Suspended By Thin Member Patents (Class 310/351)
  • Patent number: 11960318
    Abstract: A clock oscillator, a clock oscillator production method and use method, and a chip including the clock oscillator are provided. The clock oscillator includes a resonator, a shock-absorbing material layer, and a base, and at least a part of the shock-absorbing material layer is located between the resonator and the base. In the clock oscillator, the shock-absorbing material layer is added between the resonator and the base, and the shock-absorbing material layer can effectively prevent a mechanical wave from being conducted between the base and the resonator, so that the resonator is protected from external vibration. This can ensure, when there is external vibration, that an output frequency of the resonator is not deteriorated and improve shock absorption performance of the clock oscillator.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: April 16, 2024
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Wei Wu, Jinhui Wang, Hao Li, Yong Yang, Xinhua Huang
  • Patent number: 9954513
    Abstract: Methods and apparatus for anchoring resonators, such as microelectromechanical systems (MEMS) resonators. A resonator may include a substrate, a mechanical resonating structure, and at least one anchor. The mechanical resonating structure may be configured to resonate in a resonance mode of vibration at a frequency. The anchor may couple the mechanical resonating structure to the substrate. The anchor may be configured to exhibit an acoustic bandgap at the frequency of the resonance mode of vibration of the mechanical resonating structure. The anchor may be oriented in a direction substantially parallel to a direction of propagation of the resonance mode of vibration of the mechanical resonating structure.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: April 24, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Florian Thalmayr, Andrew Sparks, Jan H. Kuypers
  • Patent number: 9593999
    Abstract: A leak detection structure for attachment to a fire hydrant includes an enclosure, the enclosure defining a cavity internal to the enclosure and a leak detection subassembly located in the cavity, the leak detection subassembly including at least one leak detection sensor and at least one circuit.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 14, 2017
    Assignee: Mueller International, LLC
    Inventors: Leo W. Fleury, Jr., Ganapathi Deva Varma Dintakurti, James O. Williams, Shabbir Yusuf
  • Patent number: 8898875
    Abstract: Providing a method for manufacturing a package capable of achieving reliable anodic bonding between the bonding material and a base board wafer even when the bonding material having a large resistance value is used. Providing a method for manufacturing a package by anodically bonding a bonding material, which is fixed in advance to an inner surface of a lid board wafer made of an insulator, to an inner surface of a base board wafer made of an insulator, the method including an anodic bonding step where an auxiliary bonding material serving as an anode is disposed on an outer surface of the lid board wafer, a cathode is disposed on an outer surface of the base board wafer, and a voltage is applied between the auxiliary bonding material and the cathode, wherein the auxiliary bonding material is made of a material that causes an anodic bonding reaction between the auxiliary bonding material and the lid board wafer in the anodic bonding step.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: December 2, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Takeshi Sugiyama
  • Patent number: 8704428
    Abstract: This disclosure provides systems, apparatus and techniques by which electromechanical resonators are implemented. In one aspect, by mechanically loading the resonator body in specific ways, multiple resonance modes are created within the resonator body resulting in wider bandwidths.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 22, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Changhan Hobie Yun, Chengjie Zuo, Chi Shun Lo, Sanghoon Joo, Jonghae Kim
  • Patent number: 8689415
    Abstract: In an exemplary method for manufacturing a piezoelectric device, a lid wafer, a piezoelectric wafer, and a base wafer are prepared. Each wafer defines multiple lids, multiple piezoelectric vibrating pieces, and multiple bases, respectively. The piezoelectric vibrating pieces comprise respective first and second electrodes, and the base wafer is made of glass. The bases comprise respective first and second metal wires extending therethrough, each wire having a respective end and a respective side surface at the end that protrudes at least partially from the first surface. A wafer sandwich is formed with the three wafers co-aligned with each other, with the protruding ends of the wires contacting respective first and second electrodes. The layers are anodic bonded together, which also bonds the protruding ends of the first and second wires to the respective first and second electrodes. The bonded wafer sandwich is cut into separate individual piezoelectric devices thus formed in the sandwich from each other.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: April 8, 2014
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Kozo Ono, Takahiro Inoue
  • Publication number: 20140042874
    Abstract: A piezoelectric vibrating piece includes a vibrator, a framing portion, a connecting portion, and an extraction electrode. The vibrator includes excitation electrodes formed on both principal surfaces. The framing portion includes an inner peripheral side facing the vibrator and an outer peripheral side on an opposite side of the inner peripheral side. The framing portion has a predetermined width from the inner peripheral side to the outer peripheral side. The connecting portion connects the vibrator and the framing portion. The extraction electrode is extracted from the excitation electrode to the framing portion via the connecting portion. The extraction electrode contacts the inner peripheral side and the outer peripheral side of the framing portion. The extraction electrode includes an end side that connects the inner peripheral side and the outer peripheral side of the extraction electrode. All of the end side is longer than the predetermined width.
    Type: Application
    Filed: July 22, 2013
    Publication date: February 13, 2014
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventors: TAKEHIRO TAKAHASHI, SHUICHI MIZUSAWA, TAKUMI ARIJI
  • Publication number: 20140021829
    Abstract: A tuning fork vibrator includes a package having an internal space having a rectangle column shape; a tuning fork vibration piece including a base, two vibration arms extending in parallel form the base and a first arm and a second arm extending obliquely from the base so as to interpose the two vibration arms, the tuning fork vibration piece having a length from the base to a tip in an extended direction of the two vibration arms which is longer than each side of the bottom surface of the internal space, wherein the tuning fork vibration piece is placed in the internal space with the extended direction set along a diagonal direction of the internal space, and a tip part of the first arm and a tip part of the second arm of the tuning fork vibration piece are fixed to the bottom surface of the internal space.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 23, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Hajime Kubota, Masayuki Itoh, Masakazu Kishi
  • Patent number: 8624471
    Abstract: Microelectromechanical resonators include a resonator body anchored to a substrate by at least one tether containing a coupled-ring linear acoustic bandgap structure therein. The coupled-ring linear acoustic bandgap structure can include a plurality of piezoelectric-on-semiconductor rings connected together by a plurality of piezoelectric-on-semiconductor tether segments. A first electrode may also be provided, which extends on the resonator body and the coupled-ring linear acoustic bandgap structure. This resonator body, which may be suspended opposite a recess in the substrate, may include a semiconductor (e.g., silicon) body having a piezoelectric layer (e.g., AlN) thereon, which extends between the semiconductor body and the first electrode. The coupled-ring linear acoustic bandgap structure may be a periodic structure, where a pitch between each of the plurality of piezoelectric-on-semiconductor rings in the at least one tether is equivalent, or a non-periodic structure.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: January 7, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Farrokh Ayazi, Logan Sorenson, Jenna Fu
  • Patent number: 8531091
    Abstract: A holding device for a piezoelectric vibrator including a support member (11) for separately accommodating a piezoelectric vibrator (1), a first plate spring member (13) which extends from a proximal end fixedly bonded to one side of the support member (11) so as to sandwich opposing sides of the piezoelectric vibrator (1) and is folded back to be fixedly bonded to the piezoelectric vibrator, and a second plate spring member (18) which extends from a proximal end fixedly bonded to another side of the support member (11) so as to sandwich the opposing sides of the piezoelectric vibrator (1) and is folded back to be fixedly bonded to the piezoelectric vibrator. The first plate spring member (13) and the second plate spring member (18) are integrated at portions fixedly bonded to the piezoelectric vibrator (1).
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 10, 2013
    Assignees: Nikko Company, Ishikawa Prefecture
    Inventors: Takashi Yoshida, Mikio Takimoto, Masahiro Takano, Kenichi Hirosaki
  • Patent number: 8519598
    Abstract: Microelectromechanical resonators include a resonator body having a first piezoelectric layer on a upper surface thereof, which is configured to support actuation and sensing through a transverse piezoelectric effect (e31), and a second piezoelectric layer on at least a portion of a first sidewall thereof, which is configured to support actuation and sensing through a longitudinal piezoelectric effect (e33), where e33 is greater than e31. These resonators may further include a first bottom electrode extending between the first piezoelectric layer and the upper surface of the resonator body and a second bottom electrode extending between the second piezoelectric layer and the first sidewall of the resonator body. These first and second bottom electrodes may be contiguous as a single bottom electrode and the first and second piezoelectric layers may be contiguous as a single piezoelectric layer.
    Type: Grant
    Filed: July 3, 2011
    Date of Patent: August 27, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Farrokh Ayazi, Roozbeh Tabrizian
  • Patent number: 8513864
    Abstract: An apparatus with a micromechanical acoustic resonator formed on a substrate and enclosed in a cavity in the substrate. The resonator is partially suspended in the cavity. The resonator is shaped with a primary portion, and a first enlarged portion, where the primary portion is connected to the substrate, and the first enlarged portion is connected to one end of the primary portion. A capacitor connected in series to the resonator, and located external to the resonator cavity. The resonator is made of a compensating material and a piezoelectric material in between a first conductive film and a second conductive film.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: August 20, 2013
    Inventor: Gavin Ho
  • Patent number: 8513858
    Abstract: A vibrating device that includes a small number of components and that has a high vibration transmission efficiency is provided. The vibrating device is fixed to a fixing member. The vibrating device includes a single elastic plate and piezoelectric vibrating plates. The elastic plate includes a fixing portion, a vibrating portion, and a connecting portion. The fixing portion is attached to the fixing member. The vibrating portion is arranged to be substantially parallel to and spaced from a fixing surface at which the fixing portion is fixed to the fixing member. The connecting portion connects an end part of the fixing portion and an end part of the vibrating portion to each other. The piezoelectric vibrating plates are provided on surfaces of the vibrating portion.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: August 20, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Kagayama, Toshihiko Unami
  • Publication number: 20130193807
    Abstract: An AT-cut quartz crystal vibrating piece with an excitation unit is in a rectangular shape. The quartz crystal vibrating piece includes a framing body, a connecting portion, a pair of excitation electrodes, and a pair of extraction electrodes. The excitation unit has a long side that is rotated at 61° or 119° with respect to the crystallographic axis X. The framing body has a long side that extends in 61° or 119° direction with respect to the crystallographic axis X. The connecting portion extends in 61° or 119° direction with respect to the crystallographic axis X. The connecting portion is perpendicular to a short side of the excitation unit and a short side of the framing body.
    Type: Application
    Filed: December 20, 2012
    Publication date: August 1, 2013
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventor: NIHON DEMPA KOGYO CO., LTD.
  • Patent number: 8427441
    Abstract: A portable electronic device includes a touch-sensitive display and a piezoelectric actuator disposed and preloaded on a support and arranged to provide tactile feedback to the touch-sensitive display in response to an actuation signal. The touch-sensitive display may be biased toward the piezoelectric actuator to preload the piezoelectric actuator.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: April 23, 2013
    Assignee: Research In Motion Limited
    Inventors: Todd Robert Paleczny, Arnett Ryan Weber, Perry Allan Faubert, Patrick Clement Strittmatter
  • Publication number: 20130083044
    Abstract: Electromechanical systems dilation mode resonator (DMR) structures are disclosed. The DMR includes a first electrode layer, a second electrode layer, and a piezoelectric layer formed of a piezoelectric material. The piezoelectric layer has dimensions including a lateral distance (D), in a plane of an X axis and a Y axis perpendicular to the X axis, and a thickness (T), along a Z axis perpendicular to the X axis and the Y axis. A numerical ratio of the thickness and the lateral distance, T/D, is configured to provide a mode of vibration of the piezoelectric layer with displacement along the Z axis and along the plane of the X axis and the Y axis responsive to a signal provided to one or more of the electrodes. Ladder filter circuits can be constructed with DMRs as series and/or shunt elements, and the resonators can have spiral configurations.
    Type: Application
    Filed: November 14, 2011
    Publication date: April 4, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Chengjie Zuo, Changhan Yun, Chi Shun Lo, Wesley Nathaniel Allen, Mario Francisco Velez, Jonghae Kim
  • Patent number: 8368487
    Abstract: Microelectromechanical resonators include a resonator body anchored to a surrounding substrate by at least one support that holds the resonator body opposite a recess in the substrate. The resonator body has first and second pluralities of interdigitated drive and sense electrodes thereon. The first plurality of interdigitated drive and second electrodes are aligned to a first axis of acoustic wave propagation in the resonator body when the resonator body is operating at resonance. In contrast, the second plurality of interdigitated drive and sense electrodes are aligned to a second axis of acoustic wave propagation in the resonator body. This second axis of acoustic wave propagation preferably extends at an angle in a range from 60° to 120° relative to the first axis and, more preferably, at an angle of 90° relative to the first axis.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 5, 2013
    Assignee: Integrated Device Technology, Inc.
    Inventor: Logan D. Sorenson
  • Publication number: 20130020911
    Abstract: A piezoelectric vibrating device and a piezoelectric vibrating piece including an excitation unit, a framing portion and a connecting portion are provided. The excitation unit includes a first side extending in a first direction and a second side extending in a second direction. The connecting portion has a thickness of a first thickness in a third direction perpendicular to the first direction and the second direction. The excitation unit includes a first region, a second region and a third region. The pair of excitation electrodes are disposed on the first region. The second region with the first thickness is directly connected to the connecting portion. The third region is disposed between the first region and the second region. The third region has a thickness in the third direction of a second thickness. The second region has a thickness in the third direction that is thicker than the second thickness.
    Type: Application
    Filed: July 1, 2012
    Publication date: January 24, 2013
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventors: Takehiro Takahashi, Shuichi Mizusawa, Masakazu Harada, Hiroaki Yamada, Takumi Ariji
  • Patent number: 8289092
    Abstract: The present disclosure is directed to a MEMS resonant structure, provided with a substrate of semiconductor material; a mobile mass suspended above the substrate and anchored to the substrate by constraint elements to be free to oscillate at a resonance frequency; and a fixed-electrode structure capacitively coupled to the mobile mass to form a capacitor with a capacitance that varies as a function of the oscillation of the mobile mass; the fixed-electrode structure arranged on a top surface of the substrate, and the constraint elements being configured in such a way that the mobile mass oscillates, in use, in a vertical direction, transverse to the top surface of the substrate, keeping substantially parallel to the top surface.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 16, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Anna Pomarico, Pasquale Flora, Annarita Morea, Giuditta Roselli
  • Patent number: 8247954
    Abstract: A vibratory device includes an elastic plate and a piezoelectric diaphragm. The elastic plate includes a fixable portion, a vibratory portion, and a connection portion. The fixable portion is fixed to a fixation member. The vibratory portion is spaced away from a fixable surface of the fixable portion that faces the fixation member and arranged substantially in parallel with the fixable surface. The connection portion connects a first end of the fixable portion in its planar direction and a first end of the vibratory portion in its planar direction. The piezoelectric diaphragm is disposed on a surface of the vibratory portion that is adjacent to the fixable portion. In a direction N normal to the surface of the vibratory portion adjacent to the fixable portion, at least part of the second piezoelectric diaphragm does not overlap the fixable portion.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 21, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Kagayama, Toshihiko Unami
  • Patent number: 8242663
    Abstract: A micro-electromechanical resonator self-compensates for process-induced dimensional variations by using a resonator body having a plurality of perforations therein. These perforations may be spaced along a longitudinal axis of the resonator body, which extends orthogonal to a nodal line of the resonator body. These perforations, which may be square or similarly-shaped polygonal slots, may extend partially or entirely though the resonator body and may be defined by the same processes that are used to define the outer dimensions (e.g., length, width) of the resonator body.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: August 14, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Farrokh Ayazi, Reza Abdolvand, Seyed Hossein Miri Lavasani
  • Patent number: 8099842
    Abstract: According to the present application, a method of manufacturing a piezoelectric transistor may include forming a cavity over a substrate, such as a semiconductor substrate. The method may include depositing and patterning metal material over a portion of a cavity, and may include depositing an oxide film over a cavity and/or patterned metal material. Piezoelectric material may be deposited over an oxide film and patterned to avoid connection with metal material. The method may include depositing a second oxide film over a substrate including piezoelectric material. Metal wiring may be formed and may apply voltage to piezoelectric material that may be in contact with a semiconductor substrate.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: January 24, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Eun-Soo Jeong
  • Patent number: 8058774
    Abstract: A piezoelectric generator that includes a piezoelectric element having first and second surfaces on which a first electrode and a second electrode are disposed. A vibrating plate is bonded to the piezoelectric element such that the first surface is adjacent thereto. The vibrating plate includes a first bend disposed at a first side of a vibrating-plate main section to which the piezoelectric element is bonded and a second bend disposed at a second side thereof. A support member supports the vibrating plate at a location outside the first and second bends. A vibration body including the vibrating-plate main section and the piezoelectric element is supported at both ends.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: November 15, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Katsumi Fujimoto, Chikahiro Horiguchi
  • Patent number: 8035280
    Abstract: The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: October 11, 2011
    Assignee: RF Micro Devices, Inc.
    Inventors: Sheng-Shian Li, Seungbae Lee, Kushal Bhattacharjee
  • Patent number: 8013500
    Abstract: A piezoelectric device according to the present invention includes lead wires (12) each having one end electrically connected to a circuit pattern, and a piezoelectric oscillator (13) made of quartz and having terminals (13a) electrically connected to the other ends of the lead wires (12), wherein the terminals (13a) of the piezoelectric oscillator (13) and the lead wires (12) are respectively capacitively coupled with each other via an insulation layer (14). According to the structure, the piezoelectric device can reduce its vertical height.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: September 6, 2011
    Assignee: Panasonic Corporation
    Inventors: Toshiyuki Nozoe, Hideo Ohkoshi
  • Patent number: 7898158
    Abstract: The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 1, 2011
    Assignee: RF Micro Devices, Inc.
    Inventors: Sheng-Shian Li, Seungbae Lee, Kushal Bhattacharjee
  • Publication number: 20110018399
    Abstract: A piezoelectric device has a piezoelectric vibration element mounted in a package wherein the piezoelectric vibration element comprises two stick-like vibration legs; a central leg provided between the two vibration legs; a coupling portion that couples one end of each of the two vibration legs and one end of the central leg; and a protrusion portion that is coupled to another end of the central leg, has a predetermined angle, neither 0 nor 180 degrees, to the length direction of the central leg, and extends into a direction not interfering with the driving legs. In making the piezoelectric device smaller and thinner, this configuration avoids interference between a support point on the central leg, provided for supporting the vibration element, and conductive electrodes, improves insulation between the conductive electrodes, and reduces the generation of short-circuits between the conductive electrodes.
    Type: Application
    Filed: March 17, 2009
    Publication date: January 27, 2011
    Applicant: CITIZEN HOLDINGS CO., LTD.
    Inventors: Kazuo Murata, Kazuhiro Toriumi, Toshiya Kubo, Takashi Maruyama, Tomoyuki Nakazawa, Taichi Tsuchiya, Izumi Yamamoto, Akiko Katoh, Sadao Horiuchi, Hiroshi Miyauchi, Isao Arai, Akihiro Shioji, Tomoo Ikeda, Maki Takizawa, Keisuke Kigawa
  • Patent number: 7834525
    Abstract: A silicon substrate is trimmed in an area at the top and rear surfaces at the center, and a piezoelectric vibrator is disposed therein. As shown in a top view of FIG. 1, the piezoelectric vibrator is supported by a silicon peripheral portion provided on the peripheral portion including the left and right portions of the view having a large thickness, through two beams formed by removing silicon by a known method such as etching. This supported portion corresponds to a node portion. A film structure of the piezoelectric vibrator includes, in thickness directions of the piezoelectric vibrator from the top to the bottom, an Al electrode, a PZT thin film, a Pt underlying electrode, a Ti underlayer, and an SiO2 thin film. Thereby, the piezoelectric vibrator is supported by the beams integrated with the silicon peripheral portion, thus eliminating a mechanical connection and achieving a stable connection.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 16, 2010
    Assignees: Sharp Kabushiki Kaisha, Nihon University
    Inventors: Masakazu Ibata, Fumio Uchikoba
  • Patent number: 7804373
    Abstract: A method of fabricating a hermetic terminal includes: joining and firing wherein a bar-shaped member to be a lead is inserted into a ring, and they are fired to form a hermetic terminal intermediate having the bar-shaped member fixed in the ring; flattening wherein an end part of the bar-shaped member to be the inner lead portion of the lead is flattened to form a stair portion; and shaping wherein an end part of the stair portion is cut to shape the stair portion into a predetermined shape, wherein in the joining and firing step, a solid round bar longer than the lead is used as the bar-shaped member, and one end side of the bar-shaped member to be the inner lead portion is inserted into the ring so that the one end side is longer than the inner lead portion in the hermetic terminal as a completed product.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 28, 2010
    Assignee: Seiko Instruments Inc.
    Inventors: Masashi Numata, Yasuo Kawada
  • Patent number: 7732995
    Abstract: A piezoelectric device includes: a lower substrate; an upper substrate; an intermediate substrate sandwiched between the lower substrate and the upper substrate, the intermediate substrate including: a piezoelectric vibrating portion; a frame surrounding a periphery of the piezoelectric vibrating portion; a connecting portion coupling the piezoelectric vibrating portion and the frame; a first exciting electrode disposed on an upper surface of the piezoelectric vibrating portion; a second exciting electrode disposed on a lower surface of the piezoelectric vibrating portion; a first wiring line electrically coupled to the first exciting electrode; and a second wiring line electrically coupled to the second exciting electrode; and an inside surface coupling an upper surface and a lower surface of the frame and having a slanted surface having an interior angle with respect to one of the upper surface and the lower surface, the angle being 90 degrees or more.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 8, 2010
    Assignee: Epson Toyocom Corporation
    Inventors: Kenji Tsuchido, Takahiro Kuroda
  • Patent number: 7719171
    Abstract: A method of fabricating a hermetic terminal having an annular ring, a lead arranged to penetrate through the ring in which one end side thereof is an inner lead portion electrically connected to a piezoelectric vibrating piece and the other end side thereof is an outer lead portion electrically connected to outside as the ring is between them, and a filler fixing the lead to the ring, wherein the hermetic terminal seals the piezoelectric vibrating piece inside a case, the method includes the steps of: applying plating to a hermetic terminal intermediate having the lead fixed in the ring with the filler to plate the ring and the lead; setting the hermetic terminal intermediate after subjected to plating on a holding member; and flattening an end part of an inner lead portion in the lead to form a stair portion in the hermetic terminal intermediate set on the holding member.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: May 18, 2010
    Assignee: Seiko Instruments Inc.
    Inventors: Sadao Oku, Mitsuo Akiba
  • Publication number: 20100109484
    Abstract: An electronic component includes: a functional piece having a predetermined function; a bump electrode formed on the functional piece, the bump electrode including a core with elastic property and a conductive film provided on a surface of the core; and a holding unit for holding a conductive contact state between the bump electrode and a connecting electrode which is electrically conducted to a driving circuit. The electronic component is coupled to the connecting electrode, and elastic deformation of the core causes the conductive film to make conductive contact with the connecting electrode.
    Type: Application
    Filed: January 11, 2010
    Publication date: May 6, 2010
    Applicant: Seiko Epson Corporation
    Inventor: Nobuaki HASHIMOTO
  • Publication number: 20100038998
    Abstract: Piezoelectric actuator (51) includes a piezoelectric element (11) that performs expansion/contraction movement in accordance with the state of an electrical field, a base (21) with the piezoelectric element (11) adhered to one surface thereof, and a support member (46) for supporting the piezoelectric element (11) and the base (21), the piezoelectric element (11) and base (21) vibrating up and down in accordance with the expansion/contraction movement of the piezoelectric element (11). The base (21) is connected to the support member (46) by way of a vibration film (31) having less rigidity than the base (21). In addition, the piezoelectric element (11) and support member (46) have different outline shapes.
    Type: Application
    Filed: January 9, 2008
    Publication date: February 18, 2010
    Inventors: Yasuharu Onishi, Yasuhiro Sasaki, Masatake Takahashi, Ukyo Mori, Yukio Murata, Nozomi Toki, Yukio Yokoyama
  • Publication number: 20090289528
    Abstract: Horn assembly adapted to be rotatably arranged in a housing (3) of a rotary ultrasonic sealer, and comprising a hollow shaft (1) having a longitudinal axis (2) and a horn (8) arranged coaxially in the hollow shaft (1) and connected to a converter (6) and preferably also a booster (7). The horn (8) is provided with a peripheral sealing area (13) outside an axial end (13) of the hollow shaft (1). The horn (8) is connected to the hollow shaft (1) by means of at least one annular, metallic support (11) extending radially outward from an outer face (14) of the horn (8) and axially acting retaining means so as to fixedly retain the horn (8) in the hollow shaft (1). The at least one annular support (11) is corrugated in cross section such that at least two grooves and one ridge arranged there between are provided between the inner face (10) of the hollow shaft (1) and the outer face (14) of the horn (8).
    Type: Application
    Filed: September 26, 2007
    Publication date: November 26, 2009
    Inventor: Brian Voss
  • Patent number: 7595582
    Abstract: A resonator 1 of the present invention includes: a vibrating member 13 holding an electronic component 12 and applying a vibration to the electronic component 12; and a depressing member 15 applying a depressing force for a side of a substrate 11 to the electronic component 12 through the vibrating member 13. The depressing member 15 includes: leg portions 15b which are disposed so as to leave spaces between the leg portions and both side faces 13a of the vibrating member 13 parallel with a vibration direction A; and supporting portions 15c through which the leg portions 15b and the side faces 13a of the vibrating member 13 are to be coupled to each other. With respect to a size of a cross section of each of the supporting portions 15c parallel with the side face 13a of the vibrating member 13, a length L2 along the vibration direction A of the vibrating member 13 is shorter than a length L1 along a depressing direction B of the depressing member 15.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 29, 2009
    Assignee: Fujitsu Limited
    Inventors: Yukio Ozaki, Toshinori Kasuga
  • Publication number: 20090212665
    Abstract: An energy harvesting device and a method of using the energy harvesting device to generate an electrical charge are described. The energy harvesting device comprises a mass and at least two tethers, at least one of which comprises a piezoelectric material that is mechanically stressable upon deflection of the at least two tethers. Each of the tethers comprises a first end coupled to the mass and a second end coupled to a reference structure, and the tethers are arranged about the mass such that the mass is moveable within a straightline path relative to the reference. The movement of the mass causes the deflection of the tethers, resulting in the generation of an electric charge. The device is preferably operable at the microscale.
    Type: Application
    Filed: March 23, 2006
    Publication date: August 27, 2009
    Inventors: Hur Koser, Nian Zhang
  • Patent number: 7550899
    Abstract: In order to improve the sound pressure level and the sound quality of a piezoelectric electroacoustic transducing device without impairing the size, the productivity, the cost, and the like of the device, the piezoelectric electroacoustic transducing device 1 has: a frame 20; a piezoelectric vibrator 10 in which piezoelectric elements 12, 13 are bonded to a metal plate 11; and a support member 30 which supports a peripheral portion of the piezoelectric vibrator 10 on the frame 20, and which is made of a resin film such as a ring-like PET resin, and a mesh or embossed concave and convex structure is formed on the surface of the support member 30. While maintaining the external shape of the support member 30, the support member 30 is provided with a flexibility at which a large displacement of the piezoelectric vibrator 10 is not impeded.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: June 23, 2009
    Assignee: Hosiden Corporation
    Inventors: Satoru Fujiwara, Yuka Nagata
  • Patent number: 7550904
    Abstract: A thin-film piezoelectric resonator has a piezoelectric film which is formed via a space on a substrate and is supported on the substrate at least one location, an upper electrode which has a plurality of electrode layers and a connection part connecting the electrode layers to each other, each of the electrode layers being formed on the piezoelectric film, having the same width and being arranged at the same interval as the width, a lower electrode formed under the piezoelectric film, a first pad which is formed on the substrate and is electrically connected to the upper electrode, and a second pad which is formed on the substrate and is electrically connected to the lower electrode.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: June 23, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kawakubo, Toshihiko Nagano, Michihiko Nishigaki
  • Patent number: 7538627
    Abstract: A surface mount crystal oscillator has a package body having a recess and formed with a step on an inner wall of the recess, a flat base plate having a peripheral region secured to the step, a crystal blank secured to the flat base plate, an IC chip having an oscillation circuit, using the crystal blank, integrated therein, and secured to a bottom surface of the recess, and a cover for closing the recess. The crystal blank is disposed above the IC chip within the recess, and the IC chip and the crystal blank are hermetically sealed within the recess.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: May 26, 2009
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventor: Kouichi Moriya
  • Publication number: 20090102323
    Abstract: An electronic component includes: a functional piece having a predetermined function; a bump electrode formed on the functional piece, the bump electrode including a core with elastic property and a conductive film provided on a surface of the core; and a holding unit for holding a conductive contact state between the bump electrode and a connecting electrode which is electrically conducted to a driving circuit. The electronic component is coupled to the connecting electrode, and elastic deformation of the core causes the conductive film to make conductive contact with the connecting electrode.
    Type: Application
    Filed: September 9, 2008
    Publication date: April 23, 2009
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Nobuaki HASHIMOTO
  • Publication number: 20090072672
    Abstract: The present invention provides, in a physical quantity measuring system using a vibrator, a supporting structure of a vibrator for reducing the zero-point temperature drift of detection signal. It is provided a supporting member for supporting a vibrator with bonding wires. The supporting member has a supporting plate with an opening formed therein to be positioned direct under a vibrator, and a bonding wire comprising a bonding end to be bonded with the vibrator, a fixed portion fixed on the supporting plate and a bent portion direct under the opening. A distance “L1” between the bent portion and a position where the bonding wire starts to protrude from the supporting plate is 10 percent or more of a distance “L2” of the bent portion and the bonding end.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 19, 2009
    Applicant: Seiko Epson Corporation
    Inventors: Seiji Ishikawa, Takayuki KIKUCHI, Shigeki HAYASHI
  • Publication number: 20090058229
    Abstract: A silicon substrate is trimmed in an area at the top and rear surfaces at the center, and a piezoelectric vibrator is disposed therein. As shown in a top view of FIG. 1, the piezoelectric vibrator is supported by a silicon peripheral portion provided on the peripheral portion including the left and right portions of the view having a large thickness, through two beams formed by removing silicon by a known method such as etching. This supported portion corresponds to a node portion. A film structure of the piezoelectric vibrator includes, in thickness directions of the piezoelectric vibrator from the top to the bottom, an A1 electrode, a PZT thin film, a Pt underlying electrode, a Ti underlayer, and an SiO2 thin film. Thereby, the piezoelectric vibrator is supported by the beams integrated with the silicon peripheral portion, thus eliminating a mechanical connection and achieving a stable connection.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 5, 2009
    Inventors: Masakazu IBATA, Fumio UCHIKOBA
  • Patent number: 7423363
    Abstract: A piezoelectric vibrating element includes a main vibration section vibrating in a constant direction, an open edge formed at least at one edge among edges provided in a vibration direction of the main vibration section, an outer frame section formed so as to surround the main vibration section, and a junction section being disposed between the main vibration section excluding the open edge and the outer frame section, having groove parts being recessed with respect to both surfaces of the main vibration section and flat parts being substantially flush with the both surfaces of the main vibration section, and being formed so as to integrally connect the main vibration section with the outer frame section.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: September 9, 2008
    Assignee: Seiko Epson Corporation
    Inventors: Masako Tanaka, Shigeru Shiraishi
  • Publication number: 20080079505
    Abstract: To provide high reliable surface mounting oscillator that solder does not leak out by heat from the oscillator. The base print board with a terminal on the first surface and a concave on the second surface which is the opposite side of the first surface, the metal strut fixed to the concave, the sub print board has piezoelectric vibrator supported by the metal strut, the base print board, the cover which covers the metal strut and the sub print board.
    Type: Application
    Filed: September 26, 2007
    Publication date: April 3, 2008
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventor: Tomotaka Kuroda
  • Patent number: 7334473
    Abstract: A structure for supporting a vibrator 1 is provided. The structure comprises a substrate 12 and bonding wires 14A, 14B fixed to the substrate 12 and connected with the vibrator 1. The vibrator 1 is supported with the bonding wires so that the vibrator 1 is not directly contacted with the substrate 12. “fd” and “fw” satisfy the following formula (1). “fd” represents a resonance frequency of a driving vibration mode of the vibrator and “fw” represents a characteristic frequency of a vibration mode of the bonding wire at room temperature. (fd/2)×1.05?fw, or, fw?(fd/2)×0.95.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: February 26, 2008
    Assignees: NGK Insulators, Ltd., Seiko Epson Corporation
    Inventors: Shigeki Hayashi, Takayuki Kikuchi, Yusuke Kinoshita
  • Patent number: 7278313
    Abstract: It is provided a supporting structure having a substrate 12 and bonding wires 14A, 14B fixed onto the substrate 12 and connected to a vibrator 1. The substrate 12 has a pair of fixed portions 12a opposing each other and a pair of non-fixed portions 12b opposing each other. The fixed portions 12a and the non-fixed portions 12b together define a through hole 13A in the substrate 12. The vibrator 1 is supported with the bonding wire so that the vibrator 1 is not directly contacted with the substrate 12. The bonding wires 14A, 14B are fitted to the fixed portion 12a and is not fitted to any of the non-fixed portions 12b.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 9, 2007
    Assignees: NGK Insulators, Ltd., Seiko Epson Corporation
    Inventors: Shigeki Hayashi, Takayuki Kikuchi, Yusuke Kinoshita
  • Patent number: 7148609
    Abstract: An object of the present invention is to provide a novel structure of supporting a vibrator having a terminal for electrical connection so that the vibrator can be miniaturized, and the driving impedance can be made constant in a wide temperature range to reduce the temperature drift. The structure has a substrate and bonding wires 45, 46 supported on the surface of the substrate and to be connected with the vibrator. The vibrator is supported with the bonding wire so that the vibrator is not directly contacted with the substrate. The bonding wire is electrically connected with the terminal. The resonance frequency “fr” of the supporting structure, the driving frequency “fd” for the vibrator and the detuning “?f” satisfy the following formula 1.1·?f?fr?0.9·fd.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: December 12, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Seiji Ishikawa, Makoto Tani, Shigeki Hayashi
  • Patent number: 6984925
    Abstract: The invention is a method and apparatus for improving the aging, pressure sensitivity, and acceleration sensitivity of crystal resonators. In one embodiment the invention includes a coplanar two-dimensional compliant mounting structure, wherein the symmetry and compliance of the planar mounting structure reduces the effects of residual static stresses and dynamic vibratory stresses on the vibration sensitivity performance of a crystal resonator. The structural elements include compliance loops that provide relief from the effects associated with manufacturing, thermal and vibration stresses.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: January 10, 2006
    Assignee: Delaware Capital Formation, INC
    Inventors: Peter E. Morley, Reichl B. Haskell, Daniel S. Stevens
  • Patent number: 6927530
    Abstract: A vibrating piece in which a CI values ratio is maintained constant while minimizing the CI value of the fundamental wave, variations of the CI values between the vibrating piece devices are reduced even if the base is made short, and the entire vibrating piece can be made smaller.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: August 9, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Hideo Tanaya, Fumitaka Kitamura, Junichiro Sakata
  • Patent number: RE42916
    Abstract: An angular rate sensor system [10] comprising a vibratory sensing element [12] and signal processing circuit [14]. The element [12] is preferably a polymorphic rectangular bar fabricated from two layers of piezoceramic material [26, 28] divided by a thin center electrode [Ec], and a plurality of electrodes [E1-E4] scored onto the planar conductive surfaces [30, 32]. The element [12] is suspended at its acoustic nodes [N, N?] to vibrate in one direction [V] normal to the physical plane of the electrodes [Ec, E1-E4] using any suitable mounting structure such as parallel crossed filaments [34] or inwardly angled support arms [64] that provide predetermined degrees of lateral [S?] and longitudinal [S] stiffness. The circuit [14] may optionally constitute totally shared [FIG. 7], partially shared [FIG. 8], or totally isolated [FIG. 9] driving and sensing functions, the corresponding element [12] being configured with dual-pair, single-pair, or single-triple outer electrodes [E1-E4], respectively.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: November 15, 2011
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson