flux density distribution of a surface of the rotor is obtained and a cogging torque and a torque pulsation are restrained. By obtaining a reluctance torque according to the auxiliary magnetic pole, a permanent magnet electric rotating machine in which the cogging torque and the torque pulsation are restrained can be obtained and further an electromotive vehicle having the permanent magnet electric rotating machine can be provided.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: December 14, 2010
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Fumio Tajima, Yutaka Matsunobu, Shouichi Kawamata, Suetaro Shibukawa, Osamu Koizumi, Keiji Oda
  • Patent number: 7847461
    Abstract: A permanent magnet machine includes a stator having a hollow core, a rotor rotatably disposed inside the hollow core, and a plurality of multilayered permanent magnets embedded in the rotor. Each multilayered permanent magnet has opposite first and second ends, and includes a first magnet disposed at the first end, and a second magnet disposed at the second end and coupled to the first magnet. The second magnet has higher magnet strength than the first magnet, and also has lower high-temperature stability than the first magnet.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 7, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Khwaja M. Rahman, Edward L. Kaiser, Matthew D. Laba
  • Patent number: 7847462
    Abstract: A magnetic gap is provided between a permanent magnet of a rotor and an auxiliary magnet pole portion which is arranged adjacent to the permanent magnet in a peripheral direction. A gradual change in a magnetic flux density distribution of a surface of the rotor is obtained and a cogging torque and a torque pulsation are restrained. By obtaining a reluctance torque according to the auxiliary magnetic pole, a permanent magnet electric rotating machine in which the cogging torque and the torque pulsation are restrained can be obtained and further an electromotive vehicle having the permanent magnet electric rotating machine can be provided.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: December 7, 2010
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Fumio Tajima, Yutaka Matsunobu, Shouichi Kawamata, Suetaro Shibukawa, Osamu Koizumi, Keiji Oda
  • Patent number: 7843101
    Abstract: A rotary shaft 60 having an outside diameter larger than the bore diameter of a rotary shaft insert hole 59 of a rotor 50 is inserted into the rotary shaft insert hole 59. A magnet insert hole 51a1 is provided in a main magnetic pole [a] of the rotor 50. Permanent magnets 52a1 to 52a3 are inserted into the magnet insert hole 51a1 such that a gap is formed between the permanent magnets 52a1 to 52a3 and the magnet insert hole 51a1. A semi-tubular rivet insert hole 55a and interlocks 57a1, 57a2 elongated in the radial direction of the rotor are disposed radially outward of the magnet insert hole 51a in the rotor. A semi-tubular rivet 56a is inserted into the semi-tubular rivet insert hole 55a such that a gap is formed between the semi-tubular rivet 56a and the semi-tubular rivet insert hole 55a. Passage holes 58ab, 58da are provided in the auxiliary magnetic poles [ab], [da].
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: November 30, 2010
    Assignee: Aichi Elec Co.
    Inventors: Isao Ito, Masashi Kuroko, Mitsuhiro Suzuki, Shoji Mano
  • Patent number: 7843100
    Abstract: An internal permanent magnet machine (“IPM machine”) of the type used, for example, with traction motors and hybrid electric vehicles, includes a rotor having a plurality of ferrite magnets arranged in one or more layers, wherein at least one of the layers includes rare earth magnets (e.g., NdFeB magnets) adjacent to the ferrite magnets to prevent or reduce demagnetization.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 30, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Rolf Blissenbach, Jonathan Bird
  • Patent number: 7834505
    Abstract: Disclosed is a rotary device of a generator or motor which includes: a stator having a hollow portion formed at the inside thereof and a plurality of slots formed to wind coils therearound, each of the plurality of slots being skewed at a predetermined angle; a rotor shaft formed of a nonmagnetic material; a cylindrical rotor body adapted to axially rotate together with the rotor shaft; a plurality of N-polar and S-polar permanent magnet groups insertedly coupled radially along the outside of the center portion of the rotor body in an alternating arrangement; a plurality of magnetic flux-increasing magnets insertedly coupled along the inside of the rotor body and arranged on the lines of magnetic force formed by the N-polar and S-polar permanent magnet groups, for increasing magnetic flux; and a rotor adapted to be rotatably inserted into the hollow portion of the stator.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: November 16, 2010
    Assignee: Sun Tech Generator Co., Ltd.
    Inventor: Sun-Hyu Lee
  • Patent number: 7808147
    Abstract: A rotor (3) for a permanent magnet motor has a is rotatable around an axis of rotation (A) and has a plurality of axially extending permanent magnets (6) which are offset circumferentially in a symmetrical manner and arranged, respectively, in receptacles (16) of a yoke (7) which is assembled from axially stacked sheet lamellas (10), with the sheet lamellas (10) each having a coaxial inner hole (9), at least a first recess (8a) which is open toward the inner hole (9), and one second recess (8b) which is closed toward the inner hole (9), and with the lamellas being formed in a rotationally symmetrical manner so as to be offset at least by a phase angle, with at least two sheet lamellas (10) being oriented so as to be offset relative to one another by half of the phase angle.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: October 5, 2010
    Assignee: Hilti Aktiengesellschaft
    Inventors: Reinhard Riedl, Thomas Pritzen
  • Patent number: 7808143
    Abstract: A permanent magnet motor includes stator, rotor, and shaft; multiple rotor magnetic poles are disposed on the rotor; each rotor magnetic pole contains an arc surface and a first inclined section and a second inclined section extending respectively from both sides of the arc surface; a trap is formed between two second inclined section of two abutted rotor magnetic poles connected by a tangent section; multiple magnets are respectively disposed in each rotor magnetic pole; both ends of each magnet being disposed at where close to two second inclined sections; and a central portion of each magnet is indented inwardly towards a center of the rotor to effectively upgrade performance efficiency of the motor.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: October 5, 2010
    Assignee: Rechi Precision Co., Ltd.
    Inventors: Simon Lee, Wen-Ho Yu
  • Patent number: 7808144
    Abstract: A magnetic gap is provided between a permanent magnet of a rotor and an auxiliary magnet pole portion which is arranged adjacent to the permanent magnet in a peripheral direction. A gradual change in a magnetic flux density distribution of a surface of the rotor is obtained and a cogging torque and a torque pulsation are restrained. By obtaining a reluctance torque according to the auxiliary magnetic pole, a permanent magnet electric rotating machine in which the cogging torque and the torque pulsation are restrained can be obtained and further an electromotive vehicle having the permanent magnet electric rotating machine can be provided.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 5, 2010
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Fumio Tajima, Yutaka Matsunobu, Shouichi Kawamata, Suetaro Shibukawa, Osamu Koizumi, Keiji Oda
  • Patent number: 7804216
    Abstract: For an electrical reluctance rotary machine, a stator has a winding as an armature, and a rotor has permanent magnet implanting slots provided in a rotor core at lateral sides magnetic poles configured to produce reluctance torque along directions of magnetic flux passing through the magnetic poles to produce reluctance torque, and permanent magnets inserted in the permanent magnet implanting slots so as to cancel magnetic flux of the armature intersecting that magnetic flux, to control a magnetic field leaking at ends of the magnetic poles, having circumferential magnetic unevenness. The electrical reluctance rotary machine is configured to meet a relationship, such that 1.6 ? P × W pm R ? 1.9 where Wpm [mm] is a width of permanent magnet, R [mm] is a radius of the rotor, and P is the number of poles.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: September 28, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Norio Takahashi, Kazuto Sakai, Masanori Arata, Yutaka Hashiba, Wataru Ito, Motoyasu Mochizuki, Mikio Takabatake, Masakatsu Matsubara, Takashi Hanai
  • Patent number: 7800272
    Abstract: In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: September 21, 2010
    Assignee: ASMO Co., Ltd.
    Inventors: Takahiro Nakayama, Hirotaka Itoh, Yoshiyuki Takabe
  • Patent number: 7800271
    Abstract: The sintered magnet and the rotating machine equipped with the same are disclosed. The sintered magnet includes crystal grains of a ferromagnetic material consisting mainly of iron, and a fluoride compound or oxyfluoride compound layer containing at least one element selected from an alkali metal element, an alkali earth metal element, and a rare earth element. The layer is formed inside some of the crystal grains or in a part of a grain boundary part. An oxyfluoride compound or fluoride compound layer containing carbon in a stratified form is formed on an outermost surface of the crystal grains. The fluoride compound or oxyfluoride compound layer has a concentration gradient of carbon, contains at least one light rare earth element and at least one heavy rare earth element. The heavy rare earth element has a concentration lower than that of the light rare earth element.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: September 21, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Matahiro Komuro, Yuichi Satsu, Yutaka Matsunobu, Takashi Yasuhara
  • Patent number: 7795772
    Abstract: A motor is basically provided with a stator, a rotor, a low permeability layer and a current control device. The stator includes a magnetic stator core and a stator winding. The rotor includes a rotor core and a plurality of permanent magnets arranged to form N and S poles of the rotor. The low permeability layer has a lower magnetic permeability than the rotor core and extends between each of the N and S poles in a direction generally parallel to the magnetic flux paths of the permanent magnets such that the permanent magnets and the low permeability are arranged to obstruct the magnetic flux between the N and S poles to provide a forward salient pole characteristic. The current control device produces a current whose phase is shifted such that the magnetic flux of the permanent magnets intensifies.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 14, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Minoru Arimitsu, Kan Akatsu
  • Patent number: 7786641
    Abstract: In the present invention, since gaps respectively provided at one ends of a field magnet through-hole respectively extend toward the other ends passing on the side of a periphery with respect to the field magnet through-hole, the radial dimension of the magnetic member in this portion can be made smaller than the center of magnetic poles, so that the difference in thickness of the magnetic member in the radial direction between the border of magnetic poles and the magnetic poles can be reduced. Accordingly, the asymmetry of the configuration of a rotor is not absolutely necessary, and the outer surface does not need to be depressed for reducing the torque ripple.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: August 31, 2010
    Assignee: Daikin Industries, Ltd.
    Inventor: Kiyotaka Nishijima
  • Publication number: 20100213781
    Abstract: In general, the various embodiments are directed to a permanent magnet machine (“PM machine”), and more specifically an internal permanent magnet machine (“IPM machine”) that includes rotor magnets configured asymmetrically with respect to the rotor periphery, thereby producing an averaging effect similar to that achieved through traditional skewing of the rotor magnets. In alternate embodiments, the span, placement and/or shape of the magnets may vary from one pole to the next.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: KHWAJA M. RAHMAN, EDWARD L. KAISER, PETER J. SAVAGIAN
  • Patent number: 7777382
    Abstract: A motor includes a rotor core, permanent magnets and non-magnetic layers. The permanent magnets are embedded in the rotor core with each of the permanent magnets defining a pole of the rotor having a pole center and a peripheral edge section, with the peripheral edge section located in a vicinity between the poles and a vicinity of the rotor surface. The non-magnetic layers are located in a vicinity of the rotor surface at a pole center side position with respect to the peripheral edge section of each of the permanent magnets. The peripheral edge sections and the non-magnetic layers are positioned to cancel 5-th or 7-th order harmonics of an induction voltage. The poles are disposed at every approximately constant interval, varying in a constant angle. The peripheral edge sections and the non-magnetic layers are independent from one another, and the rotor core is interposed between them.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: August 17, 2010
    Assignee: Daikin Industries, Ltd.
    Inventors: Keiji Aota, Kiyotaka Nishijima, Akio Yamagiwa
  • Patent number: 7772735
    Abstract: A plurality of magnets are arranged in accommodating holes each extending in a radial direction. A rotor core is provided with an extension portion in a circumferential direction extending further outward in the circumferential direction with respect to the magnet from at least one of a radially outer end and a radially inner end in the accommodating hole, and a radial regulating portion regulating a movement of the magnet in the radial direction. The radial regulating portion extends in the radial direction so as to correspond to a center in the circumferential direction of the accommodating hole. The dimension in the circumferential direction of a portion of the radial regulating portion that is brought into contact with the magnet is smaller than the dimension in the circumferential direction of the magnet.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: August 10, 2010
    Assignee: ASMO Co., Ltd.
    Inventors: Hideaki Nishiura, Seiya Yokoyama, Yoshiaki Takemoto
  • Patent number: 7772734
    Abstract: A rotor includes a rotor core and disk-shaped end plates provided to sandwich the rotor core in the direction of a rotation shaft. The end plates are each formed to have one end face relatively closer to the rotor core and larger in outer diameter with the center at the rotation shaft than the other end face.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: August 10, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuhiko Mizutani, Toshiya Sugiyama
  • Patent number: 7768172
    Abstract: A permanent magnet type electric rotary machine includes a stator including a stator core having teeth and slots, and a rotor provided with permanent magnets as magnet poles in a rotor core. A pole core portion which between each of the permanent magnets and an outer surface of the rotor core is provided with a plurality of pole slits. A region of the pole core portion is defined by concave portions provided on q-axes to be interpolars on both sides of the pole core portion, and thereby configured that a gap between the outer surface on the q-axis of the rotor core and an inner surface of the stator core is larger than a gap between the outer surface on the d-axis of the pole core portion and the inner surface of the stator, so that magnetic fluxes from the permanent magnet pass through the pole core portion concentrately.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 3, 2010
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Ryoichi Takahata, Satoshi Kikuchi, Shinichi Wakui, Keiji Noma, Masaharu Senoo
  • Patent number: 7768171
    Abstract: A permanent magnet rotating electric machine has a stator provided with a plurality of windings, and a rotor in which magnets are disposed in slots formed in a rotor core along an outer circumference thereof. The rotor core is fixed on a rotary shaft rotating inside the stator, and one magnetic pole is constituted by each group of three or more of the magnets. A total angle occupied by the group of magnets constituting one magnetic pole is in the range of 150 to 165 degrees in terms of an electrical angle.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: August 3, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tsukasa Taniguchi, Hiroyuki Mikami, Satoshi Kikuchi, Fumio Jyoraku, Hideyuki Harada
  • Patent number: 7750523
    Abstract: A rotor of an embedded magnet type motor is disclosed. A rotor core of the motor includes first accommodation holes and V-shaped accommodation holes. The first accommodation holes extend in radial directions, and the V-shaped accommodation holes protrude radially outward. The rotor core has grooves at positions corresponding to the first accommodation holes on the outer periphery of the rotor core. Each groove has a width as a dimension in the circumferential direction when viewed from the axial direction. Each first magnet has a width as a dimension in the circumferential direction when viewed from the axial direction. The width of the grooves is larger than the width of the first magnets.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 6, 2010
    Assignee: ASMO Co., Ltd.
    Inventors: Takahiro Nakayama, Yoshiyuki Takabe, Hirotaka Itoh
  • Patent number: 7742855
    Abstract: A method for operating a reversible polyphase rotating electrical machine (2) in a motor vehicle, which consists in performing the high-level and low-level management of the machine with a remote-control unit (1), which exchanges physical data, via a plurality of links (3), with a power module (20) integrated in or immediately proximate the machine (2). The method and electrical machine may be an alternator-starter.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: June 22, 2010
    Assignee: Valeo Equipements Electriques Moteur
    Inventor: Christophe Louise
  • Patent number: 7737595
    Abstract: A hybrid vehicle implements a required traveling condition by generating a required driving force necessary to drive the vehicle even in the case where a supply source of a working fluid develops a malfunction. The hybrid vehicle is equipped with a motor which changes the phase difference between two rotors and an engaging/disengaging device which turns on/off the supply of a driving force of an internal combustion engine, the motor and the engaging/disengaging device being driven by a working fluid.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: June 15, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Daisuke Tsutsumi, Hiroyuki Isegawa, Yutaka Isogai, Masashi Tanaka, Naoki Fujishiro
  • Patent number: 7732965
    Abstract: An embedded magnet type motor is disclosed. The rotor core of the motor has radially extending first accommodation holes and V-shaped accommodation holes. Each V-shaped accommodation hole includes a second accommodation hole and a third accommodation hole. A first gap is formed in each first accommodation hole. The first gap is not occupied by the corresponding first magnet. A second gap is formed in each second accommodation hole. The second gap is not occupied by the corresponding second magnet. A third gap is formed in each third accommodation hole at a radially outer portion. The third gap is not occupied by the corresponding third magnet. Each second gap and the adjacent third gap form one V-shaped gap. The angular width ?a of each first gap and the angular width ?b of each V-shaped gap are determined to satisfy the expression: 0.60<?a/?b<1.60.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: June 8, 2010
    Assignee: ASMO Co., Ltd.
    Inventors: Takahiro Nakayama, Hirotaka Itoh, Yoshiyuki Takabe, Keisuke Koide, Yoshihito Nishikawa
  • Patent number: 7719153
    Abstract: A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 18, 2010
    Assignee: UT-Battelle, LLC
    Inventor: John S. Hsu
  • Patent number: 7705504
    Abstract: A rotor of an embedded magnet type motor has a plurality of magnets forming magnetic poles, the number of which is represented by P. A rotor core includes first accommodation holes, the number of which is represented by P/2, extending in a radial direction, and V-shaped accommodation holes, the number of which is represented by P/2, having a V shape protruding outward in a radial direction. The first accommodation holes and the V-shaped accommodation holes are alternately arranged in a circumferential direction. The V-shaped accommodation holes include a second accommodation hole and a third accommodation hole corresponding to two straight lines forming the V shape. The first accommodation hole is adjacent to the second accommodation hole at one side in the circumferential direction, and is adjacent to the third accommodation hole at the other side.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: April 27, 2010
    Assignee: ASMO Co., Ltd.
    Inventors: Takahiro Nakayama, Yoshiyuki Takabe, Keisuke Koide, Yoshihito Nishikawa
  • Patent number: 7705502
    Abstract: An interior permanent magnet machine having angled slots.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: April 27, 2010
    Assignee: Emerson Electric Co.
    Inventors: Keith I. Hoemann, Todd A. Walls
  • Patent number: 7687949
    Abstract: A rotor of a synchronous reluctance motor is provided. The rotor may include a laminated core including a plurality of laminated silicon steel sheets being equally divided into a plurality of regions with respect to a central portion of the plurality of silicon steel sheets. Each of the plurality of regions may include a plurality of barriers. Guide pin holes may be formed between adjacent regions so as to receive guide pins therethrough to align the plurality of silicon steel sheets and end caps provided at opposite ends thereof. Rivets may penetrate receiving holes formed at corresponding barriers in each of the respective regions so as to couple the laminated core and the end caps.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 30, 2010
    Assignee: LG Electronics Inc.
    Inventors: Kyung-Hoon Lee, Jae-Yoon Oh, Jun-Ho Ahn, June-Hee Won, Dal-Ho Cheong
  • Patent number: 7687958
    Abstract: A permanent magnet module to be installed in a rotor includes at least two permanent magnets with the first magnetic pole on the first plane surface and the second magnetic pole on the second plane surface, and a cover at least partially enveloping the permanent magnets. The cover of the module is magnetically conductive and includes a top surface, substantially covering the first plane surface of the permanent magnet, and a bottom surface, substantially covering the second plane surface of the permanent magnet. The cover is at least partially open at the side surfaces of the permanent magnet. Also disclosed is a rotor for an electrical machine, the rotor having permanent magnets fitted into a corresponding module.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: March 30, 2010
    Assignee: ABB Oy
    Inventors: Petri Mäki-Ontto, Pekka Kanninen, Tony Björkstrand
  • Patent number: 7683518
    Abstract: A motor includes a stator formed of a stator iron-core having salient pole iron-cores and windings, and a rotor having a rotor iron-core in which permanent magnets are buried. A magnetic pole centerline connecting a rotary center of the rotor to a magnetic pole center crosses an external shape of the rotor iron-core at end point X, and the magnetic-pole boundary line connecting the rotary center to a magnetic pole boundary point crosses the external shape of the rotor iron-core at end point Z. A straight line angled at a given angle ?a from the magnetic pole centerline has end point A. Then a sectional view of the rotor iron-core shows an arc drawn between the end points X and A, and the arc's center is the rotary center. The end points A and Z are connected by one or more than one straight lines in series.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 23, 2010
    Assignee: Panasonic Corporation
    Inventors: Yuichi Yoshikawa, Kiyomi Kawamura, Hiroshi Murakami, Hideharu Hiwaki, Yasushi Kamada, Hiroki Sato
  • Patent number: 7679252
    Abstract: A magnet embedded motor includes a rotor, a plurality of magnets embedded in the rotor, and a yoke provided with the plurality of magnets for forming a magnetic path. The rotor is formed with the plurality of magnets and the yoke in a single member by means of a resin molding by making the plurality of magnet and the yoke as an insertion body.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: March 16, 2010
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Shogo Iwase, Motohisa Ishiguro, Mitsuru Terayama, Tadashi Higuchi
  • Patent number: 7671502
    Abstract: A rotating electric machine comprises a stator having stator salient poles, three-phases windings would around said stator salient poles, a rotor rotatable held inside the said stator, and permanent magnets inserted into said rotor and positioned opposite to said stator salient poles. The three-phase windings are concentratively wound around each of the stator salient poles, with windings of each phase wound around at more than one stator salient pole. The windings of each phase have a phase difference of voltage between at least one of the windings and the other.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: March 2, 2010
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Fumio Tajima, Yutaka Matsunobe, Shouichi Kawamata, Suetaro Shibukawa, Osamu Koizumi, Keijiro Oda
  • Patent number: 7667365
    Abstract: A magnetic gap is provided between a permanent magnet of a rotor and an auxiliary magnet pole portion which is arranged adjacent to the permanent magnet in a peripheral direction. A gradual change in a magnetic flux density distribution of a surface of the rotor is obtained and a cogging torque and a torque pulsation are restrained. By obtaining a reluctance torque according to the auxiliary magnetic pole, a permanent magnet electric rotating machine in which the cogging torque and the torque pulsation are restrained can be obtained and further an electromotive vehicle having the permanent magnet electric rotating machine can be provided.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 23, 2010
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Fumio Tajima, Yutaka Matsunobu, Shouichi Kawamata, Suetaro Shibukawa, Osamu Koizumi, Keiji Oda
  • Patent number: 7667363
    Abstract: Outer circumference of a rotor is alternately provided with a plurality of circumferential portions and a plurality of convex portions. Straight lines each connecting a rotational axis to one of circumferential centers of circumferential portions are referred to as radial lines. Straight lines each bisecting one of convex portions are referred to as bisectors. A plurality of magnetic flux blocking regions are located on a rotor. One of the magnetic flux blocking region is located in a range between the radial line and the bisector adjacent to and preceding the radial line in the rotation direction. Therefore, a permanent magnet embedment rotating electric machine is capable of preventing decreases in torque and suppressing torque ripple.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 23, 2010
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Taku Adaniya, Tatsuya Horiba, Taizo Hirano, Kensuke Ikai, Minoru Mera
  • Patent number: 7663282
    Abstract: A traction drive for an elevator comprises a sheave for actuating a transmission device of the elevator and a synchronous motor, the synchronous motor comprising a stator with at least one winding for generating a magnetic field rotating around a motor axis and a rotor comprising at least one permanent magnet, the rotor being coupled to the sheave for transmitting a torque. The permanent magnet is longer in the motor axis direction than the stator core and/or the rotor is composed from a plurality of separate permanent magnets and separate magnetic sectors provided alternating in a circumferential direction perpendicular to the motor axis to concentrate the magnetic flux in axial and/or radial direction.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: February 16, 2010
    Assignee: Inventio AG
    Inventor: Mario Yoshitaro Ogava
  • Publication number: 20100019597
    Abstract: The object of the invention is a rotor for an electrical machine excited by permanent magnets, said rotor comprising a substantially cylindrical magnetic body of the rotor fitted onto the shaft of the electrical machine and a set of permanent magnets used to create a first and a second pole alternately in the circumferential direction, excited in opposite directions. The permanent magnets are fitted into openings arranged within the rotor. The rotor comprises a body part with several segments extending to the outer circumference in the circumferential direction and an outward tapered section remaining between the segments in the radial direction of the rotor. Permanent-magnet pieces are arranged between each section and segment.
    Type: Application
    Filed: August 31, 2007
    Publication date: January 28, 2010
    Applicant: ABB OY
    Inventor: Jere Kolehmainen
  • Patent number: 7652405
    Abstract: A plurality of convex portions are located inside of a virtual circumferential surface. Each convex portion connects an adjacent pair of circumferential portions with each other. Each convex portion is an arcuate curve bulging radially outward. Each convex portion defines a minimum radius. A difference between a radius R and the minimum radius is a depth Dh. Dhr=Dh×25.5/R. A range of an angular width A in relation to circumferential portion and a range of the depth Dh are set by the following expression, (5.6×Dhr+11.3)°×6/p?A<35°×6/p and A<[360/p?2×arccos]°??(1) Therefore, decrease in torque is prevented. Torque pulsation is suppressed.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: January 26, 2010
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Taku Adaniya, Minoru Mera, Kiyoshi Uetsuji, Ai Saeki, Masatoshi Kobayashi, Hiroshi Fukasaku
  • Patent number: 7646125
    Abstract: A rotor of an electric motor, including a rotor core having a plurality of magnet-retaining apertures, a plurality of permanent magnets individually received and retained in the magnet-retaining apertures of the rotor core, and a resinous filler filling a gap defined between each magnet-retaining aperture and each permanent magnet and fixing the permanent magnets to the magnet-retaining apertures. The rotor also includes an engaging projection provided in the rotor core, the engaging projection tightly engaged with each of the permanent magnets received in the magnet-retaining apertures and temporarily holding each permanent magnet at a predetermined position in a corresponding magnet-retaining aperture, in an unfinished state of the rotor where the resinous filler is not arranged in the gap.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: January 12, 2010
    Assignee: Fanuc Ltd
    Inventors: Takashi Okamoto, Takuya Maeda, Makoto Funakubo, Takeshi Tamaki
  • Patent number: 7619332
    Abstract: A permanent magnet type electric rotating machine comprises a stator having a distributed winding and a permanent magnet rotor, wherein the permanent magnet rotor is provided with a wind passage in an axial direction thereof.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 17, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Mamoruo Kimura, Kazumasa Ide, Motonobu Iizuka, Shuji Mizutani, Tetsuo Fujigaki, Kengo Iwashige, Hisato Tagawa, Yusaku Maruno
  • Patent number: 7612481
    Abstract: The invention provides a rotor for an electrical motor, e.g. a line-start motor. The rotor comprises a magnet located in a cavity in a rotor core. The core is laminated from sheets of magnetically conductive material and the magnet is secured in the cavity by an end plate which covers the end face. To avoid short circuiting of the magnet, an aperture is provided in the end plate such that a first portion of the opening into the cavity is in communication with the aperture and such that a remaining, second, portion of the cavity is covered by the end plate to secure the magnet in the cavity independently upon the orientation of the end plate around the center axis.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: November 3, 2009
    Assignee: Danfoss Compressors GmbH
    Inventors: Niels Christian Weihrauch, Peter Scavenius Andersen
  • Patent number: 7612480
    Abstract: A rotor portion of a motor includes a rotor core and a plurality of field magnets arranged in a circumferential direction at the rotor core. The rotor core includes at a flux barrier portion thereof arranged between a pair of field magnets of opposite magnetic polarities arranged next to one another a flux barrier hole. The flux barrier hole is independent of a magnet retaining hole in which the field magnet is retained. The magnet retaining hole includes a concave portion extending from a side thereof nearest to the flux barrier hole toward the corresponding flux barrier hole.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: November 3, 2009
    Assignee: Nidec Corporation
    Inventors: Yoshio Fujii, Hideaki Suzuki
  • Patent number: 7605510
    Abstract: Permanent magnets 52a1, 52a2 are inserted into magnet insert holes 51a1, 51a4 formed in a main magnetic pole 50A of a rotor 50. An outer circumferential surface of the rotor includes a first outer circumferential surface portion 50a which intersects with a d-axis and second outer circumferential surface portions 50da, 50ab which intersect with a q-axis. A radius R2 of curvature of the second outer circumferential surface portions 50da, 50ab is larger than a radius of curvature of the first outer circumferential surface portions 50a. Recesses 50a1, 50a2 are formed in the second outer circumferential surface portions 50da, 50ab and in a position to face end walls 51a2, 51a5 of the magnet insert holes 51a1, 51a4 which are adjacent to the outer circumferential surface of the rotor.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: October 20, 2009
    Assignee: Aichi Elec Co.
    Inventors: Shigeru Okuma, Shinji Doki, Mutsuo Tomita, Mitsuhiko Sato, Seiichi Kaneko
  • Patent number: 7598645
    Abstract: A rotor includes a cylindrical rotor core having an outer circumferential surface and a plurality of magnet insertion holes formed in the rotor core and arranged circumferentially at a preset angular interval about the rotational axis of the rotor core. Each hole extends in a direction parallel to the rotational axis and has a cross section of a generally elongated slit. The elongated slit is curved concave relative to the circumferential surface and has a radially inward side, a radially outward side, and two ends that are respectively spaced apart from the circumferential surface by two bridges, wherein each bridge has thinner and thicker portions that are respectively positioned near the radially inward and outward sides. One or more permanent magnets are inserted in each hole and arranged to transfer centrifugal forces acting on the magnets during operation to portions of the bridges.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: October 6, 2009
    Assignee: UQM Technologies, Inc.
    Inventors: Josh Ley, Jon Lutz, Victor Chieduko
  • Publication number: 20090230803
    Abstract: In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward.
    Type: Application
    Filed: November 25, 2008
    Publication date: September 17, 2009
    Applicant: ASMO CO., LTD.
    Inventors: Takahiro NAKAYAMA, Hirotaka ITOH, Yoshiyuki TAKABE
  • Patent number: 7579733
    Abstract: A motor has a rotor core with a plurality of first non-magnetic layers and a plurality of second non-magnetic layers. The rotor core has a plurality of magnets. The first and second non-magnetic layers are positioned to cancel n-th order harmonics. Therefore, a specific order, for example 5-th order and 7-th order, harmonics component of a magnetic flux distribution waveform (induction voltage waveform) is reduced and unnecessary radial force and thrust force is prevented from occurrence, while sufficient magnetic flux is maintained.
    Type: Grant
    Filed: July 5, 2004
    Date of Patent: August 25, 2009
    Assignee: Daikin Industries, Ltd.
    Inventors: Keiji Aota, Kiyotaka Nishijima, Akio Yamagiwa